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Abstract: The products of a batch process have high economic value. Meanwhile, a batch process
involves complex chemicals and equipment. The variability of its operation leads to a high failure
rate. Therefore, early fault diagnosis of batch processes is of great significance. Usually, the available
information of the sensor data in batch processing is obscured by its noise. The multistage variation
of data results in poor diagnostic performance. This paper constructed a standardized method to
enlarge fault information as well as a batch fault diagnosis method based on trend analysis. First,
an adaptive standardization based on the time window was created; second, utilizing quadratic
fitting, we extracted a data trend under the window; third, a new trend recognition method based on
the Euclidean distance calculation principle was composed. The method was verified in penicillin
fermentation. We constructed two test datasets: one based on an existing batch, and one based on an
unknown batch. The average diagnostic rate of each group was 100% and 87.5%; the mean diagnosis
time was the same; 0.2083 h. Compared with traditional fault diagnosis methods, this algorithm has
better fault diagnosis ability and feature extraction ability.

Keywords: QTA; batch processes; incipient fault detection

1. Introduction

Batch processing is extensively utilized in modern production fields such as food,
materials, chemicals, and pharmaceuticals [1]. The features between batch data make
processes difficult to control, presenting multi-stage characteristics in the time dimen-
sion, and a strong correlation in the variable dimension [2]. Introducing fault diagnosis
technology into the batch process can effectively guarantee personnel safety and reduce
economic loss. Different batches of data differ at the same time due to subtle differences
in their environment, human operations, and initial conditions. As a result, the diagnosis
performance of traditional fault diagnosis methods decreases. At the same time, noise often
covers weak fault information in the early stage of the fault, leading to delayed detection
and misdiagnosis problems [3]. So, the research of early fault diagnosis technology in batch
processes is crucial for the safe operation of the chemical plant.

Early fault diagnosis methods for batch processes are divided into mechanism-based,
knowledge-based, and data-based methods [4–6]. It is hard to build diagnostic models
based on physical and chemical mechanisms [7], so the research on fault diagnosis methods
tends to be the latter two. Data-based fault diagnosis techniques used in batch processing
are mainly multivariate statistical methods and deep learning methods [8,9]. The former
mainly calculate statistics and thresholds to fault detection. Hoo, K. converted 3D batch
data into 2D data for the first time, and then input it into the principal component analysis
(PCA) process for batch process fault detection [10]. According to this data conversion
method, the multi-way partial least square (MPLS) [11] and other common batch fault
detection methods have been successfully developed. However, the traditional multivari-
ate statistical early fault diagnosis method still has the problems of false positives and
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poor diagnosis timeliness [12]. Peipei Cai et al. [13] proposed the multi-block probability
correlation kernel principal component analysis (KPCA) method to measure the change
of probability distribution caused by a small offset, reducing the detection time. Yihao
Qin et al. [14] combined sliding window technology with traditional statistical detection
methods. They used the improved rank-one correction method to perform a recursive
calculation of singular value decomposition, reducing the computational complexity and
false positive rate. He et al. invented a multivariate statistical method based on the de-
trending and denoising techniques, increasing the difference between fault trends and
reducing the influence of noise [15]. Deep learning belongs to a black-box model [16].
On the premise of the sufficient data, it has a good fault identification effect and feature
extraction ability for highly nonlinear processes [17]. Therefore, multiple and multivariate
statistical methods are combined to identify fault types; for example, the convolutional
neural network (CNN) [18,19], dynamic Bayesian network (DBN) [20,21], long short term
memory (LSTM) [22,23], etc.

