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Introduction: Constant Phase Elements (CPEs) have been widely used in many applications due to the
extra degree of freedom, which offers new responses and behaviors.
Objectives: This paper proposes a new programmable CPE realization using resistive crossbar arrays. By
programming the resistive devices, different CPEs can be obtained.
Methods: The proposed realization can be approximated as a weighted sum of low and high pass filters
having the same cut-off frequency (i.e., Lapicque model). The closed-form approximation expression is
derived, and then the Flower Pollination Algorithm (FPA) is used to find the optimal values of the network
components.
Results: Different design examples are given over the frequency range of 106-10

9
rad/sec to prove the abil-

ity of this realization achieving any fractional order with less than 5% relative error in both phase and
pseudo-capacitance. Monte-Carlo simulations are performed to evaluate the sensitivity of the proposed
realization against device variability. In addition, multiple CPEs can be designed at the same time by uti-
lizing the multiple ports of the crossbar array. The proposed realization is compared with two other state-
of-art realizations showing comparable results as standalone realization and within fractional-order
relaxation oscillator application.
Conclusion: The proposed crossbar realization has proven its ability to realize any CPE with acceptable
error. In addition, this multiple-port design offers high flexibility and on-the-fly switching of the CPE.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Recently, programmable crossbar architectures have been used
in many applications [1]. A crossbar array is constructed from
interconnect metal wires, which are positioned in a cross-point
shape. In each cross-point, a switch device is sandwiched between
the metal wires, as shown in Fig. 2(a). The crossbar arrays have a
small area footprint and can be stacked, creating 3D structures
[2,3]. The recent progress in emerging memory technologies (such
as RRAM or STT-RAM or PCM) that can be programmed to any ana-
log value, enables performing many analog and digital applications
with such a simple structure [4]. Crossbar arrays offer high flexibil-
ity for many applications due to their programmability and non-
volatility such as in-memory computing, cryptography and physi-
cal unclonable functions (PUFs) [1,5,6]. Most recently, crossbar
arrays have been used to accelerate neural networks training
where the crossbar array does the vector-matrix multiplication
naturally in one step, unlike digital implementations which require
n2 steps at least (n is the vector dimension). RRAMs are promising
candidates in crossbar arrays since they have higher analog preci-
sion, low access and write times as well as high retention and
endurance [5,4].

In our previous work [7], a closed-form modeling of the cross-
bar arrays (accounting for the loading and the parasitic effects)
was derived. Interestingly, the network was modeled as a system
of first-order differential equations, which can be used in many
applications. This inspires us to investigate using crossbar arrays
in new applications such as the here within proposed pro-
grammable realization of constant phase elements (CPEs) (known
also as fractional-order capacitors).
Fig. 1. Alternative approaches and different methods
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CPEs are crucial devices in all applicationsof fractional-order sys-
tem, such as oscillators, filters, and signal processing [8,9] although
they are still not available off-the-shelf. To approximate fractional-
order operators, infinite, semi-infinite, and finite-dimensional,
integer-order systems are usually used in order to facilitate testing
until reliable fractional-order elements become available [10].

The admittance of a CPE is given by:

YðsÞ ¼ Casa; ð1Þ

where Ca is the pseudo-capacitance having units of F � seca�1, and a,
0 < a < 1, is the fractional order. Practically, the constant phase
behavior is observed in a certain frequency band known as the con-
stant phase zone. So, an element with constant phase over all fre-
quencies is a theoretical abstraction that cannot be obtained or
approximated. These narrow-band frequency realizations are ter-
med pseudo-fractional order elements (P-FOEs) [11]. Fig. 1 depicts
a mind map for the state-of-art realizations and approximation
methods of CPEs. It is noted that two-terminal device realizations
are based on electrochemical material properties [9] such as ionic
gel-Cu electrodes, graphene-polymer dielectrics or metal-polymer
composites among others [12–16].

