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Abstract: Insulin plays a key role in glucose homeostasis and is hence used to treat hyperglycemia,
the main characteristic of diabetes mellitus. Annulohypoxylon annulatum is an inedible ball-shaped
wood-rotting fungus, and hypoxylon F is one of the major compounds of A. annulatum. The aim of
this study is to evaluate the effects of hypoxylonol F isolated from A. annulatum on insulin secretion in
INS-1 pancreatic β-cells and demonstrate the molecular mechanisms involved. Glucose-stimulated
insulin secretion (GSIS) values were evaluated using a rat insulin ELISA kit. Moreover, the expression
of proteins related to pancreatic β-cell metabolism and insulin secretion was evaluated using
Western blotting. Hypoxylonol F isolated from A. annulatum was found to significantly enhance
glucose-stimulated insulin secretion without inducing cytotoxicity. Additionally, hypoxylonol F
enhanced insulin receptor substrate-2 (IRS-2) levels and activated the phosphatidylinositol
3-kinase/protein kinase B (PI3K/Akt) pathway. Interestingly, it also modulated the expression
of peroxisome proliferator-activated receptor γ (PPARγ) and pancreatic and duodenal homeobox
1 (PDX-1). Our findings showed that A. annulatum and its bioactive compounds are capable of
improving insulin secretion by pancreatic β-cells. This suggests that A. annulatum can be used
as a therapeutic agent to treat diabetes.
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1. Introduction

Diabetes is a common chronic metabolic disease that affects millions of people worldwide
and is closely related to modern lifestyle [1]. Hyperglycemia is the hallmark of diabetes and is
caused by impaired insulin synthesis or secretion [2]. Pancreatic β-cells located in the islet of
Langerhans play a critical role in insulin synthesis and secretion, which controls energy metabolism [3].
Typically, the elevation in blood glucose levels after a meal stimulates insulin secretion [4].
However, when insulin secretion is inadequate to meet the metabolic demand, blood glucose levels
remain high, resulting in diabetes [5,6].
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The expression of the insulin receptor (IR) in pancreatic β-cells plays an essential role in
β-cell development and function during diabetes progression. Overexpression of the IR leads
to increased β-cell proliferation and insulin production [7]. The IR can activate its main substrates,
insulin receptor substrate-1 (IRS-1) and insulin receptor substrate-2 (IRS-2), followed by the activation
of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, which is important for
regulating pancreatic β-cell function and survival [8]. Activated PI3K/Akt subsequently induces
the phosphorylation of transcription factor forkhead box protein O1 (FOXO1), indicating the inhibition
of FOXO1 activity. Additionally, the activation of FOXO1 suppresses the expression of peroxisome
proliferator-activated receptor γ (PPARγ) and nuclear translocation of pancreatic and duodenal
homeobox 1 (PDX-1). Overexpression of PPARγ increases the nuclear translocation of PDX-1 [9–11].

Studies have suggested that either the inhibition of FOXO1 or induction of PPARγ mediates
the increase in the nuclear translocation of PDX1, stimulating insulin secretion. Therefore, evaluating
these pathways will provide novel evidence to support the improvement in insulin secretion.

Although many efforts have been made to develop drugs to prevent and regulate diabetes for several
decades, its prevalence has been increasing annually [12]. The commonly used antidiabetic drugs include
synthetic insulin and drugs that replace insulin or improve insulin secretion. However, some of these drugs
have adverse effects [13]. Metformin is known to induce gastrointestinal side effects, and hypoglycemia
and body weight gain are a major concern when using sulfonylureas [4]. Pioglitazone causes an increased
risk of bladder cancer [14], cardiovascular events [15,16], skeletal fracture in postmenopausal women [17],
weight gain [18], and peripheral edema [19,20]. Therefore, identifying and developing antidiabetic drugs
without adverse effects are very important. Natural compounds with insulin-like activity may be favorable
alternatives for treating diabetes [21].

To date, active components including dietary fibers, polysaccharides, and other compounds
extracted from cultured mycelium, fruiting bodies of medicinal mushrooms, have been reported to
exhibit anti-hyperglycemic activity. In our search for the natural compounds of wild mushrooms
that improve insulin secretion, we found Annulohypoxylon annulatum, and its isolated secondary
metabolites, can be a possible candidate to treat diabetes; it has been reported to inhibit tumor
angiogenesis. Treatment with hypoxylonols D and E, novel benzo[j]fluoranthene derivatives, isolated
from Annulohypoxylon annulatum, inhibits proliferation of the human umbilical vein endothelial cell
line (HUVEC) and human umbilical artery endothelial cell line (HUAEC) as the essential step in tumor
angiogenesis [22]. In addition, it has been reported to protect against cisplatin-induced cytotoxicity in
the porcine renal proximal tubule epithelial cell line (LLC-PK1) through anti-apoptosis by inhibiting
p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) phosphorylation
and caspase-3 cleavage [23].