The data-based fault diagnosis method can automatically mine the data relationship,
having certain universality. However, it is difficult to process the data, as it requires in-
tricate theoretical knowledge [24]. Qualitative trend analysis (QTA), a semi-quantitative
method, can retain more information by combining qualitative knowledge mining with
data relations [25]. In 1990, Cheung and Stephanopoulos defined the qualitative trend lan-
guage [26,27]. In 1991, Janusz and Venkatasubramanian characterized different trends with
the magnitude and sign of first- and second-order differentials [28]. In 1992, Konstantinov
and Yoshida used a polynomial fitting method to reason about the temporal shapes of
the process variables [29]. In 1994, Bakshi and Stephanopouslos used the decision tree
method to match trends [30]. Thus, a complete QTA method with language definition,
trend extraction, and trend matching is formed. The traditional QTA method will lose a
large amount of useful information because there are only seven basic elements [31]. In
addition, the helpful information of industrial data is concealed in the environmental noise.
Meanwhile, different fault degrees have diverse noise distributions [32]. So, the original
QTA has disadvantages in diagnosis. Early researchers used fuzzy theory to fuzzy match
the trend of the knowledge base to reduce the influence of noise [33]. Later, they achieved
more robust information base building and matching by bridging different data-driven
methods [34,35]. Those methods sacrifice the training and computation time of the algo-
rithm. QTA based on fuzzy theory has an ability to resist noise. However, it performs poor
in multi-fault type recognition [33].

To expand the early fault information, improve the effect of trend analysis in batch fault
diagnosis, and ensure the smooth operation of the process, the local adaptive standardiza-
tion method based on time window and QTA with pattern recognition is proposed—called
the LAS-QTA method. First, a new sliding window-based local adaptive standardization
is constructed to solve the problem where normal conditions cannot be unified due to
the differences between different normal batches. Second, the trend representation in
the traditional QTA method is improved to obtain more trend information. Then, a new
trend matching method based on Euclidean distance was created to avoid the error of
trend matching caused by the difference of a few variables. Final, this study constructed
a complete framework for early fault diagnosis based on local adaptive standardization
(LAS) and trend analysis.

The rest of this paper is organized as follows: Section 2 mainly explains the relevant
principles and describes the novel fault diagnosis method designed; Section 3 introduces
the application and discussion of this method in a penicillin fermentation process; and
Section 4 presents the conclusions and orientations for future research.

2. Methods and Improvements
2.1. Local Adaptive Standardization

Because of the difference in magnitude between variables, some intelligent meth-
ods need to standardize the data before being used. Since the traditional standardization
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method will reduce the separability of data after processing multi-modal data, Ma et al. [36]
proposed the local neighborhood standardization (LNS) method to standardize. It calcu-
lates the mean and standard deviation in the local domain of data. However, when there is
no similar data in the database, the use effect of subsequent algorithms becomes worse.
In 2020, Wu et al. [37] proposed a new LNS method based on the time window, achieving
good results in multi-batch problems. The formulas are as follows:

zi =
xi − mean(wi)

gmstd(X)
, (1)

gmstd(X) =

√√√√n1(std(X1))
2 + . . . + np

(
std
(
Xp
))2

n1 + . . . + np
, (2)

where xi is the sample to be normalized, zi is the sample after normalization, and
ni( i = 1 ∼ p) is the number of samples in mode i of the training data set. The mean(wi)
denotes the mean vector of the sample in the local moving window, and std(Xi) denotes
the standard value of the samples in mode i.

In the actual process, normal data under a new schema or a new batch may not exist
in the historical database. So, we modified Formulas (1) and (2) to obtain an adaptive local
normalization method based on the time window in this paper. The standardized formula
is as follows:

zi =
xi − mean(wi)

std(wi)
, (3)

where wi is the time series corresponding to the time window where xi is located. The
smaller the length of the time window is, the more the accuracy of the standard deviation
will reduce, and the more the impact of noise will amplify. As long as the subsequent
fault diagnosis method can reduce the influence of noise, the normalization method can
effectively retain useful information and achieve the goal of normalizing the distribution
of the same type of data.

