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Pleiotropic Signaling Complexes
and Their Differential Effects
Portia Gough* and Ian A. Myles
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Since its discovery in 1975, TNFa has been a subject of intense study as it plays significant
roles in both immunity and cancer. Such attention is well deserved as TNFa is unique in its
engagement of pleiotropic signaling via its two receptors: TNFR1 and TNFR2. Extensive
research has yielded mechanistic insights into how a single cytokine can provoke a
disparate range of cellular responses, from proliferation and survival to apoptosis and
necrosis. Understanding the intracellular signaling pathways induced by this single
cytokine via its two receptors is key to further revelation of its exact functions in the
many disease states and immune responses in which it plays a role. In this review, we
describe the signaling complexes formed by TNFR1 and TNFR2 that lead to each
potential cellular response, namely, canonical and non-canonical NF-kB activation,
apoptosis and necrosis. This is followed by a discussion of data from in vivo mouse
and human studies to examine the differential impacts of TNFR1 versus TNFR2 signaling.

Keywords: epithelial to mesenchymal transition, NF-kappa B, signaling/signaling pathways, TNF, TNF receptor,
TNF blockade
INTRODUCTION

Tumor Necrosis Factor alpha (TNFa) is a central mediator in the immunologic processes of
infection control, autoimmunity, allergic disease, as well as the anti-neoplastic activity for which it
was named. While too often categorized as simply “pro-inflammatory”, modern research has
identified the complex and pleotropic nature of TNFa signaling. However, many gaps in knowledge
persist in differentiating the signaling through the two main TNFa receptors (TNFR1 and TNFR2)
or how the balance between them may influence downstream consequences. Activation of signaling
by TNFa through TNFR1 and TNFR2 initiates a variety of potential outcomes, including cell
proliferation, gene activation or cell death. Mediating this variety of cellular responses from just two
receptors requires complex control of signal transduction within the cell.

The particular response of a given cell to activation by TNFa is determined by receptor
expression and intracellular conditions, such as ubiquitination of the signaling complex and the
availability of caspases. Herein, we attempt to summarize the difference in intracellular signaling
downstream from TNFR1 versus TNFR2 as well as their specific biologic consequences. In addition,
we collate the animal model and human clinical studies which independently assess TNFR activity.
Overall, we identify that a greater understanding of this pathway may offer opportunities for novel
therapeutic targeting as well as treatment optimization for current TNFa inhibition approaches.
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TNFR CELLULAR EXPRESSION

TNFa receptor expression is central to the cellular response to
TNFa and varies by cell type. TNFR1 is a death receptor, as its
structure includes a death domain (DD), that is constitutively
expressed on most cell types and is activated by TNFa in either
its membrane-bound (mTNFa) or soluble (sTNFa) forms (1–3).
Following activation by binding TNFa, intracellular signaling via
TNFR1 is initiated via its DD (4).

In contrast, TNFR2 is limited in both its expression and its
activation. Expression of TNFR2 is restricted to particular cell
types, including, endothelial cells, fibroblasts and subsets of
neurons and immune cells (myeloid cells, T- and B-cell
subsets) (5, 6). Among the peripheral immune cells, both the
percentage of cells expressing, and the number of receptors per
cell, is much greater for TNFR2 than TNFR1 (7). TNFR2 is only
fully activated by mTNFa, and this receptor lacks the DD that is
central to intracellular signaling by TNFR1 (8). The selectivity of
ligand, binding sTNFa and/or mTNFa, adds a layer to the
regulation of responses that result from activation of TNFR1
or TNFR2. There is a structural basis for preferential binding of
mTNFa by TNFR2 based on its rigid proline-rich stalk region,
which alters the organization of TNFR2 monomers in the
absence of ligand in a manner that inhibits their ability to bind
sTNFa (9). Thus, the mechanism of activated pathways and
cellular responses differ between the two TNFa receptors.

Further adding to the complexity of TNFR signaling is the
production of soluble TNFR1 or TNFR2 during cellular
activation and the potential for reverse signaling through
binding mTNFa. TNFa or other stimuli (e.g., formyl
methionine-leucine-phenylalanine (fMLP), lipopolysaccharide
(LPS), GM-CSF) induce proteolytic cleavage of TNFRs by the
metalloproteinase TNFa converting enzyme (TACE; also called
ADAM17) (10, 11). Soluble receptors can also be generated by
alternative splicing of mRNA to produce TNFR2 that lacks the
membrane-spanning region (12). These soluble receptors retain
their ability to bind TNFa, albeit with lower affinity than their
membrane-bound counterparts, thereby reducing the availability
of TNFa for receptors that remain membrane-bound (12, 13).
When mTNFa is bound by either TNFR1 or TNFR2, reverse
signaling can occur. In this case, once TNFR binds mTNFa, it is
phosphorylated within the ligand-bearing cell, resulting in NFkB
activation (a pathway described in more detail below) (14, 15).
Receptor expression and receptor shedding and reverse signaling
through membrane-bound ligand provide extracellular
regulation for this signaling pathway.
TNFR1 ACTIVATION: FORMATION OF THE
CORE SIGNALING COMPLEX

