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ABSTRACT
Radon inhalation decreases the level of lipid peroxide (LPO); this is attributed to the activation of antioxidative
functions. This activation contributes to the beneficial effects of radon therapy, but there are no studies on the risks of
radon therapy, such as DNA damage. We evaluated the effect of radon inhalation on DNA damage caused by oxidative
stress and explored the underlying mechanisms. Mice were exposed to radon inhalation at concentrations of 2 or
20 kBq/m3 (for one, three, or 10 days). The 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels decreased in the brains
of mice that inhaled 20 kBq/m3 radon for three days and in the kidneys of mice that inhaled 2 or 20 kBq/m3 radon
for one, three or 10 days. The 8-OHdG levels in the small intestine decreased by approximately 20–40% (2 kBq/m3

for three days or 20 kBq/m3 for one, three or 10 days), but there were no significant differences in the 8-OHdG levels
between mice that inhaled a sham treatment and those that inhaled radon. There was no significant change in the levels
of 8-oxoguanine DNA glycosylase, which plays an important role in DNA repair. However, the level of Mn-superoxide
dismutase (SOD) increased by 15–60% and 15–45% in the small intestine and kidney, respectively, following radon
inhalation. These results suggest that Mn-SOD probably plays an important role in the inhibition of oxidative DNA
damage.
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INTRODUCTION
Radon therapy is applied for the treatment of osteoarthritis
[1, 2], rheumatoid arthritis [3, 4] and ankylosing spondylitis [5, 6].
The mechanism of action involves the ability of radon to induce
anti-inflammatory cytokines and the immune system, especially
transforming growth factor-β1, thereby reducing inflammation and
subsequently alleviating pain [7, 8]. Reactive oxygen species (ROS) are
closely related to inflammation [9–11]. Carrageenan administration
to the paws of mice induces edema, accompanied by an increase
in tumor necrosis factor-alpha levels in the serum, which is an
indicator of inflammation. However, radon inhalation inhibits the
development of carrageenan-induced inflammatory paw edema [12].

Radon inhalation inhibits inflammatory pain induced by formalin
administration [13] and suppresses colitis induced by dextran sulfate
sodium [14]. Therefore, radon-induced activation of antioxidative
functions plays a significant role in protection from inflammation.
Radon inhalation activates antioxidative functions in several organs in
mice [15], which has expanded the possibilities for new applications of
radon therapy.

There are several targets affected by oxidative stress, including DNA
and proteins. Widely used, 8-Hydroxy-2-deoxyguanosine (8-OHdG)
is a sensitive marker of nuclear and mitochondrial oxidative DNA dam-
age. Inhaling a high concentration of radon for several months increases
oxidative DNA damage [16]; however, long-term bathing in a radon
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hot spring reduces 8-OHdG levels [17]. The radon concentration in
the bathroom is usually more than 200 Bq/m3 during a shower.

However, the aforementioned conditions are different from those
used for radon therapy, and there are only a few reports of oxidative
DNA damage under radon therapy conditions. The radon concentra-
tion in the radon therapy rooms of Misasa in Japan [18] and Montana
in the USA [19] are approximately 2 kBq/m3 and 40 kBq/m3, respec-
tively. Therefore, further assessment of the oxidative stress induced
by radon is needed to clarify the mechanisms of radon therapy. An
examination of the risks of radon therapy is also critical to evaluate
the risks and benefits of radon therapy. The aim of this study was to
evaluate oxidative DNA damage associated with radon inhalation in a
mouse model and to examine the mechanisms underlying such effects,
based on changes in DNA damage and oxidative stress markers.

MATERIALS AND METHODS
Animals

Eight-week-old male BALB/c mice were obtained from CLEA Japan
Inc. (Tokyo, Japan). The animals were housed under standard envi-
ronmental conditions and a preset light–dark cycle of 12:12 h. Ethics
approval was obtained from the Animal Care and Use Committee of
Okayama University.

Experimental procedures
Radon inhalation was performed using a radon inhalation system as
previously reported [20]. The radon group received radon inhalation
for one, three or 10 days. The concentration of radon in the mouse
cage was approximately 2 kBq/m3 (1 day: 2017 ± 138 Bq/m3, 3 days:
2008 ± 134 Bq/m3, 10 days: 2020 ± 131 Bq/m3) or 20 kBq/m3

(1 day: 20103 ± 516 Bq/m3, 3 days: 20118 ± 503 Bq/m3, 10 days:
20340 ± 552 Bq/m3). The control group received sham inhalation
only. The brains, kidneys and small intestines were removed quickly
after euthanasia using CO2 to evaluate the levels of 8-OHdG, 8-
oxoguanine DNA glycosylase (OGG1) and SOD.

