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We quantify the VDJ recombination and somatic hypermutation processes in

human B cells using probabilistic inference methods on high-throughput

DNA sequence repertoires of human B-cell receptor heavy chains. Our analysis

captures the statistical properties of the naive repertoire, first after its initial

generation via VDJ recombination and then after selection for functionality.

We also infer statistical properties of the somatic hypermutation machinery

(exclusive of subsequent effects of selection). Our main results are the following:

the B-cell repertoire is substantially more diverse than T-cell repertoires, owing

to longer junctional insertions; sequences that pass initial selection are

distinguished by having a higher probability of being generated in a VDJ recom-

bination event; somatic hypermutations have a non-uniform distribution along

the V gene that is well explained by an independent site model for the sequence

context around the hypermutation site.
1. Background
Along with T cells, B cells contribute to the large diversity of immune cells that

specifically recognize antigens. The diversity of the B-cell repertoire is encoded in

the different amino acid composition of B-cell receptors (BCRs) expressed on the sur-

face of these cells. These receptors are formed during the VDJ recombination process

in the bone marrow. Before these cells leave for the periphery, they are initially

selected for functionality. Later, they undergo further selection depending on

their ability to recognize foreign antigen. Additionally, unlike T cells, BCR

sequences are subject to point hypermutations during the proliferation that follows

successful recognition of an antigen [1]. These hypermutations are selected for anti-

gen binding through the process of affinity maturation. Apart from the possibility of

hypermutations, the generation and selection processes are very similar in B and T

cells, and involve common enzymes and pathways [2]. Recent advances in sequen-

cing technologies [3,4] make it possible to obtain copious data on immune cell

receptor sequences. We work with large samples of human BCR heavy chain

DNA sequence1 and apply advanced statistical techniques to accurately quantify

the processes that shape B-cell repertoire diversity—generation, selection and

hypermutations. Some of these techniques were developed in [5,6] to describe

T-cell repertoires. Here, we also introduce a new probabilistic model to describe

hypermutations (specific to B cells), as well as new tools to automatically detect

and assign new V, D and J alleles in individuals from their repertoire data, and

to infer the distribution of these alleles among their two chromosomes.

Many characteristics of B-cell repertoires have previously been described

using a variety of methods. Gene usage was studied by both immunoscope

techniques [7,8] and single-cell PCR [9], and the variable length distributions

of the complementarity-determining region 3 (CDR3) were reported [10,11].

A number of studies have characterized the effects of B-cell selection, reporting

length reduction and selection against hydrophobicity as dominant features
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Figure 1. (a) BCR heavy chain sequences are formed during VDJ recombination
according to a probability distribution Ppre that we infer from the unproductive
naive sequence repertoire. The unproductive memory repertoire is used to infer
the rate and sequence dependence of somatic hypermutation. Productive
sequences are selected for entry into the naive peripheral repertoire with a
sequence-dependent factor Q, resulting in the observed distribution of receptor
sequences Ppost. (b) Recombined sequences arise via a scenario involving independ-
ent choices of which gene segments to recombine as well as of numbers of
deletions and insertions. The probability distribution of these choices is not
known unambiguously from the observed sequences and is estimated probabilis-
tically in an iterative procedure. (c) The selection factor Q is assumed to be a
product of factors for V and J gene choice together with factors qi;L(a) for the
choice of the specific amino acid a at each position i in a CDR3 of length L.
These factors are determined from the naive productive sequence repertoire by
an iterative procedure.
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[12–18]. Considerable attention has also been given to

quantifying hypermutations and disentangling them from

site specific selection, either by comparing synonymous

and non-synonymous mutations, or functional and non-

functional rearrangements [19–26]. Other studies used lineage

trees to describe this mutation–selection process [24,27].

Recently, high-throughput sequencing data combined with

sophisticated inference techniques have been used to study

selection in the affinity maturation process [19] and the

statistics of synonymous hypermutation profiles [20].