When activated by binding TNFa, a core signaling complex is
constructed on the cytoplasmic tail of TNFR1. The first step in
this process is the trimerization of TNFR1, initiated by contact
with TNFa (16). Once TNFR1 forms a trimer, the DD is able to
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recruit TNFR1-associated death domain (TRADD) (4). TRADD
acts as a scaffold in the TNFR1 signaling complex, directing all
downstream signaling events as it recruits TNF receptor-
associated factor (TRAF) 2, or TRAF5, and receptor-
interacting serine/threonine-protein kinase 1 (RIPK1) (17, 18).
TRAF2 then provides a platform for recruitment of cellular
inhibitor of apoptosis protein (cIAP) 1 and cIAP2 (19, 20)
(Figure 1; Supplemental Figure 1).

The assembly of TRADD, TRAF2 (or TRAF5), RIPK1, and
cIAP1/2 forms the core signaling complex of activated TNFR1.
From here, the cellular response mediated by TNFR1 is
determined by the ubiquitination of RIPK1 and the availability
of caspase molecules (21, 22). The TRAF proteins and cIAP1/2
are ubiquitin E3 enzymes that add ubiquitin chains to RIPK1 at
multiple locations (20, 23). These ubiquitin chains act as scaffolds
for additional factors that lead to the formation of Complex I,
which activates NF-kB, JNK, and p38 pathways to induce
cytokine signaling and cell survival (20). If the addition of
these ubiquitin chains is disrupted, various versions of
Complex II can form, leading to apoptotic or necrotic cell
death. The details of the formation of these complexes are
discussed below.
COMPLEX I: ACTIVATION OF NF-ΚB, JNK,
AND P38 PATHWAYS LEADS TO GENE
ACTIVATION AND SURVIVAL

The formation of Complex I is stabilized by linear ubiquitination
of RIPK1, which allows the recruitment of additional signaling
factors (24). Addition of K63, K11, and K48 poly-ubiquitin
chains by cIAP1/2 recruits a multimeric complex known as
linear ubiquitin chain assembly complex (LUBAC) (25, 26).
Complex I is fully activated by attachment of an M1 poly-
ubiquitin chain to RIPK1 by LUBAC, completing the
formation of the scaffolding network that recruits additional
mediators for gene activation (25).

Activation of multiple pathways, specifically NF-kB, JNK, and
p38, by Complex I is achieved by parallel assembly of proteins,
recruited via their ubiquitin-binding domains, to activate TGFb-
activated kinase 1 (TAK1) and inhibitor of IkB kinase (IKK).
TAK1 is activated by its recruitment with TAK1 and MAP3K7-
binding protein (TAB) 2 and TAB3, with TAB2 and TAB3
binding to poly-ubiquitin chains (27). Alongside the
recruitment and activation of TAK1, the IKK complex is
recruited by assembly of IKKa, IKKb and NF-kB essential
modulator (NEMO), via the ubiquitin-binding domain of the
latter (28–30). Once in proximity to each other, TAK1 activates
the IKK complex via phosphorylation of IKKb (27, 28).

TAK1 also activates mitogen-activated protein kinase
kinases (MAPKKs), which activate JUN NH2-terminal kinase
(JNK) and p38 pathways (21, 31). The NEMO-dependent
activation of the IKK complex results in canonical NF-kB
activation, freeing the RelA/p105 heterodimer to undergo
proteolytic processing to RelA/p52 and subsequent nuclear
November 2020 | Volume 11 | Article 585880
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translocation (30, 32). Thus, formation of Complex I initiates
signaling that induces inflammatory gene activation and cell
survival via activation of multiple transcription factors. The
particular genes induced by TNFa vary widely by cell type, with
as many as >5000 genes modulated by the various transcription
factors in a highly dynamic manner (33–36). If Complex I does
not form upon stimulation of signaling through TNFR1, the
pathways for cell survival are not initiated and different
Frontiers in Immunology | www.frontiersin.org 3
versions of Complex II form to mediate cell death via
apoptosis or necroptosis (37).

COMPLEXES IIA AND IIB: APOPTOSIS VIA
CASPASE 8
Returning to the principle that full ubiquitination of RIPK1 is
necessary for the formation of Complex I, conversely, the
FIGURE 1 | Overview of TNFR1 activation pathway. Flow diagram for TNFR1 activation contrasting the outcomes of inflammatory cytokine production versus cell
death. The top panels depict formation of the core signaling complex with recruitment and assembly of TRAF2/5, cIAP 1/2 and RIPK1 at the death domain of
TNFR1, and subsequent recruitment of LUBAC. The middle and lower panels show the divergence of potential pathways from formation of the core complex. On the
left, complete ubiquitination of RIPK1 results in formation of Complex I, which leads to recruitment of NEMO and TAK1 that activate NFkB and JNK, respectively. On
the right, incomplete ubiquitination of RIPK1 leads to formation of complex IIa or IIb, with assembly of FLIPL, FADD and pro-caspase 8 or 10, leading apoptosis via
activation of the latter. Below this, the formation of Complex IIc in the absence of sufficient caspases leads to necroptosis via activation of MLKL via the necrosome
formed by assembly of RIPK1 and RIPK3. Stars indicate phosphorylation, blue bursts represent ubiquitination, purple bursts represent M1 ubiquitination.
November 2020 | Volume 11 | Article 585880
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formation of Complex II is dependent on incomplete
ubiquitination of RIPK1 (20, 38). When RIPK1 is not fully
ubiquitinated, it dissociates from the signaling complex and
apoptotic signaling via Complex IIa or IIb is initiated (39).
There are multiple ubiquitin-modifying enzymes that can act
on RIPK1 to facilitate this process.