Here, we report the isolation of hypoxylonol C (1), hypoxylonol F (2), and 4,5,4′,5′-tetrahydroxy
-1,1′-binaphthyl (BNT (3)) from A. annulatum, along with their activities that improve insulin secretion.
This study also elucidated the action mechanism of hypoxylonol F on insulin signaling pathways in
INS-1 cells, as hypoxylonol F enhances the phosphorylation of IRS-2 levels, which are associated with
the activation of the PI3K/Akt pathway and PDX-1. We found that PPARγ activation plays a major role
in the insulin-secreting effect of hypoxylonol F.

2. Materials and Methods

2.1. General Experimental Procedures

Preparative HPLC was carried out on a LC-Forte/R (YMC Co., Tokyo, Japan) with an ultraviolet
(UV) detector (YMC Co., Tokyo, Japan) (230 nm) using a Phenomenex Kinetex C18 column
(250 × 21.2 mm, 10 µm, Phenomenex, Torrance, CA, USA), whereas the semi-preparative LC system
(Gilson Inc, Middleton, WI, USA) was equipped with a refractive index (RI) detector and a Phenomenex
Gemini C6-ph column (250 × 10 mm, 5 µm, Phenomenex, Torrance, CA, USA). NMR spectra were
recorded on a Bruker AVACE III 400 spectrometer (Bruker, Billerica, MA, USA) (400 and 100 MHz for
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1H and 13C, respectively) in acetone-d6. Chemical shifts in the proton and carbon spectra measured
in acetone-d6 were reported in reference to residual solvent peaks at 2.05 and 29.9 ppm, respectively.
Ultra-high-performance liquid chromatography (UPLC) ESI mass spectrometry was performed on
a Shimadzu LCMS-2020 system (Shimadzu, Kyoto, Japan). High-resolution mass spectra were acquired
using a JEOL JMS-700 mass spectrometer (JEOL Ltd, Tokyo, Japan) under electron impact or fast atom
bombardment (FAB) conditions at the Korea Basic Science Institute.

2.2. Fungal Material

Mushrooms collected from Yeongok-myeon, Gangneung city, Korea, were identified
as A. annulatum. A voucher specimen (MCO-NP-I-0026) was deposited at the Library of Natural
Products Research Institute, Korea Institute of Science and Technology. The genus Annulohypoxylon
is a member of the Xylariaceae family that has brown to dark brown and phaseoliform single-cell
ascospores with a conspicuous full germ slit. Samples from dead wood were washed thoroughly to
eliminate extraneous material, lyophilized, and stored in a refrigerator at −15 ◦C until use.

2.3. Extraction and Isolation

The lyophilized A. annulatum (280 g) was extracted twice with methanol (3 L) at room temperature
and filtered. The methanolic extract (ca. 35 g) was suspended in water and then successively partitioned
with normal hexane (Hex), ethyl acetate (EA), and normal butanol (BuOH), yielding 5.4, 7.1, and 8.2 g
of residue, respectively. To identify active ingredients responsible for insulin secretion, each fraction
was evaluated for glucose-stimulated insulin secretion (GSIS) using a rat insulin ELISA kit. The active
fraction, the EA-soluble fraction, was first separated by reversed-phase HPLC (Phenomenex C18
column, 250 × 21.2 mm, 10 µm) eluting water (A) and MeCN (B), both containing 0.1% formic acid,
at a flow rate of 20 mL/min, using gradient solvent systems (50% B over 5 min, 50–100% B over 50 min,
100% B over 5 min) with a 230 nm UV detector to yield three sub-fractions (A–C). Further purification
of each sub-fraction (A, B, and C) was carried out using semi-preparative HPLC with a column fitted
with a Phenomenex column (C6-ph, 250 × 10 mm, 5 µm) and RI detector and eluted with 25% aqueous
MeOH, at a flow rate of 4 mL/min, to afford pure compounds 1 (tR 12.9 min, 682 mg, purity 96.4%),
2 (tR 13.8 min, 407 mg, purity 95.3%), and 3 (tR 16.0 min, 588 mg, purity 94.5%).