Yet a comprehensive quantitative description of the entire

generation, selection and hypermutation process of the heavy

chain repertoire is still lacking. Here, we self-consistently

model all parts of these interlinked processes. VDJ recombi-

nation is based on a combinatoric process in which V, D

and J genes are chosen from a number of genomic templates

and joined together, with additional base pair insertions and

deletions at the VD and DJ junctions leading to further

randomness in the final sequence [2]. In the case of antigen-

experienced cells, receptor sequences further undergo

random somatic hypermutations. A difficulty that arises in

analysing receptor sequences is that a given sequence can

be produced in many ways. This complication makes it

impossible to unambiguously retrace the steps (V, D, J gene

choices, deletions and insertions at the junctions, hypermuta-

tions) that have led to its generation. Our method

circumvents this difficulty by employing a probabilistic

framework that exploits large sequence datasets to accurately

infer the statistical properties of the three processes that

are central to the generation and evolution of BCRs—VDJ

recombination, functional selection and hypermutations.

This analysis allows us to quantify the theoretical diversity

of these sequences. Our results suggest that, as in the case

of T-cell receptors, the VDJ recombination process is biased

towards sequences that are likely to pass functional selection.

We also show that the diversity of the human B-cell repertoire

is significantly reduced during the initial functional selection

step. Our probabilistic framework also allows us to account

for the statistics of hypermutations, which are well described

by an additive DNA context-dependent binding model.

2. Analysis approach
We analysed Illumina reads of BCR DNA sequences from

human blood samples taken from two individuals (labelled

A and B) [16]. Cells from each sample were sorted into

naive and memory subsamples. The variable region of the

BCR gene was amplified using sequence specific PCR

primers resulting in 130 bp DNA sequence reads anchored

on a conserved sequence within the J gene (data from

H. Robins, whom we thank for sharing it with us).

The VDJ recombination process is not guaranteed to pro-

duce in-frame sequences or, even when sequences are in

frame, functional proteins. If the receptor gene from the

initially rearranged chromosome is not functional, the

second chromosome may be rearranged. If this second

recombination event leads to a functional receptor, the cell

has two rearranged chromosomes—one functional and

expressed, and the other one silenced by allelic exclusion.

As a result, the DNA sequence dataset we analysed contains

a large fraction of non-productive sequences, which are either

out-of-frame or contain a stop codon. These sequences experi-

enced no selection and owe their survival to the receptor
expressed by the other chromosome. For this reason, they pro-

vide us with the raw, unselected product of the generation

process. We used such out-of-frame sequences from the

naive subsample to infer the statistics of the VDJ recombina-

tion process, and the out-of-frame sequences from the

memory subsample to learn the statistics of hypermutations.

McCoy et al. [19] previously exploited these differences

between in- and out-of-frame sequences in human BCR

memory repertoire analysis. The naive productive sequences

(in frame and with no stop codon) are expected to have

passed a selection process before being admitted to the periph-

ery (henceforth called initial selection, to distinguish it from

selection following a recognition event). We used this sub-

sample to learn the selective forces acting on amino acids by

comparing how their statistics differ from the raw product of

VDJ recombination learned from the naive out-of-frame

sequences. Figure 1a summarizes the analysis workflow and

emphasizes how the three main processes underlying

sequence diversity—VDJ recombination, initial selection,

hypermutations—are inferred using three subsamples of the

sequences. A typical subsample used in our analysis had

approximately 200 000 unique sequences.

As we stressed above, one sequence can be the result of a

number of scenarios that include different initial gene

choices, followed by variable numbers of deleted and

inserted base pairs. This problem requires a probabilistic

description of the generation process that sums over all

the different possible scenarios for producing a given

sequence, weighting each scenario by its probability. Each

scenario’s probability Ppre is calculated using a generation
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model of the form shown in figure 1b. In brief, the various

factors account for the probabilities of uncorrelated events

leading to a specific VDJ rearrangement: choice of which

gene segments to recombine P(V, D, J ), choice of number

of nucleotides to insert in a VD or DJ joint P(insVD) and

P(insDJ), probability of number of deletions from all four

ends of the V, D and J genes at the junctions P(delVjV ),

P(dellD,delrDjD) and P(delJjJ ), as well as factors to account

for unequal nucleotide preference in the inserted sequences.

Since the recombination machinery is the same for B and T

cells, and this model structure captured all the correlations

present in T-cell data [5], we expect that it should also cap-

ture all correlations present in the B-cell sequence data; we

will see below that this is the case. In [5], we described an

expectation–maximization method to self-consistently

solve for the component probability distributions in Ppre

by maximizing the likelihood of the set of observed

sequences and we apply the same method here. This

method is applied to the naive unproductive sequence

repertoires that result from the raw generation process.