Formation of Complex IIa is initiated when RIPK1 is de-
ubiquitinated by cylindromatosis (CYLD). CYLD provides a
negative feedback loop for NF-kB activation, as its expression
is induced by NF-kB (40, 41). When CYLD associates with
TRAF2, it removes the K63 and M1 poly-ubiquitin chains from
RIPK1, thereby allowing RIPK1 to dissociate from the TNFR1
complex (40, 41). Once released into the cytosol, RIPK1 forms
Complex IIa by assembling with TRADD, Fas-associated death
domain (FADD), FLICE-like inhibitory protein (FLIPL), pro-
caspase 8 (39). The assembly of these proteins converts pro-
caspase 8 to its active form, caspase 8, initiating the
apoptosis pathway.

Incomplete ubiquitination of RIPK1 can also be caused by
depletion or degradation of cIAP1/2, which results in the absence
or reduction of K63 poly-ubiquitin chains added to RIPK1,
leading to the formation of Complex IIb (42, 43). Regulation
of cIAP1/2 is mediated, in part, by second mitochondria-derived
activator caspase (SMAC) (44). The interaction with SMAC
causes auto-ubiquitination of cIAPs, leading to their
degradation (45). Due to its destabilization in the core
signaling complex by the resultant absence of K63-linked
ubiquitination, RIPK1 dissociates from TNFR1 as in the start
of Complex IIa. It again forms a complex in the cytosol with
FADD, FLIPL, and pro-caspase 8. Thus, Complex IIb includes
the same components as Complex IIa, except it lacks TRADD
(21, 31). This assembly also serves to activate pro-caspase 8 to
caspase 8, resulting in cell death by apoptosis (39). Activation of
caspase 10 has also been linked to Complex IIa and IIb
formation (37).
COMPLEX IIC: NECROPTOSIS IN THE
ABSENCE OF CASPASE ACTIVITY

After activation of caspase 8 in Complex IIa and IIb, RIPK1 and
RIPK3 are degraded by the activated caspase in the cytosol (46,
47). However, if there are not sufficient caspases available to
perform this inactivation, necroptosis will occur via the activity
of RIPK1 and RIPK3. The depletion of caspase 8 to induce
necroptosis has mainly been established and studied using
targeted inhibition of caspase 8 by pharmacological agents
such as Z-VAD-FMK (48, 49). This process has also been
observed in cells expressing the caspase inhibitor SPI-2,
resulting from vaccinia virus infection, which sensitizes cells to
TNFa-induced necroptosis in a RIPK1-dependent manner (50,
51). Once caspase 8 is inhibited or depleted, RIPK1 and RIPK3
assemble together in an amyloid-like structure to form the
necrosome, and RIPK3 activates mixed-lineage kinase domain-
like protein (MLKL) (52–54). Once activated, MLKL
Frontiers in Immunology | www.frontiersin.org 4
oligomerizes and translocates to the plasma membrane where
it binds phosphoinositides to cause cell lysis (53).
TNFR2 ACTIVATION: CANONICAL AND
NON-CANONICAL NF-kB PATHWAYS

Canonical NF-kB activation is defined by the requirement for
NEMO-dependent IKK activation, which frees the RelA/p50 NF-
kB heterodimer for nuclear translocation. Thus, NEMO-
independent IKK activation is the defining feature of non-
canonical NF-kB activation; instead, this pathway involves the
accumulation of NF-kB inducing kinase (NIK) to activate IKKa,
leading to nuclear translocation of the RelB/p52 heterodimer (32,
33). Although TNFR2 signaling can result in canonical NF-kB
activation, this is most often a result of TNFR1 activity (21)
(Figure 2; Supplemental Figure 1).

Activation of TNFR2, which lacks the DD that characterizes
signaling by TNFR1, most frequently results in cell proliferation
and survival. After binding mTNFa, TNFR2 forms a trimer and
directly recruits TRAF2 and TRAF1 or TRAF3, albeit with lower
affinity than TNFR1-TRADD (55–57). TRAF2 is central to
assembly of the TNFR2 signaling complex, and also recruits
cIAP1/2 (19, 20, 58). Although the exact targets remain
unknown, it has been demonstrated that the TNFR2 signaling
complex includes K63 and M1 poly-ubiquitin chains (59). This
suggests a mechanism of canonical NF-kB activation similar to
that observed in the TNFR1 signaling complex. Indeed, it has
been shown that activation of this pathway by TNFR2 also relies
on TAK1 and IKKb, and the K63 and M1 poly-ubiquitin chains
bring these kinases into close proximity with each other (59, 60).