DNA damage assay
The level of 8-OHdG was used to evaluate the level of oxidative DNA
damage. Total DNA was extracted and purified from the tissue samples
using the DNeasy Blood & Tissue Kit (QIAGEN, Hilden, Germany),
according to the manufacturer’s recommendations. The DNA concen-
tration was measured based on the absorbance at 260 nm. The samples
were treated with the 8-OHdG Assay Preparation Reagent Set (FUJI-
FILM WAKO Pure Chemical Corporation, Osaka, Japan). The level
of 8-OHdG was determined using a highly sensitive enzyme-linked
immunosorbent assay kit (Nikken Seil Co. Ltd., Shizuoka, Japan).

Western blotting for OGG1 and Mn-SOD
Western blotting with antibodies against OGG1, Mn-SOD and β-
actin, including the determination of protein concentrations and band
intensities, was performed as previously described [21].

Statistical analyses
The statistical significance of the biochemical assay results among the
groups was determined using one-way analysis of variance followed

by Tukey’s test for multiple comparisons. P < 0.05 was considered
statistically significant.

RESULTS AND DISCUSSION
Dose coefficients of α-rays emitted by radon in mouse organs have
already been reported [22]. According to the report, the estimated
absorbed doses in the brain, kidney and small intestine are approx-
imately the same. For example, when mice inhaled radon at a con-
centration of 2 kBq/m3 for one day or 20 kBq/m3 for 10 days, the
estimated absorbed dose range in these organs was 74–148 nGy and
7.4–14.8 μGy, respectively [22]. However, energy deposition by alpha-
emitting radionuclides such as radon was reported [23]. Microdosi-
metric approaches can be applied when we discuss the activation of
antioxidative function induced by radon. This is because it is con-
sidered that antioxidant enzymes such as Mn-SOD are produced in
response to ROS, which are induced by α-ray emission [21].

Radon inhalation significantly decreased the 8-OHdG levels in the
brain (20 kBq/m3 for three days; Fig. 1) and kidney (2 or 20 kBq/m3

for one, three or 10 days; Fig. 2). In addition, the 8-OHdG levels
in the small intestine decreased by 18% with 2 kBq/m3 radon for
three days, 37% with 20 kBq/m3 radon for one day and 30% with
20 kBq/m3 radon for three or 10 days; however, the differences were
not significant (Fig. 3). There are two possible mechanisms to explain
this decrease; specifically, radon either induces pathways that protect
DNA from oxidative damage or induces DNA repair mechanisms. The
antioxidative functions are inversely correlated with the 8-OHdG level
[24, 25]. Therefore, we examined the effect of radon inhalation on the
levels of Mn-SOD, a marker of antioxidative activity and OGG1, which
plays a role in DNA repair, to elucidate the mechanisms.

In our previous study, the redox balance, which comprises the
dynamics of antioxidants, oxidative stress and ROS, was evaluated. A
certain pattern was observed for these organs. The first group included
the liver and kidney, which have a high antioxidant capacity. The sec-
ond group included the brain, stomach and pancreas, which have a
low antioxidant capacity and lipid peroxide (LPO) levels. The third
group includes the lung, heart, small intestine and large intestine, which
have high LPO levels but a low antioxidant capacity. Radon inhalation
altered the redox states in each organ; however, the response to radon
varied depending on the amount of antioxidants in the specific organ
[26]. The characteristics of oxidative DNA damage induced by radon
might vary depending on the redox state. Therefore, in this study,
oxidative DNA damage in the brain, kidney and small intestine was
examined.

There are three SOD isoforms, extracellular SOD, Cu/Zn-SOD
and Mn-SOD, which are located in the mammalian extracellular
space, cytoplasm and mitochondria, respectively. Radon inhalation
at 500 Bq/m3 increases the level of Mn-SOD (by approximately 30%,
but not significant) in the brains of mice via nuclear factor (NF)-κB
activation; however, there is no increase in the level of Cu/Zn-SOD.
In addition, radon inhalation at 2000 Bq/m3 does not increase the
brain Mn-SOD level [21]. NF-κB regulates the induction of Mn-
SOD [27]. NF-κB signaling can be both activated and repressed
by ROS, and therefore, this pathway can have both anti- and pro-
oxidant roles pertaining to oxidative stress [28]. Radon inhalation
(2 kBq/m3 for one, three or 10 days) increased the Mn-SOD level
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Fig. 1. Changes in 8-OHdG, 8-oxoguanine DNA glycosylase (OGG1), and SOD levels in the brain (n = 6 mice/group). Data are
presented as the mean ± standard error of the mean. ∗P < 0.05 vs Sham, #P < 0.05, ##P < 0.001 vs 1 day (1 d).