The three compounds (Figure 1) were identified as hypoxylonol C (1), hypoxylonol F (2),
and 4,5,4′,5′-tetrahydroxy-1,1′-binaphthyl (BNT (3)) by comparing the subsequent NMR analysis with
information in published reports [22,24]. The purity of these compounds was determined by HPLC
(Supplementary Materials).
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Figure 1. Chemical structures of isolated hypoxylonol C (1), F (2), and 4,5,4′,5′-tetrahydroxy-1,1′-binaphthyl
(BNT) (3).

2.4. Cell Culture

The INS-1 rat insulin-secreting β-cell line was purchased from Biohermes (Shanghai, China)
and cultured in a RPMI-1640 medium (Cellgro, Manassas, VA, USA), supplemented with 1%
penicillin/streptomycin (Invitrogen Co., Grand Island, NY, USA), 10% FBS, 11 mM d-glucose, 2 mM
l-glutamine, 10 mM HEPES, 0.05 mM 2-mercaptoethanol, and 1 mM sodium pyruvate at 37 ◦C in
a humidified atmosphere with 5% CO2.
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2.5. Cell Viability Assay

Cell viability was evaluated using the Ez-Cytox cell viability detection kit (Daeil Lab Service Co.,
Seoul, Korea) [25]. INS-1 cells were seeded (1 × 104 cells/well) in 96-well plates. After incubation
for 24 h, the cells were treated with test compounds for 24 h and then incubated with Ez-Cytox
reagent (10 µL/well) for 2 h. Following incubation, absorbance values were measured at 450 nm using
a PowerWave XS microplate reader (Bio-Tek Instruments, Winooski, VT, USA). The cell viability of
the control (untreated cells) was regarded as 100%.

The human hepatocellular carcinoma cell lines HepG2 and Hep3B, human cervical carcinoma cell
line HeLa, human breast carcinoma cell lines MCF7 and MDA-MB-231, and human glioblastoma cell
line T98G were purchased from the American Type Culture Collection (ATCC). The cells were routinely
grown in DMEM (Gibco) and RPMI1640 (Gibco), supplemented with 10% fetal bovine serum (Gibco),
100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C in a humidified atmosphere with 5% CO2.

2.6. Insulin Secretion Assay

Glucose-stimulated insulin secretion (GSIS) was evaluated using a rat insulin ELISA kit
(Gentaur, Shibayagi Co. Ltd., Gunma, Shibukaw, Japan). INS-1 cells were seeded (5 × 105 cells/well) in
12-well plates. After incubation for 24 h, each well was washed twice with Krebs-Ringer bicarbonate
HEPES buffer (KRBB, 4.8 mM KCl, 129 mM NaCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2,
10 mM HEPES, 5 mM NaHCO3, and 0.1% BSA, pH 7.4) and 2.8 mM glucose. Before treatment, the cells
were allowed to starve in fresh KRBB. After incubation for 2 h, the cells were treated with KRBB
containing test samples and gliclazide (positive control), and then KRBB containing basal (2.8 mM)
and stimulating (16.7 mM) glucose concentrations was added to each well. After incubation for 1 h,
the supernatants from each well were collected and centrifuged at 12,000 rpm and 4 ◦C for 10 min
and then GSIS was assessed using a rat insulin ELISA kit according to the manufacturer’s instructions.
The glucose stimulation index (GSI) was calculated by dividing the insulin level at the stimulating
(16.7 mM) glucose concentration by the insulin level at the basal (2.8 mM) glucose concentration
and was compared with the control (untreated glucose-stimulated cells).

2.7. Western Blot Analysis

The expression of proteins related to pancreatic β-cell metabolism was evaluated using Western
blot analysis [26]. INS-1 cells were seeded (4 × 105 cells/well) in 6-well plates. After incubation for
24 h, the cells were treated with test samples for 24 h and then lysed with RIPA buffer (Cell Signaling,
Danvers, MA, USA) containing 1 mM phenylmethylsulfonyl fluoride on ice at 4 ◦C. Cell lysates
were collected and centrifuged at 6000 rpm for 2 min at 4 ◦C. The supernatants were collected
and the concentration of each protein was determined using the Pierce™ BCA protein assay kit
(Thermo Scientific, Carlsbad, CA, USA).