While canonical NF-kB activation tends to be rapid and result in
the expression of pro-inflammatory genes, non-canonical NF-kB
pathways activate in a sustained manner, on a slower timescale, and
promote cell survival and proliferation. This alternative NF-kB
pathway utilizes p100, which is produced from the canonical
pathway, usually via activation of TNFR1 signaling (61). Again, a
defining feature of non-canonicalNF-kBactivation is its induction by
NIK(62). In its basal state,NIK is inan inhibitory complexwithTRAF
2/3 and cIAP 1/2. When TRAF 2/3 is recruited to TNFR2, the
inhibitory complex of NIK is disrupted (63). Activated NIK then
accumulates and activates IKKa, allowing p100 to be proteolytically
processed to p52, thereby generating the active NF-kB p52/RelB
heterodimer (64). Expression of p100 and RelB is potentiated by
activation of the canonical NF-kB pathway by TNFR1, which then
feeds into thenon-canonical activation inducedbyTNFR2and results
in cell survival and proliferation (61). This signaling synergy between
TNFR1andTNFR2 isanexampleof crosstalkbetween the receptors, a
typeof interactionthat is alsocentral tocelldeathmediatedbyTNFR2.
CELL DEATH VIA TNFR2

As stated in the previous section, TRAF2 is central to the
cellular responses generated from the TNFR2 signaling
November 2020 | Volume 11 | Article 585880
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complex. Activation of TNFR2 influences formation of
TNFR1 signaling complexes by depleting available TRAF2 for
Complex I, as expression levels of TNFR2 can be up to 10-fold
higher on cells that express both receptors (65) (Figure 2;
Supplemental Figure 1). Additionally, TRAF2 can be degraded
by its interaction with cIAP1/2. This depletion and degradation
of TRAF2 has two major consequences: promoting the non-
canonical NF-kB pathway, described above, and inhibiting
canonical NF-kB activation via TNFR1 Complex I (61, 64).
Frontiers in Immunology | www.frontiersin.org 5
The reduction of TRAF2 inhibits recruitment of cIAP1/2 to the
TNFR1 signaling complex, thereby allowing formation of
Complex IIa, IIb or IIc. Thus, cell death mediated by
TNFR2 is a result of crosstalk, where activity of TNFR2
indirectly influences the signaling complexes that can form at
TNFR1. In TNFR signaling, cell survival, proliferation and
death are a matter of quantitative balance between TNFR1
and TNFR2 and the key components of their respective
signaling complexes.
FIGURE 2 | Overview of TNFR2 activation pathway. Flow diagram for TNFR2 activation contrasting the non-canonical versus canonical pathways. The top panels
show recruitment of TRAF proteins, cIAP1/2 and NIK to TNFR2 upon binding ligand (mTNFa). On the left, this assembly leads to non-canonical NFkB activation via
accumulation of NIK. On the right, the pathway of canonical NFkB activation is shown, the details of which are unknown but presumably result from K63 and M1
polyubiquitin chains mediating the recruitment of TAK1 and NEMO. Stars indicate phosphorylation, blue bursts represent ubiquitination, purple burst represent M1
ubiquitination. Question mark in canonical pathways indicate the target of ubiquitination is unknown.
November 2020 | Volume 11 | Article 585880
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TABLE 1 | Summary of mouse model and clinical association data for TNFR1 versus TNFR2.

Mouse Models

TNFR1−/− (or blockade) TNFR2−/− (or blockade)

Outcomes
Improved

Neuro
• Experimental autoimmune encephalitis (EAE; model of acute

demyelination disease) via reduced immune cell infiltration across blood
brain barrier (84)

• Retinal detachment induced photoreceptor degeneration (85)$

• Early phase heat hyperalgesia after CFA injection (86)$

• Late phase heat hyperalgesia after CFA injection (86)*
• Mechanical pain (87)
• Pain mediated by NMDA activation of lamina II neurons (86)

Gastrointestinal
• High fat induced liver steatosis (88)
• Total peripheral nutrition (TPN) induced epithelial barrier function loss

(89)
Infection/Inflammation/Allergic

• Staphylococcus aureus sepsis via T-cell anergy (90)
• Sterile endotoxemia (91)
• LPS induced bone loss (92)
• LPS-induced systemic apoptosis of non-granulocyte bone marrow cells

(93)
• Cecal ligation and puncture model of polymicrobial sepsis (94)*
• Loss of small in olfactory dysfunction and chronic rhinitis models (95)
• Chlamydia pneumoniae induced atherosclerosis (96)$

• Allergic contact dermatitis model (reduced allergen uptake but not
migration of dendritic cells (DC) into lymph nodes) (97)$