An approximating transfer function is often needed for analog
multi-component realizations of CPEs in order to calculate the
component values based on a selected network (e.g. Foster or
Cauer network). Different methods are available to obtain these
approximating transfer functions [17–19]. These transfer functions
can be synthesized using passive or active circuits. The main
advantage of active emulation is the electronic tunability of the
fractional order and/or pseudo-capacitance values [20]. However,
passive realizations remain to be the simplest and most widely
for approximating a CPE [9,13-19,21-23,25-35].
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used [21–24]. In these passive realizations, optimization-based
methods have recently been employed to calculate the optimum
component values given a specific order of approximation and
operating bandwidth [25,9].

This work contributes the following:

� a novel passive RC network structure based on crossbar arrays is
used to approximate the CPE behavior.

� a meta-heuristic optimization algorithm is used to find the opti-
mal parameters of the crossbar array in a 6-dimensional search
space.

� The proposed CPE realization is compared against two other
state-of-art realizations as a standalone and within the relax-
ation oscillator application.

� realization of multiple CPEs with different fractional orders
while sharing the same load capacitance is demonstrated.

This paper is organized as follows: Section ‘‘Crossbar-based CPE
approximation” introduces the crossbar realization of a CPE. The
use of the flower pollination algorithm (FPA) to find the optimal
parameter values is discussed in Section ‘‘Parameters identifica-
tion”. Sections ‘‘CPE design examples and comparison” and ‘‘Shared
CPE design” illustrate different design examples including the sin-
gle CPE and multiple CPEs sharing the same load.
Crossbar-based CPE approximation

Fig. 2(b) shows a general crossbar array with loading impe-
dances and without parasitics for illustration. The programmable
switching devices are represented as resistors. The crossbar array
has m inputs and n outputs. To realize a grounded two-terminal
CPE, one port only is needed and thus the other m� 1 ports are
grounded. The loading impedances, ZLn, should be capacitive in
nature in order to realize a CPE. With all except one input
grounded, the resistors within each row appear in parallel with
the corresponding loads, as shown in Fig. 2(c). The equivalent
admittance seen from the input terminal can be written as:
Fig. 2. (a) 3D crossbar array containing RRAMs (i.e., memristors), (b) resistive network o
array for CPE approximation.
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Yin ¼
Xn
i¼1

ZLi þ RPi

ZLiðRPi þ R1iÞ þ RPiR1i
; ð2Þ

where ZLi is the load impedance in the ith column and RPi is the

equivalent parallel resistance of the grounded inputs in the ith col-
umn and its admittance equals

Pm
j¼11=Rji. In case of pure capacitive

loading, the network has an equivalent input admittance of the
form:

Yin ¼
Xn
i¼1

Ki
1þ s=xzi

1þ s=xpi

; ð3Þ

where Ki ¼1=ðRPiþR1iÞ;xzi ¼1=CiRPi;xpi ¼1=ðKiCiRPiR1iÞ¼xzi=KiR1i

and Ci is the capacitance of the ith load.
In order to have a CPE response, the locations of zeros and poles

of the previous equation should be alternating and should start
with a zero. Also, this approximation can be seen as a weighted
sum of low- and high-pass filters, which is a new implementation
to the best of our knowledge. Some Previously proposed imple-
mentations were based on summations of either low- or high-
pass filters [36,37].

It is worth noting that the well known parallel RC approxima-
tion is a special case of this approximation [37,38,25,36] where
there are no grounded rows in the crossbar array. Mathematically,
this can be obtained by setting RPi ¼ 1 yielding