in the kidney by 15–45%; however, the difference was not significant
(Fig. 2). Radon inhalation at 2 kBq/m3 for three days increased the
small intestine Mn-SOD level by 22%; however, the difference was not
significant (Fig. 3).

An evaluation of 8-OHdG and Mn-SOD levels indicated that the
activation of antioxidative functions contributes to the suppression of
oxidative DNA damage. The increase in Mn-SOD levels in this study
corroborates the results from our previous study [21] and provides
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Fig. 2. Changes in 8-OHdG, 8-oxoguanine DNA glycosylase (OGG1), and SOD levels in the kidney (n = 6 mice/group). Data are
presented as the mean ± standard error of the mean. ∗P < 0.05, ∗∗∗P < 0.001 vs Sham; #P < 0.05 vs 1 day (1 d).

further insights into the time-dependent changes and characteristics
in different organs. Radon inhalation alters the redox state in organs.
However, the effect is dependent on the total antioxidant capacity of
each organ; specifically, the kidney has a high antioxidant capacity, the

brain has a low antioxidant capacity and LPO levels, and the small
intestine has high LPO levels but a low antioxidant capacity [26].
The 8-OHdG level in the brain and kidney decreased significantly
following 20 kBq/m3 radon inhalation; however, the Mn-SOD level
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Fig. 3. Changes 8-OHdG, 8-oxoguanine DNA glycosylase (OGG1), and SOD levels in the small intestine (n = 5–6 mice/group).
Data are presented as the mean ± standard error of the mean. ∗P < 0.05 vs Sham.

did not increase under the same condition. The inhalation of a high
concentration of radon (20 kBq/m3, 10 days) decreased the Mn-SOD
level in the kidney (Fig. 2) and small intestine (Fig. 3). This decrease
in Mn-SOD levels following radon inhalation for 10 days might cause

excessive oxidative stress. The 8-OHdG levels were decreased in the
kidney under the same condition. The kidney has a high antioxidant
capacity, and therefore, other antioxidants such as catalase and glu-
tathione might compensate for the shortage of Mn-SOD in response



866 • T. Kataoka et al.

to oxidative stress. The 8-OHdG level decreased in the brain and small
intestine after 20 kBq/m3 radon inhalation and decreased in the kidney
following inhalation of both low (2 kBq/m3) and high (20 kBq/m3)
doses of radon. Therefore, the redox state in each organ might influence
the changes in 8-OHdG levels following radon inhalation, as previously
observed for LPO [26].

To evaluate the potential effect of radon on DNA repair as an
alternate mechanism, we examined the changes in the levels of OGG1
protein, which removes the 8-oxoguanine (8-oxoG) base from DNA
[29]. Urinary excretion of 8-oxoG and the genotype and expression
of OGG1 are associated with the risk of cancer [30]. Inhaling a high
concentration of radon (64, 121 and 236 working level month) sig-
nificantly increases the 8-OHdG level and decreases the OGG1 level
in rats [16]. However, this inhalation condition is drastically differ-
ent from the radon therapy condition. In this study, radon inhalation
increased OGG1 levels by 19–29% in the kidney (2 kBq/m3 for three
or 10 days; Fig. 2) and by 37% in the small intestine (20 kBq/m3 for
one day; Fig. 3); however, the differences were not significant. The role
of OGG1 in suppressing oxidative DNA damage might be limited when
compared to the antioxidative functions of Mn-SOD.

In conclusion, Mn-SOD probably played an important role in the
inhibition of oxidative DNA damage; however, other antioxidants
likely contribute to this response. We examined only Mn-SOD, and
therefore, we could not fully elucidate the mechanisms underlying
the observed protective effect against oxidative stress with radon
inhalation. The protective effects of antioxidative activities against
oxidative DNA damage are more important than the DNA repair
response under the evaluated radon inhalation conditions. Further
studies are needed to clarify the precise mechanisms of these protective
effects. In addition, it is critically important to evaluate the risk of
lung cancer in patients or single-strand/double-strand breaks when
undergoing radon therapy.
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