Cardio-renal
• Transverse aortic constriction model of cardiac stress via Stat3 (98)
• Mesenchymal stem cell as treatment of cardiac ischemia (99)*
• Femoral artery ligation model of ischemia (100)*
• Heart failure model (101)*
• Thrombosis model (102)*

Endocrine
• Adrenalectomy model of Addison’s (103)

Pulmonary
• Transgenic model of spontaneous COPD; TNR1−/− improved more than

TNFR2−/− mice (104)

Neuro
• EAE if selectively deleted in monocytes/macrophages (105)
• Retinal detachment induced photoreceptor degeneration (85)$

• Neuronal loss (but not motor function) in SOD1-G93A model of
ALS (106)

• Early phase heat hyperalgesia after CFA injection (86)$

Gastrointestinal
• Rhesus rotavirus-induced biliary atresia (107)
• Trinitrobenzene sulfonic acid colitis (108)*
• DSS colitis (109)*

Infection/Inflammation/Allergic
• Allergic contact dermatitis model (reduced DC migration but not

allergen uptake) (97)$

• Chronic TNFa induced inhibition of TCR-dependent, but not TCR
independent T-cell activation (110)

• Chlamydia pneumoniae induced atherosclerosis (96)$

Endocrine
• Adrenalectomy model of Addison’s (103)

Pulmonary
• Transgenic model of spontaneous COPD; TNR1−/− improved more

than TNFR2−/− mice (104)
Cancer

• Breast cancer cell line challenge (111)

Outcomes
Worsened

Neuro
• Post-exercise recognition memory (112)
• HSV-1 ocular infection (113)

Gastrointestinal
• Trinitrobenzene sulfonic acid colitis (108)*
• DSS colitis (109)*

Infection/Inflammation/Allergic
• Roseomonas mucosa treatment of atopic dermatitis (114)$

Cardio-renal
• Angiotensin II infusion induced hypertension; TNFR2 not evaluated (115)

Neuro
• Theiler murine encephalomyelitis virus epilepsy model (116)
• EAE if selectively deleted in microglia (105) or whole (117)

Gastrointestinal
• Cell mediated colitis (118)

Infection/Inflammation/Allergic
• Cecal ligation and puncture model of polymicrobial sepsis (94)*
• Roseomonas mucosa treatment of atopic dermatitis (114)$

Cardio-renal
• Mesenchymal stem cell as treatment of cardiac ischemia (99)*
• Femoral artery ligation model of ischemia (100)*
• Heart failure model (101)*
• Thrombosis model (102)*

Human Data

TNFR1-specific TNFR2-specific

Associations Neuro
• Elevations a/w worse sleep in patients with depression; reductions a/w

improved sleep and symptoms after infliximab treatment (119)
Gastrointestinal

• Elevations predict post-liver transplant need for dialysis and overall
mortality (120)
Infection/Inflammation/Allergic

• Increased expression on T-cells of patients with atopic dermatitis (121)
• Reduction a/w clinical improvement of lupus after atorvastatin therapy

(122)

Infection/Inflammation/Allergic
• Higher expression on lymphocytes in hypersensitivity pneumonitis

(123)*
Cancer

• Tissue expression higher in breast cancer cells versus healthy
breast tissue (131)
Monogenic Disorders

• ADAM17/TACE deficiency a/w reduced LPS-stimulated TNFa and
sTNFR2 in PBMC (132, 133),

(Continued)
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TNFR INFLUENCE ON EPITHELIAL
AND ENDOTHELIAL CELLS

Epithelial-to-mesenchymal transition (EMT) is a pathway heavily
mediated by TNFR in endo- and epithelial cells. EMT is an essential
process for normal tissue repair; epithelial cells take on a migratory
mesenchymal phenotype via a complex modulation of adhesion
proteins and intracellular filaments (66, 67). During wound healing,
polarization of cells on the leading edge of the damaged tissue
activates EMT-related pathways to fill the cellular gaps through a
combination of migration and proliferation (67, 68). Subsequent
mesenchymal-to-epithelial transition (MET) re-epithelializes the
damaged area (67, 68). While both receptors are involved in the
inflammatory and anti-infection responses (69), TNFR2 is central
for EMT and cell proliferation (70). The potential for differing
impacts of TNFR activation in MET is currently unknown. TNFa-
related EMT can be further modified by phospholipid exposure (71,
72) as well as co-stimulation of Toll-Like Receptors (TLR) and
neurotransmitters like nicotine and serotonin (73–78).