Yin ¼
Xn
i¼1

sCi

1þ sCiR1i
: ð4Þ

Parameters identification

Meta-heuristic optimization algorithms are used extensively
nowadays to solve many science and engineering problems. This
is due to the fact that traditional optimization algorithms
(gradient-based) tend to converge to local optimal points and are
sensitive to their initial search vector. However, in meta-heuristic
algorithms, the stochastic movements of the search agents and
f the crossbar array with general impedance loading, and (c) simplified model of the
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the random initial populations tend to overcome the drawbacks of
gradient-based techniques [39]. These algorithms are more com-
putationally exhaustive than gradient-based techniques, but they
are less likely to fall into local solutions due to the explorations
made to the entire search space. Researchers have been using
meta-heuristics to tackle difficult design problems involving
fractional-order systems [40,41]. For instance, one of the earliest
contributions in this direction is the use of a differential evolution
algorithm to design a fractional order filter with a certain magni-
tude response [42]. An IIR approximation of the digital fractional-
order differentiators of orders 1=2;1=3, and 1=4 were designed
using flower pollination algorithm (FPA) and Moth Flame Opti-
mizer (MFO) [43,44]. Also, many fractional-order analog filters
approximating Butterworth, Chebyshev, and Bessel magnitude
responses were designed with the help of Meta-heuristic optimiza-
tion methods [45–51].

In this work, the utilized bio-inspired optimization algorithm is
FPA, which is based on the pollination process in plants [39]. This
algorithm has been recently used to extract the optimal transfer
function parameters of the sum of high-pass filters in order to
approximate the frequency behavior of the fractional-order Lapla-
cian sa [36]. A similar objective is sought in this work, which is to
find the optimal circuit parameters that make the input admit-
tance, from Eq. (2), Yin � Casa where a 2 ½0;1�.

Instead of optimizing over ðmþ 1Þ � n variables. The problem is
simplified to search for the equivalent resistance of grounded
branches, RPi which means that the search space is reduced to 3n.
Due to the nature of the problem which requires alternating poles
and zeros with equal spacing to minimum ripple response (mini-
mum phase error), it can be assumed that the ratio between every
two successive poles or two successive zeros is fixed. Thus, we can
further reduce the search space to 6 variables only; the first basic
branch parameters and the next branches parameters are ratioed
from the basic branch. Thus, the search vector is defined as
x ¼ ½R11;Rp1;C1; rR1 ; rRp ; rC �, where R11;Rp1, and C1 are the first
branch parameters (series resistor, parallel resistor, and load
capacitor), rR1 ; rRp , and rC are ratios that relate subsequent elements
given as: R1i ¼ R11=ri�1

R1
;Rpi ¼ Rp1=ri�1

Rp and Ci ¼ C1=ri�1
C where n = 2,

..., n.
The sum of the absolute relative magnitude and phase errors

can be defined as:

f Ca ðxÞ ¼
XM
i¼1

xa
i Ca � jYinðx;xiÞj

xa
i Ca

����
���� and

f aðxÞ ¼
XM
i¼1

ap=2� /ðYinðx;xiÞÞ
ap=2

����
����; ð5Þ

respectively, whereM is the number of frequency points. Hence, the
optimization problem can formulated as minimizing the maximum
error in phase and magnitude as follows:

min
x

maxðf aðxÞ; f Ca ðxÞÞ;
s:t: LL 6 x 6 UL

ð6Þ
Table 1
Optimal parameters values for selected fractional orders. The mean and coefficient of vari

a 0:3 0:5

Mean COV Mean COV

R11 ðXÞ 2:71e6 4:27e� 3 1:22e5 4:16e�
Rp1 ðXÞ 9:93e7 5:97e� 3 8:19e7 8:85e�
C1 ðFÞ 5:22e� 13 4:21e� 3 7:44e� 12 4:16e�
rR1 2:06 7:68e� 5 3:69 9:24e�
rRp 2:05 2:44e� 3 3:70 2:45e�
rC 5:10 3:33e� 4 3:41 3:57e�

Fmin 1:27e1 6:97e� 6 1:05e1 7:92e�
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where LL and UL are lower and upper limits.
In our simulations, we set the number of search agents to 42

and the maximum number of iterations to 3000. Half a decade
on the left and half a decade on the right sides of the frequency
range are also considered during the optimization to reduce errors
near the ends of the frequency range under investigation.
CPE design examples and comparison

Let us consider the approximation of a CPE with
Ca ¼ 10 nF � seca�1 and with different phases in the frequency
range ½106;109� rad/s with 100 logarithmically-spaced frequency
points per decade with UL ¼ ½5M;100M;10n;20;20;20� and
LL ¼ ½1;0:1k;1f ;1;1;1�.