The expectation–maximization algorithm converges after

only a few steps (electronic supplementary material, figure

S1). The results of the inference obtained from two disjoint

sequence datasets (from the same individual) are almost

identical (electronic supplementary material, figure S2),

indicating that our results are robust to statistical noise.

We validated a posteriori the factorized structure of the

model distribution in figure 1b, by checking that

correlations between its constitutive elements were consist-

ent with the hypothesized model structure (electronic

supplementary material, figure S3).

During proliferation, BCR sequences also acquire point

hypermutations that occur with probability e i at position i
on the sequence. We use the non-productive memory

sequences to learn Pmem, which is the product of Ppre and

the probability of a given combination of mutations (given

in red in figure 1b). As in the case of non-productive naive

sequences, we reasoned that these sequences were not

selected at any point (either before or after hypermutations),

and that their statistics should reflect the raw product of VDJ

recombination followed by random mutations.

Using the (hypermutation-free) generation model as a

starting point, we infer selection factors Q acting on each

sequence in the naive repertoire, where Q is defined as the

fold increase of the probability to see a particular sequence

in the functional repertoire (naive, productive) compared

with the previously learned generation probability: Q ¼
Ppost/Ppre. To infer those factors, we use a factorized model

(figure 1c), where we assume that selection acts indepen-

dently on the V and J gene choice (through factor qVJ), the

length L of the CDR3 sequence (through factor qL), and on

each of the amino acids ai at positions 1 � i � L between

the conserved cysteine near the end of the V gene and the

conserved tryptophan within the J gene (through factors

qi;L(ai)). We use an expectation–maximization procedure to

update the selection factors until convergence, as previously

described by Elhanati et al. [6]. The convergence of log likeli-

hood as a function of iteration number is shown in electronic

supplementary material, figure S4, and the reproducibility of

the inferred factors across two disjoint datasets in electronic

supplementary material, figure S5.

Our inference of recombination scenarios for individual

reads requires accurate knowledge of the germline sequence
of all the V, D and J genes. These genes have several alleles,

and an accurate accounting of sequencing errors and

somatic hypermutation events requires knowing which

alleles are present on the two chromosomes of each indi-

vidual. The existing databases do not provide such

information, but list all alleles that have been detected,

together with an estimate of the population frequency of

these alleles [28]. To address this problem, we have devel-

oped a method for identifying allelic variation directly

from the sequence data for each individual. Working with

naive out-of-frame sequence reads (so that hypermutation

is not an issue), we accumulate patterns of mismatches

between reads and reference genome gene sequences that

occur too often to be attributed to chance errors. This pro-

cedure usually identifies at most two significant alleles

needed to account for a given individual’s reads. While

the majority of genes are homozygous, a significant

number are not (we find that heterozygous V alleles account

for 32% of all sequences in individual A). We are of course

sensitive only to allelic variation in the region of a gene that

can show up within the 130 bp sequence read (while the V

gene is almost 300 bp in length). Thus, our ‘alleles’ may

not capture the full extent of allelic variation, although

they do capture all the information we need for our analysis.

In summary, we infer specific alleles for each individual,

and then use that individual’s specific alleles when

inferring generative models or selection models. This refine-

ment of the genetic information yields a much improved

accounting of sequencing errors and hypermutation

events. A more detailed description of the method can be

found in the electronic supplementary material, and a

list of inferred heterozygous alleles is given in electronic

supplementary material, tables SI and SII.

Given a generative model inferred using this allelic data,

we are further able to make a probabilistic assignment of alleles

to two chromosomes for each individual. The model includes a

joint usage probability distribution P(V, D, J ) of the three sets of

genes/alleles (in effect treating alleles as separate genes). Since

VDJ rearrangement happens on a single chromosome, the

probability of recombining a heterozygous V allele with a het-

erozygous D allele on different chromosomes should be zero,

up to assignment errors (figure 2). To reconstruct the two

chromosomes, we consider all possible associations of a

chromosome to each heterozygous allele. We then compute

the likelihood of each chromosomal association as the sum of

the joint probability P(V, D, J ) over all V, D, J combinations

that are associated with the same chromosome, and simply

choose the chromosomal association that maximizes this likeli-

hood (see the electronic supplementary material for details). In

this way, we found a chromosomal organization for the two

individuals that accounted for about 90% of all sequences.