Furthermore, the consistent, direct contact between neighboring
epithelial cells heightens the potential influence of mTNFa. While
genetic deletion of TACE/ADAM17 does not appear to impact
bacterial responses in peripheral immune cells (79), TACE/
ADAM17 knockout mice develop a microbiome-dependent,
eczematous phenotype (80, 81). Endothelial-to-mesenchymal
Frontiers in Immunology | www.frontiersin.org 7
transition (EndoMT) is also a process of developing a migratory
phenotype important in vascularization. Although EndoMT is
known to be influenced by TNFa (82, 83), differential impacts
of the receptors of membrane bound status of TNFa
remain unelucidated.
DIFFERENTIAL TNFR ACTIVITY IN MOUSE
MODELS

Table 1 details all identified mouse models in which TNFR1 and
TNFR2 were assessed independently. In brief, neurologic models
have demonstrated even more complex effects of selective TNFR
deletion; in EAE, TNFR2 is protective on microglia but
deleterious on monocytes and macrophages whereas TNFR1
appears harmful in all contexts due to reducing the blood
brain barrier function against cell infiltration into the CNS (84,
105, 117). In mouse models of pain, deletion of TNFR1 lead to
reduction of mechanical pain as well as NMDA activation of
lamina II neurons (86, 87, 134). Early-phase hyperalgesia
responses to heat after exposure to complete Freud’s adjuvant
(CFA) showed dual dependence on TNFR1 and TNFR2, whereas
late phase reactions were TNFR1 exclusive (86). CFA injection
into mouse footpads led to an increase in TNFR2 mRNA in the
spinal cord (86).
TABLE 1 | Continued

Mouse Models

TNFR1−/− (or blockade) TNFR2−/− (or blockade)

• Higher expression on alveolar macrophages in hypersensitivity
pneumonitis (123)*

• Nebulized anti-TNFR1 reduced inflammation in pulmonary endotoxin
challenge (124)
Endocrine

• In diabetics presenting to an ER with shortness of breath, elevations
associated with short-term mortality, HR, BMI, and renal function; was
not significant when adjusting for CRP (125)

• Elevations predictive of renal disease in diabetics (126–128),
Cancer

• Elevations a/w worse outcomes in patients with GVHD after a BMT with
ablative conditioning (129)
Monogenic Disorders [all reviewed in (130)]

• TNF receptor-associated periodic syndrome (TRAPS); mutations in
TNFRSF1A

• Haploinsufficiency of A20 (HA20); mutations in TNFAIP3
• OTULIN-related autoinflammatory syndrome (ORAS); mutations in

FAM105B
• LUBAC deficiency; mutations in HOIP/HOIL or SHARPIN
• RIPK1 associated immunodeficiency and autoinflammation; mutations in

RIPK1
• X-linked ectodermal dysplasia and immunodeficiency (X-EDA-ID);

mutations in IKBKG/NEMO
• RELA haploinsufficiency; mutations in RELA
Mouse models included in the table indicate selective deletion or antibody blockade of TNFR1 or TNFR2. Models using only TNFR double knockout mice were not included. Human
data for diseases associated with changes in one TNFR (serum or tissue) are shown. *indicates opposing effects of TNFR deletion (for example, deletion of TNFR1 worsening
outcomes while deletion of TNFR2 improving them); $indicates similar effects of TNFR deletion where both were assessed independently. LPS, lipopolysaccharide; DSS, dextran
sodium sulfate; COPD, chronic obstructive pulmonary disorder; HSV-1, herpes simplex virus 1; TCR, T-cell receptor; ER, emergency room; HR: heart rate; BMI, body mass index;
CRP, C-reactive protein; GVHD, graft versus host disease; BMT, bone marrow transplant; CFA, complete Freud’s adjuvant; LPS, lipopolysaccharide; PBMC, peripheral blood
mononuclear cells; a/w, associated with.
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Gastrointestinal models identified TNFRdko and TNFR1−/−

mice have worse outcomes during DSS colitis (135), however
selective deletion of TNFR2 improves outcomes (109). While
TNFR2 deletion improved DSS colitis (109), TNFR2 is protective
in cell-mediated colitis models, potentially through its role in
fostering the expansion and stability of regulatory T cells (Tregs)
(118) and vitamin D dependent tolerogenic dendritic cells
(136, 137).

Opposite, but similarly discordant effects were seen in
thrombosis models where TNFR2−/− mice display worse
outcomes and TNFR1−/− mice were protected (102). Additional
cardio-renal models including heart failure and ischemia also
displayed opposing influence of TNFR1 versus TNFR2 (99–101).
Models of adrenal insufficiency (103), chronic obstructive
pulmonary disease (COPD) (104), and breast cancer (111) each
identified a pathogenic role for TNFR2.

The lone infection model differentiating TNFR impacts
uncovered in our search demonstrated TNFR2-mediated
protection and TNFR1-mediated harm during polymicrobial
sepsis resulting from cecal ligation and perforation (94).
However, the importance of TNFR2 in wound repair may
confound any infection-control conclusions of this surgical
model. Meanwhile, LPS mediated effects on infection and
inflammation appear to operate through TNFR1 (91–93), while
off target effects of inflammation (such as allergic sensitization
and Chlamydia induced atherosclerosis) were mediated by
TNFR2 (96, 97). Both allergic rhinitis-associated and
neurogenic olfactory dysfunction are mediated by TNFR1 (95).
Our recent publication demonstrated that the modeled treatment
efficacy of topical, commensal Roseomonas mucosa for atopic
dermatitis operates through TNFR2, however both receptors are
essential for modeled therapeutic benefit (114). Consistent with
prior literature, the TNFR2-mediated effects also demonstrated a
role for neurologic and innate signaling; TNFR2 potentiation by
optimal TLR5 and nAChR activation were essential to modeled
treatment outcomes (114). Therefore, while in vivo evidence is
limited, the therapeutic potential of selective TNFR blockade
remains an under-elucidated topic.
VIRAL TNF BLOCKADE