Table 1 summarizes the optimal values of the solution vector X
obtained for a ¼ 0:3;0:5;0:6, and 0:8 using 54 independent runs.
The consistency of FPA results are observed from the coefficient of
variation (COV) values which are on average of order 10�3. Fig. 3
(a) and (b) show the phase and the capacitance percentage errors
over the frequency range ½106;109� rad/s. It can be noticed that the
phase error is not more than 5� for a ¼ 0:8; 3:5� for a ¼ 0:5 and 2�

for a ¼ 0:3. The capacitance percentage error is not greater than
8:5% for a ¼ 0:3 and 7% for a ¼ 0:5;0:6 and 0:3 respectively.

In order to compare the possible CPE realizations, we repeated
the optimization algorithm for different numbers of branches and
calculated the maximum relative error in the phase for different
fractional orders. Fig. 3 ((e) and (f)) depicts this comparison with
the aforementioned parameters which clearly shows that the
interlaced approximation of (3) outperforms the parallel RC branch
approximation (4) for the same number of branches with an error
that is approximately the same regardless of the CPE order. If it is
required to design a CPE with an error less than 1%, then the num-
ber of branches is 10 using (3) while it is 15 using (4) for a CPE
order greater than 0:5.

Monte-Carlo simulations

Fig. 3(c) and (d) show the phase and pseudo-capacitance results
of 200 Monte-Carlo simulations with 5% tolerance based on the
optimal component values summarized in Table 1. The histograms
are generated using 200� 500 frequency points. The phase
response shows an approximated normal distribution with mean
and standard deviation values of 27:1	 1:92�;45:2	 2:2�, and
71:46	 2:39� for a ¼ 0:3;0:5, and 0:8, respectively. Also, the
pseudo-capacitance follows near normal distribution with mean
and standard deviation values of 10:47	 0:75 nF seca�1;

10:04	 0:78 nF seca�1, and 10:18	 1:12 nF seca�1 at a ¼ 0:3; 0:5,
and 0:8, respectively.

Comparison with other realizations

We selected two circuit inspired approximations from the mind
map shown in Fig. 1 for comparison with the crossbar array tech-
ation (COV) are summarized for 54 independent runs where COV ¼ std=mean.

0:6 0:8

Mean COV Mean COV

3 3:11e4 1:56e� 3 3:49e3 6:31e� 3
2 7:96e7 1:06e� 1 7:61e7 1:62e� 1
3 2:84e� 11 2:14e� 3 2:84e� 10 2:28e� 3
4 5:04 9:97e� 4 1:10e1 2:61e� 3
2 4:88 2:89e� 2 7:86 4:37e� 2
4 2:70 8:41e� 4 1:51 6:51e� 4
6 9:35 3:22e� 5 8:64 9:67e� 5



Fig. 3. (a) Phase error in degrees and (b) pseudo-capacitance percentage tolerance. (c) and (d) 200 Monte-Carlo simulations with 5% tolerance of phase and pseudo-
capacitance, respectively. (e) and (f) Maximum relative phase error versus different number of branches for approximation using (3) and parallel RC approximation using (4),
respectively.
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nique. The chosen methods are the Valsa realization [21] and the
optimization-based realization [25]. In the Valsa realization the
designer can control the phase error, bandwidth or number of
branches during the synthesis procedure. Table 3 shows the synthe-
sized resistor and capacitor values of the Valsa network for different
orders. On the other hand, the realization based on [25] is based on
Sugi’s approximation [22]. Thus it can be considered a special case
of our proposed realization when Rp is set to 1. The optimized
resistor and capacitor values are shown in Table 4. The phase and
pseudocapacitance errors are depicted in Table 2. Clearly, the pro-
posed realization technique shows comparable results to Valsa’s
method and better results when compared to [25].
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Application: fractional-order relaxation oscillator