We can also evaluate the usage probability of the two chromo-

somes identified using this procedure. For both individuals, it

was consistent with equal usage probability between the two

chromosomes, within errors.
3. Results
(a) Distribution of recombination events
The raw distribution of recombination events Ppre before any

selection takes place was inferred from the naive, non-

productive sequence dataset, as explained above (figure 1).
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Figure 2. The organization of heterozygous genes into chromosomes can be
probabilistically determined. Every recombination event ties together a V, a D,
and a J gene, as indicated by the arcs drawn above and below the two
chromosomes. Links that recombine alleles on different chromosomes are
forbidden (red crosses). Our method gives the probability P(V, D, J ) of all
possible linkages between three genes (distinguishing between alleles of
the same gene), but does not address how the various alleles are grouped
on chromosomes. We find the best chromosomal segregation by minimizing
the sum of all terms in P(V, D, J ) that contain forbidden links (red crosses).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140243

4

This inference procedure yielded the VDJ gene usage distri-

bution, as well as the distributions of insertions and

deletions, and the frequency of inserted nucleotides. It is

notable that V and D gene usage (electronic supplementary

material, figures S6–S7) is strongly non-uniform (to simplify

displays of gene-specific information here and elsewhere, we

agglomerate alleles into their associated genes).

Figure 3 shows the distributions of the number of inserted

nucleotides between the V and D genes (figure 3a), or D and J

genes (figure 3b), averaged over both individuals. The figure

shows both the distributions after generation, i.e. before any

selection, as inferred from the non-productive sequences

and, for comparison, the same distributions for the pro-

ductive sequences in the naive repertoire, i.e. after the

initial selection process. They have similar forms—wide

distributions with exponential tails. The effect of selection is

to favour sequences with fewer insertions, thus reducing

CDR3 length.

The identities of the nucleotides inserted during the gen-

eration process are well described by a dinucleotide Markov

model (electronic supplementary material, figures S9–S11).

As was observed for T-cell receptors [5], the profile for the

VD insertions on the sense strand correlates very well with

the JD insertions on the antisense strand.

Although the deletion profiles are in fact gene dependent,

and we infer a separate deletion profile for each gene (elec-

tronic supplementary material, figure S8), for convenience

we present here only the weighted mean over all genes of

the V and J gene deletion distributions (figure 3c,d). These

distributions seem little affected by selection, as evidenced

by the similarity between the pre- and post-selection (naive)

distributions.

(b) Selection
Armed with the raw recombination model Ppre, we can esti-

mate the effect of selection in the naive repertoire by

comparing the statistics of the naive, productive sequences,

with those predicted by the generation model. The effect of

selection is already evident from the CDR3 length distri-

bution [16], as illustrated in figure 4. The pre-selection

sequences are longer and have a wider length distribution
than the selected ones. This effect of selection on length is

in agreement with previous studies [12,16], and in close

parallel with recent observations on T-cell receptors [6].

Selection acting on the rearranged sequences is quantified

by position-dependent selection factors qi;L(a) that capture the

positive or negative effect that each amino acid at each pos-

ition has on the functionality of the entire sequence, and in

addition by gene-dependent selection factors qVJ (figure 1b).

We show the amino acid selection factors averaged over

both individuals in figure 5 and show the gene-dependent

selection factors in electronic supplementary material, figure

S12. The qi;L factors are reasonably consistent between the

two individuals (figure 6a), even though their sequence

repertoires show slightly different CDR3 length distributions

(figure 4). Residue selection patterns show a dependence on

the position and length of the CDR3—some patterns are

related to either the V or J side of the junction, while other

effects are localized in the bulk. This is related to the con-

served motifs just outside of the CDR3, which function as

anchors for the variable area. Thus, the role of an amino

acid is different whether it is close to the V gene conserved

motif, the J conserved motif, or far from both.

We also looked at correlation between our selection fac-

tors and various biochemical properties of the amino acids.

We used quantified numeric properties for every amino

acid, such as hydrophobicity or polarity, to look at the Spear-

man’s correlation between these properties and selection

factors of the 20 amino acids, for a specific position and

CDR3 length. This can be done for every position and

length, yielding many correlation coefficients. Figure 6b–l
shows the distributions of those correlation coefficients. Selec-

tion is not determined by a single property of the amino acid.