2.2. Qualitative Trend Analysis

The QTA methods roughly consists of two steps: trend extraction and trend analysis,
and in further detail it consists of three parts: the language to represent trends, the method
to extract trends and core information, and the classification method (trend matching) [28].
The first thing is to determine what is the extracted information based on the task. Then,
the appropriate trend extraction method needs to be selected according to the data. Next,
the method-based QTA needs to analyze the extracted trend data to determine the language
representing the trend. Finally, the last step of the method is building the classification
method, such as the most commonly QTA method. It extracts the positive and negative
of the first and second derivatives of the fitted curve as the trend language through the
least square fitting of the data. Then, QTA knowledge bases are built. Finally, it determines
the category by comparing the knowledge base, as shown in Figure 1. This approach
has difficulties in distinguishing trends that have nuances in angles and positions due to
the characteristics of the batch process data, making it less effective in early batch fault
diagnosis.
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Under different normal conditions, the trend of a few variables may differ signifi-
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by this difference. Then, the original time window data is converted into the following 
vector: [𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2, 𝑎3, 𝑏3, 𝑐3, … …  𝑎𝑛, 𝑏𝑛, 𝑐𝑛] . The space of the calculating dis-
tance is changed from three dimensions to 3n dimensions. Converting low-dimensional 

Figure 1. QTA knowledge base based on derivative. A~G are seven different primitives derived
from the relationship between the derivatives and zero.

This paper proposed a new language of trend expression and a new trend matching
method based on the original QTA idea to solve the problem. The basic principle is shown
in Figure 2. The new method carried out the unitary quadratic fitting on the data in the time
window, and used the index (a, b, c) in the function to represent the trend, which makes the
extracted information larger. Meanwhile, we used the spatial distance to match the trends,
reducing the nuances of the same model that have been amplified by the introduction of
time windows. For example, in the schematic diagram, the distances between data 1 and
historical data in the coordinates are less than the distances between the historical data. So,
data 1 is considered to belong to the category of historical data. The data cluster formed by
identification data 2 and historical data can be perfectly separated. So, it is not considered
to belong to this category. The specific identification method of the distance can be set
according to the concrete situation.
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Figure 2. The basic principle of the proposed method.

Under different normal conditions, the trend of a few variables may differ significantly.
We combine the coefficient (a, b, c) of all variables to reduce false positives caused by this
difference. Then, the original time window data is converted into the following vector:
[a1, b1, c1, a2, b2, c2, a3, b3, c3, . . . . . . an, bn, cn]. The space of the calculating distance
is changed from three dimensions to 3n dimensions. Converting low-dimensional data into
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a high-dimensional space is easier to cluster and segment. This principle has been proven
in the invention and subsequent use of KPCA. So, the fault detection (binary classification)
and fault identification (multi-classification) tasks can be accomplished theoretically by
combining appropriate pattern recognition way in the proposed method.

2.3. Fault Diagnosis Model

Combined with the theory of the method, a new fault diagnosis method with functions
of offline preparation, online diagnosis, and self-learning is proposed, called LAS-QTA.
The diagnosis flow chart is shown in Figure 3.
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2.3.1. Offline Stage

Step 1: Use Formula (3) to standardize the historical normal data XN.
Step 2: Calculate historical fault deviation data BF by using the historical normal data

and historical fault data. The form of historical fault data XF is as follows to ensure that the
data in the first window has only one failure data point:

XF =
[
xF,tstart , xF,tstart+1, . . . . . . , xF,tend

]
, (4)

tstart = tintro − wtime + 1, (5)

where tintro is the time of introduction of the fault; wtime is the width of the time window;
tend is the time of fault sampling point. Then, the calculation formula of the historical fault
deviation matrix BF is as follows:

BF = XF −
[
xN,tstart , xN,tstart+1, . . . . . . , xN,tend

]
, (6)
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where xN is the normal sample closest to XF.
Step 3: Use Formula (3) to standardize the historical fault deviation data BF.
Step 4: Optimal fitting of unary quadratic equation is carried out for each data sample

under each time window. The principles are as follows:

fk(x) = akx2 + bkx + ck, (7)

εk = ∑m
i=1[ f (xi)− yi]

2, (8)

f∗(x) = a∗x2 + b∗x + c∗, ∗ = argminεk, (9)

where f∗(x) is the optimal quadratic equation of one variable; fk(x) is the k-th quadratic
equation of one variable; εk is the square error corresponding to the kth fitting quadratic
equation of one variable; a, b, c are the fitting coefficients of quadratic equations of one
variable.