Several examples of virus encoded TNFa-binding proteins have
been described in the literature (138). T2 have been identified in
the leporipovirus myxoma virus (M-T2) and the Shope fibroma
virus (S-T2) (139, 140). While extracellular M-T2 inhibition is
species-limited to rabbits, S-T2 can also inactivate human TNFa.
However, in the intracellular form, M-T2 can inhibit TNFR-1–
mediated cell death by directly binding to human TNFR1 (141).
The poxvirus produces several TNFR decoy receptors: CrmB and
CrmD bind TNFa as well as leukotriene alpha (142, 143); CrmC
and CrmE exclusively bind TNFa (142, 144, 145). Additionally,
the YLDV and tanapox viruses produce the decoy receptor 2L, an
major histocompatibility complex I (MHC-I) analogous protein
which also competitively binds TNFa (146). Other examples of
direct viral influence over the TNFa pathway include the
Frontiers in Immunology | www.frontiersin.org 8
SARS-CoV1-S protein, which activates TACE to cause
increased shedding of ACE2 and increased solubilization of
TNFa (147). These viral TNFa modulation strategies present
intriguing opportunities for therapeutic development.
PHARMACOLOGIC TNF BLOCKADE

The predominant TNF blockade strategy is through antibody-
mediated inhibition: chimeric (infliximab); fully humanized
(adalimumab and golimumab); and variable binding regions
fused to a Peg moiety (certolizumab-pegol). Alternatively,
etanercept is a dimer of recombinant TNFR binding regions
fused to the constant region of a human IgG1 antibody (148).
Although these medications have been revolutionary in the
treatment of autoimmune and autoinflammatory diseases, their
results do not inform TNFR actions given that they bind the TNF
ligand and thus preclude signaling through both receptors (148).

Pentoxifylline is an oral medication which inhibits the release
of TNFa. While the mechanism remains to be elucidated, the
proposed mechanism is via influence over phosphodiesterase
(PDE) and cyclic (cAMP) (149), further implicating lipid
metabolism in the control of TNFa (71, 72). Of note, current
TNFa inhibition strategies are unlikely to block the impacts of
mTNFa. Given the greater binding affinity of the current anti-
TNF agents for sTNFa (150, 151), tissue-level analysis may be
needed to determine if meaningful neutralization of mTNFa can
be achieved by any current anti-TNFa therapy.

Although TNF blockade is now a routine part of clinical
medicine, details of differential impacts of TNFR signaling in
humans have larger gaps in knowledge than murine models. As
stated, all current anti-TNF treatments are non-selective, and thus,
only a paucity of clinical evidence for selective blockade exists
(Table 1). While several anti-TNFR1 antibodies have been used in
vitro (137), only one anti-TNFR1 antibody has been studied in
humans; a nebulized formulation reduced inflammation and
endothelial injury in healthy subjects that underwent an
inhalational LPS challenge (124). The drugs thalidomide and
cyclophosphamide have reportedly TNFR2-specific inhibitory
effects, but confirmatory evidence is thus far limited to the effects
on Treg differentiation; and, the side effect profile for thalidomide
does not favor clinical use outside of cancer treatment (137).
SOLUBLE AND TISSUE TNFR
EXPRESSION IN INFLAMMATION

While interventional evidence is lacking, several publications
demonstrate disease associations with differential TNFR effects,
particularly for serum levels of sTNFR (119–123, 125–129, 131).
Intriguingly, the concentrations of both sTNFR1 and sTNFR2
follow circadian rhythms that run about 1 h ahead of the well-
established cortisol fluctuations (152). Thus, time of day may be
an important confounder for clinical studies that aim to compare
sTNFR levels in disease. However, a far more concerning
confounder is the possibility of acute phase reactions. Several
November 2020 | Volume 11 | Article 585880

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gough and Myles Differential Effects of TNFR Signaling
examples of treatment responsive, equivalent elevations in both
sTNFR1 and sTFNR2 have been described in tuberculosis (153),
multiple sclerosis (154), schizophrenia (155), Alzheimer’s disease
(156), hyperlipidemia (157), severe burns (158), and after dietary
challenge with transfat (159). A study evaluating predictors of
infarction in heart disease may provide the most illustrative
example for the possibility of sTNFR1 and sTNFR2 being general
inflammatory markers; elevations of both sTNFR1 and sTNFR2
were highly predictive of future cardiac events but lost statistical
significance when adjusted for levels of the more commonly
deployed inflammatory marker CRP (160). Similarly, tissue
levels of both TNFR1 and TNFR2 are elevated in psoriasis and
decrease with successful anti-TNFa treatment (161). However,
not all patients respond to anti-TNFa treatment and the risk of
infectious complications must be considered whenever TNF-
inhibitors are prescribed (162).
DIFFERENTIAL SOLUBLE AND TISSUE
TNFR ASSOCIATIONS IN DISEASE