However, some properties do correlate with selection,

namely the tendency of an amino acid to participate in a

turn of the protein (figure 6d ) and its tendency to be found

in the core of the interaction complex (figure 6g). A few

other properties, namely amino acid volume (figure 6l ),

charge (figure 6h), pH (figure 6i) or hydrophobicity

(figure 6k) all have a negative influence on the overall

amino acid selection probability. This last negative correlation

is consistent with the observation that hydrophobic D seg-

ments are selected against after rearrangement [16]. Most of

these results are similar to what was observed in the case

of T cells [6].
(c) Correlation between generation and selection
What kind of sequences are likely to pass initial selection?

Each sequence, no matter in what repertoire we observe it,

can be assigned a probability of being generated in the initial

VDJ recombination event. Figure 7a shows the distribution of

this quantity for sequences in the pre- and post-selection

repertoires. Remarkably, we note that most sequences have

a very low generation probability (typically less than 10210).

The similarity of the naive productive (green) and post-

selection model prediction (red) curve is a validation of the

model, while the difference from the pre-selection (blue)

curve highlights the effect of selection. Sequences that had

higher probability to be generated are also more likely to be

selected, resulting in a shift towards higher generation prob-

abilities after selection. This correlation between generation

probability and selection is made more evident by figure

7b, which shows a two-dimensional density plot of the
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generation probability and the overall selection factor Ppre

versus Q, evaluated over a large set of generated sequences.

There is a clear correlation between generation and selec-

tion—higher values of generation probability imply also

higher values of selection and vice versa. To put it differently,

the generation process anticipates the subsequent somatic

selection process.

(d) Repertoire entropy
The diversity of the immune repertoire is one of its key charac-

teristics. The rearrangement and selection models enable us to

precisely quantify this diversity and identify its sources. Reper-

toire diversity is an inherently dynamic property. Upon

random rearrangement, the initial diversity is established,
but initial selection will modify it. Those changes can be

demonstrated by looking at the entropy of the different distri-

butions, calculated from the models we infer. Entropy gives a

measure of the number of different sequences we can expect to

find at different stages of B-cell development (figure 8). The

generation entropy can be broken down into contributions

from the different events that make up the recombination scen-

ario. Most of the diversity comes from insertions. Note that the

entropy of rearranged sequences is smaller than the entropy of

recombination events. This is due to convergent recombin-

ation—the fact that a given sequence can be produced by

different recombination scenarios. Individual B has larger gen-

eration entropy than individual A, primarily because it has

more insertions. The entropy of productive sequences is

further reduced (by two bits) by keeping only the in-frame

sequences. Subsequent action of selection reduces the diversity

of the repertoire by about 10 bits. This reduction is true for

both individuals, regardless of their different generation

entropy, and follows from the correlation between Ppre and

Q (figure 7b), which concentrates the distribution towards

the most probable rearrangements, thus reducing diversity in

the selected repertoire.

The numbers that can be associated with these entropies

are extremely large: 271 � 2 � 1020 for the productive

sequences and 260 ¼ 1018 for the naive repertoire—much

larger than the number of B cells in the body. These numbers

are not estimates of the total number of possible sequences—

this is set by the maximum number of insertions and is

much larger—but rather the equivalent number of outcomes

in a uniform probability distribution.

(e) Hypermutations
Upon recognition of an antigen, BCRs undergo an affinity

maturation process, by which their binding strength to the anti-

gen is increased through the combination of random somatic

hypermutations and selection. Thus, receptor sequences from
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antigen-experienced cells, such as memory cells, are expected

to show the effect of somatic hypermutations, and we can

use these sequences from our dataset to learn their statistics.

Hypermutations appear in our sequence reads as mis-

matches with the genomic sequence. However, because the

survival of a sequence in the memory repertoire depends on

its affinity for a particular antigen, the statistics of its hypermu-

tations should reflect factors other than just the hypermutation

process itself. To overcome this issue, we make the assumption

(as in [19]) that when the hypermutation machinery is acti-

vated in a cell, it acts on both chromosomes indifferently.