Step 5: Establish the QTA knowledge base for subsequent online diagnosis, and its
data structure is as follows:

KNL = [Knlw1, Knlw2, . . . . . . , Knlws], (10)

where Knlwi represents the knowledge base corresponding to the i-th time window, s
denotes the number of time windows. Its data form is as follows:

Knlwi = [Trdw,1, Trdw,2, . . . . . .], (11)

Trd = [a∗,1, b∗,1, c∗,1, a∗,2, b∗,2, c∗,2, a∗,3, b∗,3, c∗,3, . . . . . . , a∗,n, b∗,n, c∗,n], (12)

where n is the number of features. The Trd is called the trend information vector. The a∗,i,
b∗,i, c∗,i are the coefficients of the i-th variable of the unitary quadratic equation obtained
by Equations (7)–(9) for optimal fitting.

Step 6: Calculate the threshold of the normal QTA knowledge base, the principle is as
follows:

δw = maxdw,i,j, (13)

dw,i,j = Trdw,i·Trdw,j, (14)

where the i-th normal sample in window w dot the j-th’s. The result is dw,i,j. The max value
of the dw,i,j is considered as the threshold of the normal in window w. That is to say that
the threshold of the normal QTA knowledge base is a vector.

2.3.2. Online Diagnosis Stage

Step 1: Extract online data, which is in the form of a time window data:

Xo =
[
xt−wtime+1, xt−wtime+2, . . . . . . , xt

]
, (15)

where Xo is the online data; wtime is width of time window; xt is the data of t time; xt−wtime+2
is the data of t-wtime+2 time. So Xo is a matrix composed of data from wtime sampling points.

Step 2: Use Formula (3) to standardize the online data. Fit the data to get Trdo,de.
Step 3: Calculate the Euclidean distance with the historical normal QTA library of the

corresponding time window:

do,de = min(Trdo,de·TrdN,wt,k), TrdN,wt,kεKnlN,wt, (16)

where Trdo,de is the trend information vector of Xo. TrdN,wt,k is the kth trend information
vector in wt window of the normal knowledge base.

Compare with δ, if do,de ≤ δ, then the data is considered as normal and stored in the
corresponding historical database. Otherwise, the data is considered as being faulty, and
we proceed with the following steps.
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Step 4: To obtain online fault deviation data, the calculation method is as follows:

Bo,F = Xo − XN∗, (17)

XN∗ = XN,k∗ , k∗ = argmin(Trdo,de·Trdn,wt,k), (18)

where Bo,F is the online fault deviation data; XN∗ is the normal data matrix in the history
library closest to the online data. The assessment criteria are the Euclidean distance.

Step 5: Use Formula (3) to preprocess Bo,F; use Formulas (7)–(9) to obtain the recogni-
tion trend Trdo,re.

Step 6: Calculate the Euclidean distance with the different historical fault QTA library
in the corresponding time windows do,re,j:

do,re,j = min
(

Trdo,re·TrdFj,wt,k

)
, TrdFj,wt,kεKnlFj,wt, (19)

where Trdo,re is the trend information vector of Bo,F. TrdFj,wt,k is the kth trend information
vector in wt window of fault j knowledge base.

Step 7: Judge the fault type according to the following formula:

j∗ = argmin
(
do,re,j

)
. (20)

Step 8: Report the result.

2.3.3. Self-Study Stage

If do,de ≤ δ, store the data in a historical database in Step 3 of the online diagnosis;
feedback fault type results to the operator for verification and correction, and save the data
to the corresponding fault database after correction before processing Step 8. If the result
of the manual check is the new fault, expand the history library on top of the original one
and run the offline part again.