While sTNFR1 and sTNFR2 may simultaneously track with
general inflammation, a unique differential association is found
in obesity, where elevations are seen in serum TNFa but not
sTNFR1 or sTNFR2 (163). More distinguishing associations
between disease and TNFR1 have been reported compared to
TNFR2, however several studies failed to assess sTNFR2 levels
(164, 165). Overall, the most robust clinical association for
sTNFR1 is for predicting future renal disease in diabetics (126–
128). Elevated sTNFR1 (but not sTNFR2) was associated with
worse outcomes when presenting to an emergency room with
shortness of breath, but also lost statistical significance when
adjusting for CRP (125). Associations unique to sTNFR1 were
also seen with treatment-responsive lupus (122), sleep disruption
in depression (119), worse outcomes in GVHD after ablative-
conditioned BMT (129), and mortality and dialysis needs for
post-liver transplant patients (120). Two studies have assessed
the expression of TNFR1 versus TNFR2 on immune cells (121,
123), compared to healthy controls: patients with atopic
dermatitis have increased expression of TFNR1 on their T-cells
(121); patients with hypersensitivity pneumonitis have elevated
TNFR1 expression on alveolar macrophages but elevated TNFR2
on peripheral lymphocytes (123). Furthermore, human cell
culture models challenged with R. mucosa confirmed the
importance of the TNFR2 related pathways identified in our
mouse models (114).
MONOGENIC DISORDERS OF TNFR
SIGNALING

Although many gaps in knowledge for common diseases,
monogenic disorders related to TNFR signaling can provide
valuable insights. The most demonstrative of these disorders in
TNF receptor-associated periodic syndrome (TRAPS) resulting
from autosomal dominant mutations in TNFSF1A. Although the
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exact mechanism is unclear, aberrant TNFR1 signaling,
intracellular accumulation of misfolded proteins, and
constitutive immune activation have been implicated in the
pathogenesis (166). Patients most commonly experience severe
abdominal pain, arthralgias, and myalgias (167). Although the
anti-IL-1 agent anakinra has become the preferred treatment in
TRAPS, etanercept has been used (130). Multiple other
monogenic autoinflammatory syndromes are associated with
the intracellular complexes downstream of TNFR1, including
haploinsufficiency of A20 (HA20), LUBAC deficiency, RIPK1
deficiency, OTULIN-related autoinflammatory syndrome
(ORAS), RELA haploinsufficiency, and X-linked ectodermal
dysplasia and immunodeficiency (X-EDA-ID); each of these
has been expertly detailed in a recent review (130).

In 2011, a syndrome including inflammatory skin disease and
recurrent infections was linked to autosomal recessive mutations in
ADAM17/TACE in two siblings. One sibling died at age 12 of
parvovirus B19-associated myocarditis. However, while the other
was shown to have exaggerated production of IL-1b and IL-6 in
response to lipopolysaccharide (LPS) challenge, he was described as
living a “relatively normal life” despite continued recurrent infection
(132). Subsequently, another patient with ADAM17/TACE
mutations resulting in inflammatory skin disease, recurrent
infections, and fatal sepsis was identified (133). Studies into LPS
responses in the patient’s peripheral blood mononuclear cells
(PBMC) revealed reduced production of TNFa and sTNFR2 (133).

Discussion
Data from cell cultures, animal models, and humans strongly
suggests the balance between TNFR1 and TNFR2 activity has
meaningful impacts on health and disease. Unfortunately, mouse
models which independently assess TNFR influence are
uncommon in the literature and often lack confirmatory
validation between research groups. Similarly, clinical studies that
independently assess sTNFR levels are typically small and lack
tissue-level verification. Clinical utility of anti-TNF treatments
should not preclude investigation into differential impacts of
TNFRs, given that more targeted blockade could lead to further
optimization of clinical benefit, or a reduction in side effects.

The current literature on the importance of the TNFRs
suggests actionable needs for future research to assess sTNFR1
and sTNFR2 during studies of diseases in which TNFa is known
to play a role. Ideally, this research could be bolstered by tissue
staining for receptor expression, mTNFa concentration, and/or
transcription factor post-translational modifications.
Furthermore, functional assessments such as the scratch assay
should be considered wherever a role for TNFa-modulation of
epithelial or endothelial cellular activity is suspected.

However, a notable portion of the differences in downstream
signaling through TNFR1 versus TNFR2 is neither
transcriptionally regulated nor governed directly by receptor
expression. Thus, research into TNFa-modulated diseases
using transcript- or proteomics approaches may require direct
assessment of the ubiquitination and phosphorylation of signal
transducers of the TNFR pathway. Similarly, investigations into
disease states or experimental conditions that reveal involvement
of pathways that modulate TNFR activity, such as lipid
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metabolism or neurotransmitter signaling, may be enhanced by
directed inquiry into possible TNFR-dependent impacts.
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