In order to test the accuracy of the proposed crossbar realiza-
tion, we used the designed circuits to realize a relaxation oscillator
[52] shown in 4(a) where the CPE is implemented with both cross-
bar and Valsa realizations to compare the performance. In order to
calculate the oscillation frequency numerically, we have simulated
the circuit with MATLAB using the Grunwald-Letnikov (GL) based
simulation technique as [53]:

VCa ðtiÞ ¼
�VCaðti�1Þ þ Vch

RbCa

� �
� ha �

Xi

k¼1

wðaÞ
k VCa ðti�kÞ ð7Þ



Table 2
Percentage capacitance and phase errors comparison between the proposed approach, Valsa [21], and sum of high-pass filters (Xbar w/o Rp) [25].

Table 3
Circuit parameters values generated using the Valsa algorithm where i ¼ 2;3;4.

a ¼ 0:3 a ¼ 0:5 a ¼ 0:6 a ¼ 0:8

R1ðXÞ 2516495:38 129447:7 34123:7 3433:64
Ri=Ri�1 0:4687 0:2828 0:2197 0:1326
C1ðnFÞ 0:397 7:7 2:93 291:24
Ci=Ci�1 0:17 0:28 0:36 0:6
RpðXÞ 2852204:68 328219:04 121187:23 22465:35
CpðfFÞ 0:4 68:9 810 9:7e4

Table 4
Optimal circuit parameters values for the proposed topology with no Rp .

a ¼ 0:3 a ¼ 0:5 a ¼ 0:6 a ¼ 0:8

R11ðXÞ 7593769:6 924747:6 49843:67 5060:02
C1ðpFÞ 12:7 65:3 65:8 364:58
rR1 2:477 5:15 6:15 12:95
rC 9:1 4:36 3:56 1:63
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along with the switching condition: if jVCa ðtiÞj ¼ jbVchj then
Vch ¼ �Vch. Where VCa ðtÞ is the voltage across CPE, Vch is the charg-
ing/discharging voltage (either Vcc or �Vcc). The initial conditions
used are VCa ð0Þ ¼ 0:1bVcc; b ¼ 0:5 and Vch ¼ Vcc where Vcc ¼ 5V .
The GL weights are calculated according to the recursive relation
[53]:

wðaÞ
0 ¼ 1; wðaÞ

k ¼ 1� aþ 1
k

� �
wðaÞ

k�1 ð8Þ

The circuit simulations are run on Virtuoso using a CPE with the val-
ues reported in Tables 1 and 3 at a ¼ 0:6. Ra is set to 10 KX and Rb is
swept to study the oscillation frequency against Rb to cover all the
working range that we designed the CPE over as shown in Fig. 4(b).
Clearly, both crossbar and Valsa approximations shows a compara-
ble respsonse with less fluctuation in case of crossbar realization.
The subplots in Fig. 4(b) show the transient simulations at
Rb ¼ 5 KHz giving 9:07 MHz and 7:95 MHz oscillation frequency
with 16:5% and 2:16% percentage errors compared to ideal case
for Valsa realization and crossbar realization, respectively.
Shared CPE design

In this section, we show that by only programming the crossbar
array while fixing the load capacitances, different CPEs can be
obtained.
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Different CPEs sharing the capacitive loading

The first example here is to use the same hardware shown in
Figure 2 and optimize over different resistances (Rs and Rp) for
every CPE while sharing capacitor loading. Thus, we define the
objective function to optimize over CPEs’ phases as follows:

min
x

maxðf a1ðxÞ; � � � ; f akðxÞÞ;
s:t: LL 6 x 6 UL

ð9Þ

where a1; . . . ;ak are the desired fractional orders and the search
vector is defined as x ¼ ½R111;Rp11; rR11; rRp1; � � � ;R11k;Rp1k; rR1k; rRpk;
C1; rC � to find the crossbar parameters with fixed loads for all frac-
tional orders.