3. Application to the Fed-Batch Fermentation of Penicillin Process
3.1. Process Description

Penicillin fermentation is the most important process in the production of penicillin,
and its technological process is shown in Figure 4.
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The main reaction of the process takes place in a fermenter with a stirrer. Two PID
controllers—pH and temperature—ensure the stability and efficiency of the reaction. Fully
ferment through the sufficient mixed contact of air and fermentation at a set pH and
temperature value. The whole fermentation process divides into three stages: thallus
growth stage, penicillin synthesis stage, and thallus autolysis stage. The data of the
penicillin synthesis stage are highly nonlinear, which is the stage most prone to fault.
The used data in this paper came from PenSim V2.0 software. PenSim2.0 is the software
developed by the Cinar research group to simulate the penicillin fermentation process [38].
It is the main simulation software for batch processing due to its close degree of data to the
real situation and simple operation. The software can simulate the following fault types:
aeration rate step increasing, aeration rate step decreasing, agitator power step increasing,
agitator power step decreasing, substrate feed rate step increasing, and substrate feed rate
step decreasing. There are 17 variables in the model. We select the following variables
as diagnostic objects: the flow of air, dissolved oxygen concentration, real volume of
fermentation liquid, carbon dioxide concentration, pH value, and cold water flow, which
are denoted by A, B, C, D, E, and F, respectively.

In this paper, the simulation time of each batch is 400 h and the sampling interval is
0.1 h. The initial set values of the normal batches used are shown in the Table 1. Batches
1 to 3 are used for offline preparation. The diagnostic variables trend of normal batch
1 is shown in Figure 5. The historical fault samples are mainly the fault data with 50%
amplitude deviation ending at 400 h when normal batch 2 runs under set conditions for
70 h.

Table 1. The initial set values of the normal batches.

Variable Name Unit
Set Value

Batch 1 Batch 2 Batch 3 Batch 4

substrate conc. g·L−1 15 14 16 14
dissolved oxygen % saturation 1.16 1.00 1.20 1.02

carbon conc. mol·L−1 0.0005 0.0005 0.0006 0.00052
culture volume L 100 100 100 100

temperature K 298 298 298 298
penicillin conc. g·L−1 0 0 0 0

pH - 5.0 4.8 5.1 4.8
biomass conc. g·L−1 0.1 0.1 0.1 0.1
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The test set of this paper has 24 groups of fault batches. They were obtained by running
the software based on the settings of Batches 1 and 4. Each type of fault has four groups of
samples with different amplitude. The specific situation is shown in Tables 2 and 3.

Table 2. The details of test samples 1~12.

Variable Name Unit
Set Value

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

fault type aeration rate step increasing agitator power step increasing substrate feed rate step increasing
magnitude % 10 30 60 80 15 30 55 70 15 30 50 60

occurrence moment h 80 90 100 110 111 90 150 65 80 90 70 105

Table 3. The details of test samples 13~24.

Variable Name Unit
Set Value

S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24

fault type aeration rate step decreasing agitator power step decreasing substrate feed rate step decreasing
magnitude % 25 30 45 65 15 30 50 70 15 32 45 75

occurrence moment h 68 90 130 100 90 78 80 70 100 180 150 111

3.2. Results and Discussion

The LAS-QTA fault diagnosis program was completed according to the steps of
Section 2.3. The used data was generated from PenSim based on Tables 1–3. The diagnosis
results are shown in Table 3. The table shows that when the corresponding normal condition
is batch 4, samples 11, 12, and 17 were identified as other categories. It indicates that the
method has the following disadvantages in fault identification: If there is no corresponding
normal sample in the history database, the fault identification effect will be reduced.
However, the proposed method has the same fault detection performance in two data sets.

The detection time distribution of different fault type samples is not equal in Table 4.
Analysis of the reasons shows that faults 2, 3, 5, and 6 do not directly affect the collected
sensor data, but rather indirectly. Additionally, the variable change caused by the fault is
much smaller than other faults and there is a time lag problem. Therefore, the detection
time of batches of fault types 1 and 4 is much shorter than that of other types of fault data.
In conclusion, the established QTA method has certain adaptability and stronger fault
diagnosis ability.