This assumption is backed by the comparable number of mis-

matches seen in the out-of-frame and in-frame memory data

(the number of mismatches found in the naive out-of-frame

data is smaller by two orders of magnitude). If this assump-

tion is true, out-of-frame sequences will also display the

effects of somatic hypermutations, with statistical properties

unaffected by any further selection effect. For this reason, we

restrict to out-of-frame memory sequences to infer the statisti-

cal properties of the somatic hypermutation process.

First, we used the out-of-frame memory sequence reads to

infer a model of rearrangement with random hypermutations

in the germ line part of the sequence (figure 1b). Such a

model allows us to assign a set of likelihood-weighted recom-

bination and hypermutation scenarios to any specific

sequence. We thus identified and probabilistically weighted

somatic hypermutation events and recorded them, together

with their sequence context within a seven-nucleotide

window centred on the mutation. We restricted our analysis

to V gene-derived segments: D and J gene-derived sequences

are much shorter and may not have provided enough stat-

istics for our analysis. We then use statistics of the sequence

context of hypermutations to construct a simple additive

scoring model for the probability of mutation at any position

within a V gene context. Specifically, the probability of

observing a somatic hypermutation was assumed to be of

the form pSHM(s)/ pbg(s) exp[
P

i¼23,3 ei(si)], where s ¼

(s23, s22, . . ., sþ3) is the nucleotide sequence in a seven-

nucleotide window around the mutated nucleotide s0;

pbg(s) is the background probability of the heptamer s occur-

ring in the genomic V gene sequences; and the ei(si) are

contributions of each position to the motif, which play the
same role as binding energies [31]. The values of ei are

adjusted so as to maximize the likelihood of the data under

the model. The ei factors so inferred are displayed in

figure 9a. Since they are defined up to a constant, we

impose
P

s ei(s) ¼ 0 at each position i relative to the mutation

site. A positive value of ei(s) means that nucleotide s is

enriched at position i relative to a mutation site.

By running pSHM(s) over the genomic V gene sequences,

we get a predicted probability of observing a somatic hyper-

mutation at different positions within the V gene. The

prediction of this model averaged over all gene profiles

(aligned with respect to the conserved Cys), and its compari-

son with observed hypermutations is displayed in figure 9b
(the profiles for individual genes were found to be similar to

the average profile). The scatter plot of model predictions

versus data (correlation¼ 0.8) shows that the model gives a

good account of the data, and the plot of their position depend-

ence shows that the model accounts well for the presence of

hypermutation hotspots. Note that the hypermutation rate dis-

played in figure 9b is very large: 5–10% per position. For

comparison, the rate of mismatches in the naive out-of-frame

sequences (attributable to sequencing errors or a leak of

memory cells into the naive set) was approximately 0.1%.

Finally, we also looked at the dependence of the substituted

nucleotides on the immediate context of the mutation.

Figure 9c represents the probabilities of substituted nucleotides

as a function of the trimer context. We note a clear depen-

dence on the identity of the mutated base, with additional

context-dependent variability from the local trimer sequence.
4. Discussion
Our statistical algorithms allowed us to characterize in detail

the generation, initial selection and hypermutation processes

that lead to the observed BCR repertoires. Two key ingredi-

ents underlie our approach. First, we exploited out-of-frame

sequences, assumed to be free of selective pressure, to recon-

struct the statistics of the DNA editing processes: VDJ

recombination and hypermutations. Out-of-frame sequences

have similarly been used as a baseline to study the properties

of BCR naive repertoires [16], or to estimate selective
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Figure 6. (a) Scatter plot of the logarithms of the amino acid selection factors qi;L(a) between individuals A and B. The selection factors for the two individuals are
strongly, if not perfectly, correlated. This justifies a joint analysis of the properties of those factors, as done in the following panels (b – l), showing correlation of the
selection factors with several biochemical properties. Each panel shows the histogram, over all positions and lengths of both individuals, of Spearman’s correlation
coefficient between the selection factors for a given amino acid and the biochemical properties of that amino acid. The following biochemical properties are con-
sidered (from left to right, top to bottom): preference to appear in a-helices (b), b-sheets (c), turns (d ) (source for (b – d ): electronic supplementary material,
table 3.3 [29]). Residues that are exposed to solvent in protein – protein complexes (following definitions and data from [30]) are divided into three groups: surface
(interface) residues that have unchanged accessibility area when the interaction partner is present (e), rim (interface) residues that have changed accessibility area,
but no atoms with zero accessibility in the complex ( f ) and core (interface) residues that have changed accessibility area and at least one atom with zero accessibility
in the complex (g). Finally, we plot the basic biochemical amino acid properties (http://en.wikipedia.org/wiki/Amino_acid; http://en.wikipedia.org/wiki/Proteino
genic_amino_acid): charge (h), pH (i), polarity ( j ), hydrophobicity (k) and volume (l ). For all properties, the actual numerical values used to calculate the
correlations are listed in the inset tables.
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pressures related to affinity maturation in memory B cells