The proteins mixed with 4x loading buffer (20 µg/lane) were separated using 10% sodium
dodecyl sulfate polyacrylamide gel and transferred to polyvinylidene difluoride membranes,
which were further incubated for 1 h with primary antibodies against PPARγ, P-IRS-2, phospho-IRS2
(P-IRS-2), phospho-PI3K (P-PI3K), phosphor-Akt (P-Akt) (Ser473), Akt, PDX-1, and GAPDH
(Cell Signaling, Danvers, MA, USA) at room temperature, and incubated again for 1 h with
horseradish peroxidase (HRP)-conjugated anti-rabbit secondary antibodies (Cell Signaling, Boston,
MA, USA) at room temperature [27]. The proteins (ECL Advance, GE Healthcare, UK) were
visualized using a chemiluminescence system (FUSION Solo, PEQLAB Biotechnologie GmbH,
Erlangen, Germany) according to the manufacturer’s instructions. The Western blot was repeated
three times and representative data presented.
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2.8. Statistical Analysis

Statistical significance was determined using the One-Way Analysis of Variance (ANOVA)
and multiple comparisons with a Bonferroni correction. p values of less than 0.05 indicated statistical
significance. All analyses were performed using SPSS Statistics ver. 19.0 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Effect of Compounds 1–3 Isolated from A. annulatum on Glucose-Stimulated Insulin Secretion

To determine the non-toxic dose ranges of compounds 1–3, we assessed the cytotoxic effect of
various concentrations of compounds 1–3 on INS-1 cells. As shown in Figure 2, compounds 1–3 at 1,
2.5, and 5 µM show no toxic effects. Additionally, as shown in Figure 3, compounds 1–3 lead to
an increase in GSI even at 1 µM. The GSI levels are 6.1 ± 0.1, 10.6 ± 0.3, and 6.8 ± 0.2 for compounds 1–3
at 5 µM, respectively. Among the three compounds, hypoxylonol F (2) leads to the strongest increase
in GSI in a dose-dependent manner (Figure 3B).

Based on insulin secretion assays, hypoxylonol F (2) from A. annulatum stimulates insulin secretion
in INS-1 cells without inducing cytotoxicity. Therefore, further mechanistic studies were carried out
using hypoxylonol F (2).
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Figure 2. Effects of compounds 1–3 isolated from A. annulatum on viability of INS-1 cells. Effect of
(A) hypoxylonol C (1), (B) hypoxylonol F (2), (C) BNT (3), and (D) gliclazide (positive control) when
compared with the control (0 µg/mL) on viability of INS-1 cells for 24 h by Ez-Cytox cell viability assay.
N.S., not significant: p > 0.05 compared with control (0 µM).
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Figure 3. Effect of compounds 1–3 isolated from A. annulatum on glucose-stimulated insulin secretion
in INS-1 cells. Effect of (A) hypoxylonol C (1), (B) hypoxylonol F (2), (C) BNT (3), and (D) gliclazide
(positive control) on glucose-stimulated insulin secretion in INS-1 cells for 1 h by insulin secretion assay.
* p < 0.05 compared with control (0 µM).

3.2. Effect of Hypoxylonol F (2) on the Protein Expression of PPARγ, P-IRS-2, IRS-2, P-PI3K, PI3K, P-Akt
(Ser473), Akt, and PDX-1

To investigate the underlying molecular mechanisms by which hypoxylonol F (2) affects insulin
secretion, Western blotting was performed to quantify the expression of proteins involved in pancreatic
β-cell metabolism

As shown in Figure 4A, the protein expression levels of PPARγ, P-IRS-2, P-PI3K, P-Akt (Ser473),
and PDX-1 are markedly increased by treatment with 2.5 and 5 µM hypoxylonol F (2). The bar graphs
show the ratio of PPARγ, P-IRS-2, P-PI3K, P-Akt (Ser473), and PDX-1 expression normalized by
GAPDH (Figure 4C).
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Figure 4. Effect of hypoxylonol F (2) on the protein expression levels of peroxisome proliferator-activated
receptor γ (PPARγ), P-IRS-2, insulin receptor substrate-2 (IRS-2), P-PI3K, PI3K, P-Akt (Ser473), Akt,
and pancreatic and duodenal homeobox 1 (PDX-1) in INS-1 cells. (A) Protein expression levels of
PPARγ, P-IRS-2, IRS-2, P-PI3K, PI3K, P-Akt (Ser473), Akt, PDX-1, and GAPDH in INS-1 cells treated
or untreated with 2.5 µM and 5 µM hypoxylonol F (2) for 24 h. (B) Schematic illustration of effects
of hypoxylonol F (2) on the protein expression levels of PPARγ, P-IRS-2, IRS-2, P-PI3K, PI3K, P-Akt
(Ser473), Akt, and PDX-1 in INS-1 cells. (C) Each bar graphs presents the densitometric quantification
of Western blot bands. * p < 0.05 compared with control (0 µM).