Table 4. The fault diagnosis result of LAS-QTA method.

Sample No. Occurrence Moment (h)
Detect Moment (h) Result

Actual Fault Type
Batch 1 Batch 4 Batch 1 Batch 4

1 80 80 80 1 1

1
2 90 90 90 1 1
3 100 100 100 1 1
4 110 110 110 1 1
5 111 111.1 111.1 2 2

2
6 90 90.5 90.5 2 2
7 150 150.3 150.3 2 2
8 65 65.5 65.5 2 2
9 80 80.4 80.4 3 3

3
10 90 90.5 90.5 3 3
11 70 70.8 70.8 3 5
12 105 105.1 105.1 3 5
13 68 68 68 4 4

4
14 90 90.1 90.1 4 4
15 130 130 130 4 4
16 100 100 100 4 4



Sensors 2021, 21, 8075 10 of 14

Table 4. Cont.

Sample No. Occurrence Moment (h)
Detect Moment (h) Result

Actual Fault Type
Batch 1 Batch 4 Batch 1 Batch 4

17 90 90.7 90.7 5 3

5
18 78 78.1 78.1 5 5
19 80 80.1 80.1 5 5
20 70 70.2 70.2 5 5
21 100 100.2 100.2 6 6

6
22 180 180.1 180.1 6 6
23 150 150.2 150.2 6 6
24 111 111.1 111.1 6 6

There may be a time dislocation between the detection time and the optimal diagnosis
time. Therefore, this paper judged the fault type of the data in 10 time windows after the
corresponding time when the fault was detected. We use the fault identification accuracy
rate (FDA) as the evaluation index. Its calculation formula is as follows:

FDA =
The number of data identify correctly

Total count of test data
. (21)

The relationship between the average diagnostic rate of different samples in 10 time
windows under different normal conditions is shown in Figure 6. The relationship between
the average diagnosis rate under different normal conditions in each time window is shown
in Figure 7.
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Figure 6 shows that the robustness of this method is poor in the case that there is
no corresponding normal batch in the historical QTA database. This indicates that the
fault identification ability based on the proposed method is insufficient and needs to be
improved in the future.

Figure 7 illustrates that the effectiveness of the method for fault identification changes
over time. At the same time, when there is no corresponding normal sample in the history
database, the diagnostic robustness in time is lower. There are two main reasons why the
diagnosis rate of Batch 1 starts to decrease at 8-time points: first, the range of fault samples
in the fault history database is 50%, and the diversity is low. Second, there is the problem
that the trend difference degree of the error matrix of different faults will weaken over
time. The randomness of the Batch 4 diagnosis rate curve is mainly related to the following
reasons: the time of fault detection is the first time that the system considers that there is
an unacceptable deviation from the normal situation. If this time lag exists in nature, then
the fault deviation matrix of subsequent time does not match the corresponding deviation
matrix. That is, the data difference between the formed fault deviation matrix and the real
deviation matrix will change irregularly with the backward moving of the window.

Combining the two figures, it can be found that when there is a corresponding normal
batch in the history database, the fault identification ability will change because of the
proportion of the fault data in the time window. However, the average diagnosis rate of
10 windows corresponding to the samples of faults 1 and 4 was lower than 1, and the four
samples of fault 1 were diagnosed as fault 2 in the last window. The reason may be that as
time goes on, the process variables become more and more affected by the failure, leading
to the gradual narrowing of differences between failure types.

In order to compare the differences with other methods, the multiway dynamic kernel
principal component analysis (MDKPCA) method commonly used for online inspection
of the batch process is constructed in this paper to train and test the same data. The
fault detection time (FDT) and false alarm rate (FPR) are calculated according the follow
formulas:

FDT = Tide − Tintro, (22)

FPR =
FN
TP

, (23)

where Tide is the time that the fault has been detected; Tintro is the time of fault introduction;
FN is the number of normal data that has been detected as fault; TP is the number of
normal data.