We conducted two experiments for a resistance-optimized CPE
with a 2 f0:3;0:4;0:5g and for a capacitance-optimized CPE with
a 2 f0:6;0:7;0:8g. Fig. 5 shows the phase relative error result of
the designed CPEs where the relative error increased to 6%, which
is slightly higher than the fully optimized CPE in the previous
section.

Multiple CPEs design

The crossbar array can be used as a multi port network to real-
ize multiple CPEs at the same time. These CPEs would share the
same load capacitances and grounded resistance branches as
shown in Fig. 6(a). The objective function is defined by (9) except
that Rp would be shared between the CPEs. Thus, the search vector
is defined as x ¼ ½R111; rR11 ; � � � ;R11k; rR1k ;Rp11; rRp1;C1; rC � where k is
the number of CPE elements.

Fig. 6(b) and (c) show the results of the optimized devices for
two sets of CPEs; the first realized set has fractional orders of
0:3; 0:4 and 0:5 and the second set has 0:6; 0:7 and 0:8 fractional
orders at n ¼ 8, respectively. The results show a relative phase
error less than 5% and 7% for the two examples confirming the
ability of this realization to share part of the circuit among the CPEs
and still provide acceptable performance.

The value of the objective function versus the iteration number
of four design examples are summarized in Table 5. The objective
function is seen to be settled enough to consider the search conver-
gent. In case of CPE with Rp (Section ‘‘CPE design examples and
comparison”), the final value of the objective functions are reached
before iteration number 1500 except the case of a ¼ 0:8 where it
settles about iteration number 1700. The final objective function



Fig. 4. (a) Fractional-order relaxation oscillator circuit schematic and (b) obtained oscillation on the left y-axis and relative error percentage on right y-axis with changing Rb .
Subplots show the transient simulation of the output voltage Vo and the CPE voltage VCa .

Fig. 5. (a) Phase relative error for different fractional-orders with same capacitive loading with n ¼ 8.
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values decrease by increasing a. A similar behaviour is seen for the
case of CPE with Rp ¼ 1 (Section ‘‘Comparison with other realiza-
tions”). However, the final values of the objective function are lar-
ger than the previous case which is in accordance with the
discussion of Fig. 3 (e,f). The final case is the multiple CPE design.
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It shows discrepancy in convergence speed between its two stud-
ied examples. The first example at a ¼ 0:6;0:7, and 0:8 has the
slowest convergence rate near iteration number 6500 while the
other case at a ¼ 0:3;0:4, and 0:5 has converged near iteration
number 4000.



Fig. 6. (a) Equivalent circuit schematic of separate multiple CPEs design. (b) and (c) Relative phase error for different fractional-orders sharing the same capacitive loading
with n ¼ 8.

Table 5
Convergence curves for 3 investigated designs.
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Conclusion and future work

In this work, a new realization of the CPE using crossbar arrays
was introduced. The optimal circuit component values were
obtained using a minimax objective function and a meta-
heuristic optimization algorithm. Compared to the parallel RC
branches approach, the proposed method showed less error in
phase and magnitude responses for the same number of branches
n. The effect of varying n on the error performance and sensitivity
analysis of component tolerances using Monte-Carlo simulations
were discussed. The introduced topology can simultaneously real-
ize multiple CPEs sharing the same circuits to save the area. The
main limitation of our work is that the programmable resistive
device must have a wide range. Using the proposed approximation
144
in applications such as fractional-order filters and oscillators will
be considered in our future work with experiments.
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