4. Discussion

In the present study, we investigated the insulin secretory effects of A. annulatum and its bioactive
compounds and the underlying mechanisms to find a favorable alternative therapy for diabetes.

To determine insulin secretory function, we assessed the effects of A. annulatum and its fractions
on GSIS in INS-1 cells. The MeOH extract, EA fraction, and water fraction led to an increase in GSIS in
a dose-dependent manner in INS-1 cells without inducing cytotoxicity. Compounds 1–3 (hypoxylonol
C (1), hypoxylonol F (2), and BNT (3)) isolated from A. annulatum also led to an increase in GSIS in
a dose-dependent manner in INS-1 cells without inducing cytotoxicity. In response to high blood glucose
concentrations, insulin secretion may be influenced by various factors related to insulin synthesis,
insulin secretion from secretory granules, and pancreatic β-cell metabolism [28,29]. IRS2-PI3K-Akt
signaling plays a key role in pancreatic β-cell metabolism influencing insulin synthesis [30]. The IR
and its main intracellular tyrosine kinase substrates, insulin receptor substrate IRS-1 and IRS-2,
are involved in growth, function, and insulin secretion in pancreatic β-cells [8].
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Previous studies have shown that IR-null mice exhibit glucose tolerance and loss of pancreatic
β-cell mass [31,32]. IRS-1 and IRS-2 trigger PI3K, which activates Akt (Ser473) through phosphorylation.
The PI3K/Akt pathway plays an important role in islet mass and pancreatic β-cell proliferation by
regulating apoptosis, differentiation, and proliferation [33,34]. Previous studies have also shown that
the targeted IRS-2 knockout mice leads to β-cell failure [10]. Targeted knockout of the Akt gene in mice
resulted in hyperglycemia [35,36]. In contrast, overexpression of the Akt gene resulted in an increase
in islet mass and pancreatic β-cell proliferation in mice [33]. Treatment with PI3K inhibitors could
reverse insulin secretion with glucose stimulation [37]. In line with previous studies [31–37], treatment
with hypoxylonol F (2) downregulated the expression of IRS-2 and its downstream targets, PI3K/Akt,
in INS-1 cells.

Some studies have also indicated that phosphorylation of the PI3K/Akt pathway inactivates
FOXO1-dependent gene expression. FOXO1 leads to the inhibition of pancreatic β-cell growth
and acts as a transcriptional brake, leading to transcriptional restraint in the expression of PPARγ
and PDX-1 [4,10]. In contrast, overexpression of PPARγ increases the nuclear translocation of
PDX-1 [9–11,38]. PPARγ is a known regulator of glucose and lipid homeostasis, inflammation,
and cellular proliferation and differentiation [9]. PDX-1, a transcription factor, plays an important role
in normal pancreatic development, insulin secretion, and β-cell survival and function. Previous studies
have suggested that the FOXO1/PPARγ-mediated pathway plays a crucial role in pancreatic β-cell
survival and function in diabetic rats [38]. In line with previous studies, hypoxylonol F (2) caused
an increase in PPARγ and PDX-1 protein expression.

Consequently, our findings revealed that A. annulatum and its bioactive compounds are capable
of improving insulin secretion by regulating IRS-2, PI3K, Akt (Ser473), PPARγ, and PDX-1, which are
indispensable for maintaining the normal function of pancreatic β-cells. Our study suggests that
A. annulatum and its compounds can prevent or delay the development of diabetes.

5. Conclusions

In conclusion, this in vitro study provided the first knowledge that hypoxylonol F (2) isolated
from A. annulatum significantly promoted GSIS without toxicity in pancreatic β-cells. Our study
suggested that IRS-2, PI3K, Akt, PPARγ, and PDX-1 played a major role in this effect. Although further
studies are needed to elucidate the molecular mechanism by which hypoxylonol F (2) promotes GSIS,
there is potential to use hypoxylonol F (2) as a naturally occurring antidiabetic agent.
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