The FDT and FPR results between LAS-QTA and MDKPCA are shown in Table 5.
FDT of MDKPCA is higher than LAS-QTA’s according to the table. The reason is that
MDKPCA cannot amplify local information based on its calculation method. It calculates
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the statistical parameters for the entire normal batch, and standardizes the same, which
masks the minor changes of the early fault introduction. The higher false positive rate of
MDKPCA may be due to the fact that the threshold of the algorithm itself is a unique value.
In conclusion, this method has a better comprehensive effect in early fault detection than
MDKPCA.

Table 5. The compared result between LAS-QTA and MDKPCA.

Sample No.
FDT (h) FPR

LAS-QTA MDKPCA LAS-QTA MDKPCA

1 0.0 6.9 0.0000 0.1708
2 0.0 5.2 0.0000 0.2011
3 0.0 0.9 0.0000 0.2051
4 0.0 2.0 0.0000 0.2312
5 0.1 1.0 0.0000 0.2218
6 0.5 5.2 0.0000 0.1932
7 0.3 3.1 0.0000 0.2308
8 0.5 14.5 0.0000 0.2281
9 0.4 1.0 0.0000 0.2139
10 0.5 5.2 0.0000 0.2281
11 0.8 16.9 0.0000 0.2869
12 0.1 3.6 0.0000 0.3182
13 0.0 11.4 0.0000 0.2045
14 0.1 5.2 0.0000 0.1876
15 0.0 2.2 0.0000 0.2248
16 0.0 0.9 0.0000 0.2010
17 0.7 5.2 0.0000 0.2079
18 0.1 1.5 0.0000 0.1883
19 0.1 6.9 0.0000 0.1848
20 0.2 9.4 0.0000 0.2000
21 0.2 0.2 0.0000 0.1485
22 0.1 3.2 0.0000 0.2106
23 0.2 3.1 0.0000 0.1953
24 0.1 1.5 0.0000 0.1518

mean 0.2083 4.8042 0.0000 0.2098

4. Conclusions

Early fault diagnosis technologies of batch processes ensure smooth operation of the
chemical plant, reducing unnecessary losses. However, the data-based fault diagnosis
method makes it difficult to mine the data information with a high mechanism, which can
easily deviate from reality. Meanwhile, the traditional semi-quantitative method—the trend
analysis method—has some problems, such as difficulties in expressing different trends and
being easily affected by noise. Therefore, we proposed a new trend analysis method, based
on time window adaptive standardization and Euclidean distance to extract incipient fault
signal and improve the fault diagnosis result of batch processing. Adaptive normalization
based on the time window enables time segments with the same trend but different values
to be transformed into the same category. The data difference under the time window is
enlarged. The new trend analysis also includes the function coefficients fitted by the least
square method as trend information, reducing the effect of noise. In addition, the study
used the different distances between classes in space to find an appropriate trend matching
method referring to the basic principle of pattern recognition. Additionally, we constructed
matching criteria and method. Finally, penicillin fermentation proved to be valid. To study
the scalability and robustness of the method, we set the two groups of test data for fault
diagnosis analysis according to whether there was corresponding normal batch data in
the history database. The results show that the method is scalable. The average fault
diagnosis rate is 100% and 87%, respectively. Compared with the traditional batch early
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fault diagnosis method MDKPCA, the fault detection time is shortened by 46 sampling
points, and the false positive rate is lower than MDKPCA.

Compared with the traditional QTA method, this method can carry out online diag-
nosis, but compared with other data-driven methods, there is still a certain distance in
fault identification. The results show that when the historical database does not contain
the corresponding historical data, the robustness of the system is poor. In addition, the
characteristics of batch data also include the unequal length of time between batches, which
also affects the self-learning and scalability of the method, which will be the author’s next
research direction. At the same time, different clustering methods for fault identification
will improve the overall fault diagnosis effect. Selecting the appropriate method that
combines well with LAS-QTA is another direction of future research.
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