[19]. Second, our approach overcomes the degeneracy of the

recombination problem (whereby the same sequence may

be generated by many different recombination events) by

using a fully probabilistic approach.

The generation of BCR and T-cell receptor results from

similar processes, involving common enzymes and pathways.

Thus, perhaps not surprisingly, many of the results we obtain

here are similar to what was reported for T-cell receptors using

similar methods [6]: statistical independence between the

insertion and deletion processes, as well as between gene

choice and insertions; the identity of inserted nucleotides fol-

lowing a Markovian probability law. Another similarity with

T-cell receptors is that the generation process anticipates the

action of selection: sequences that are more likely to be pro-

duced are more likely to be retained by selection. This

suggests evolutionary adaptation of the generation machinery.

We also noted some differences with T-cell receptors.

Because BCRs have more insertions than TCRs, we find that
B-cell repertoires are much more diverse than T-cell reper-

toires, as measured by entropy, even before hypermutations

occur. In addition, the selection factors acting on the CDR3

amino acid sequence of BCRs are quite different from those

reported for T-cell receptors, consistent with the fact that

their cognate epitopes are very different in nature.

Although there is a difference in diversity between our

two individuals, this difference is restricted to the genera-

tion process and is caused by a slight excess of insertions in

individual B. Selection factors on the other hand seem to

be well-conserved across individuals, pointing to general

biophysical and biochemical properties that are subject to

selection. The selection factors correlate with some biochemical

properties, including a negative correlation with hydrophobi-

city (in agreement with a previous report that hydrophobic D

segments are selected against [16] after rearrangement).

This study also provides a couple of methodological

advances. Thanks to our stochastic framework, we were able to

identify heterozygous genes as well as their alleles, even when
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mutated, but varying with the context.
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these were not present in existing databases. We could then

reconstruct the partition of these alleles into two chromosomes.

We found no significant bias in chromosome usage.

Perhaps the most important difference between BCR and

T-cell receptors is the existence of hypermutations
accumulated during affinity maturation. Hypermutations

are expected to add an enormous amount of sequence diver-

sity. With a hypermutation rate estimated to be of the order of

5–10%, hypermutations are expected to contribute an

additional �0.4 bit per nucleotide—a huge number if we
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consider that hypermutations can happen over a region a few

hundred nucleotides in length. A common difficulty in study-

ing hypermutations is to disentangle the biases that are

inherent to the hypermutation process from the biases that

result from affinity-driven selection [32]. While previous

efforts have been devoted to the inference of selective pres-

sures in the B-cell memory repertoire [19], here we focused

our attention on the raw substitution process. We used out-

of-frame memory sequences to learn about the statistics of

substitutions unperturbed by the effect of selection, as was

suggested in [26]. For this purpose, we adapted our probabil-

istic framework to infer the hypermutation profile across all

genes. The hypermutation rate was found to be very variable

along the V-gene sequence but similar across genes. We

showed that a simple additive model could correctly predict

the hypermutation rate from the immediate sequence context

(heptamer) around the mutation site. These results confirm

earlier reports that hypermutations are context-dependent

both in localization and substitutions [23,26,33,34], as well as

recent observations from high-throughput sequencing data

restricted to synonymous mutations [20]. Our additive model

is consistent with an independent site binding energy model

for the hypermutation-inducing enzyme activation-induced

cytidine deaminase (AID), where each flanking nucleotide
contributes independently to its binding energy, as in the

case of transcription factor binding sites [31].

The hypermutation rates and substitution matrices

inferred by our model could serve as a baseline or a control

for future efforts to infer selective pressures from functional

sequences, and could be useful in the inference of mutational

phylogenic trees in the study of affinity maturation.
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