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ABSTRACT An improved fast region-based convo-
lutional neural network (RCNN) algorithm is proposed
to improve the accuracy and efficiency of recognizing
broilers in a stunned state. The algorithm recognizes 3
stunned state conditions: insufficiently stunned, mod-
erately stunned, and excessively stunned. Image sam-
ples of stunned broilers were collected from a slaughter
line using an image acquisition platform. According to
the format of PASCAL VOC (pattern analysis, statis-
tical modeling, and computational learning visual ob-
ject classes) dataset, a dataset for each broiler stunned
state condition was obtained using an annotation tool
to mark the chicken head and wing area in the original
image. A rotation and flip data augmentation method
was used to enhance the effectiveness of the datasets.
Based on the principle of a residual network, a multi-

layer residual module (MRM) was constructed to facili-
tate more detailed feature extraction. A model was then
developed (entitled here Faster-RCNN+MRMnet) and
used to detect broiler stunned state conditions. When
applied to a reinforcing dataset containing 27,828 im-
ages of chickens in a stunned state, the identification ac-
curacy of the model was 98.06%. This was significantly
higher than both the established back propagation neu-
ral network model (90.11%) and another Faster-RCNN
model (96.86%). The proposed algorithm can complete
the inspection of the stunned state of more than 40,000
broilers per hour. The approach can be used for online
inspection applications to increase efficiency, reduce la-
bor and cost, and yield significant benefits for poultry
processing plants.
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INTRODUCTION

Electric stunning (Siqueira et al., 2017; Sirri et al.,
2017) is an important aspect of poultry slaughtering
and processing (Berg and Raj, 2015). Moderate stun-
ning can render broilers unconsciousness for between 40
and 52 s. This condition provides the best bloodletting
rate (Huang et al., 2014), easier feather removal, and
minimal carcass damage (Lines et al., 2011), and the
meat is more tender (Xu et al., 2011). However, when
insufficiently stunned (i.e., the electrical current reach-
ing the brain is too low), broilers still sensitive to pain
and stress (Devos et al., 2018), clonic-tonic convulsions
(death struggle) will occur, leading to carcass damage
(broken wings and clavicles) (Bourassa et al., 2017). Ex-
cessive stunning can also result in quality defects, such
as clavicle rupture, bleeding from arteries and capillar-
ies, and a large number of needle-like blood spots near
the top of the chest (Ciobanu et al., 2013). Therefore,
moderate stunning plays an important role in ensuring
the quality of chicken meat.
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The amount of current, the electrical frequency, the
electrical waveform, and the stunning time are the most
common parameters that can be optimized to improve
the stunning effectiveness (Girasole et al., 2016). Ex-
actly the same electric stunning conditions can have
widely divergent effects on broilers, depending on their
breed, age, and body weight (Prinz et al., 2009, 2010).
To obtain an optimal stunning effect, the frequency and
voltage of the electric stunning machine has to be ad-
justed in real time, according to the condition of the
broiler and its stunned state after checking. However,
due to individual differences, the moderate stunning
of broilers is not currently verified in many small and
medium broiler processing plants. Most broiler slaugh-
tering companies do not apply objective criteria or on-
line detection methods and techniques to ensure that
broilers are moderately stunned. Workers preset the
stun voltage and frequency, according to their experi-
ence, and these settings then remain fixed and are not
adjusted according to the breed, weight, age, or stunned
condition of the broiler being slaughtered. This results
in a significant number of insufficiently or excessively
stunned broilers being slaughtered in broiler slaughter-
houses (Sabow et al., 2017).

Previous studies conducted by Sams and McKee
(2010) found that, after moderate stunning, chickens
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hold their wings in close contact with their bodies and
their necks are arched and stiff. When they are improp-
erly stunned, their appearance is significantly different.
These characteristics make it possible to clearly dis-
criminate whether a broiler is in an appropriate stunned
condition.

To overcome the existing problems and variable qual-
ity in the chicken industry, the frequency and voltage
of electric stunning needs to be properly adjusted by
correctly detecting and identifying the stunned state
of each individual broiler. Currently, the stunned state
of shocked broilers is usually left to manual vision de-
tection. This is not only time-consuming, inconvenient,
and subjective, but it does not allow for a rapid adjust-
ment of voltage and frequency. Over the past 2 decades,
machine vision and image processing technology has
developed rapidly and it has begun to be used more
and more frequently in agriculture for the detection and
identification of a range of phenomena (Mahlein, 2016;
Bai et al., 2017). A new technology has been devel-
oped that uses modified pressure and imaging to detect
microcracks in eggs. Research has shown that the sys-
tem to have an accuracy of 99.6% in detecting both
cracked and intact eggs (Jones et al., 2010). In rela-
tion to broilers, A line-scan machine vision system and
multispectral inspection algorithm were developed and
evaluated for differentiation of wholesome and systemi-
cally diseased chickens on a high-speed processing line,
which correctly identified 97.1% of systemically dis-
eased chickens (Yang et al., 2010). Ye et al. (2018) have
recently proposed a new method to identify broiler’s
stunned condition by using machine vision and a back
propagation neural network (BP-NN). This can pro-
vide good recognition accuracy (90.11%). However, the
method is inefficient and the recognition accuracy is not
ideal, so further improvement is required.

The image recognition accuracy largely depends on
the extraction and feature selection (Amara et al.,
2017). To accurately determine and identify the
stunned state of a broiler, it is necessary to accurately
extract the features of its stunned state and to then
select the features that are meaningful. In recent years,
deep learning has produced outstanding results in the
field of image recognition. Amongst a range of possible
approaches, convolutional neural networks (CNN) are
particularly effective at automatically extracting the
appropriate features from a training dataset without
the need for manual feature extraction (McCool et al.,
2017; Rahnemoonfar and Sheppard, 2017). Although
the training period is long, it takes less time to test
this approach than other methods based on machine
learning (Chen et al., 2014), and it is widely recognized
to be one of the best approaches to image recognition
(Dyrmann et al., 2016).

When using machine vision technology to identify the
stunned state of broilers, the recognition target is a uni-
tary broiler and the features to be identified remain
largely the same. In this paper, we propose using a
multi-layer residual module (MRM) to obtain detailed

feature extraction. Based on this, we have developed
an improved and optimized fast region-based convolu-
tional neural network (Faster-RCNN+MRMnet) model
that can precisely identify the stunned state of broilers.
Development of the model has involved the creation of
training image datasets containing 3 types of stunned
condition: insufficiently stunned, moderately stunned,
and excessively stunned.

MATERIALS AND METHODS

Image Datasets

Electric stun testing and image collection were car-
ried out at the Dongtai Poultry Slaughter Factory of
Jiangsu Yueda Agricultural Group Poultry Technol-
ogy Co., Ltd. The sample used in the test was a 42-
day-old white feather broiler, produced by the same
company. The electric hemp machine was an SQO05 se-
ries variable frequency electric hemp machine, manu-
factured by Jiangsu Wujiang Aneng Electronic Tech-
nology Co., Ltd, suzhou, China. This machine uses
water bath-based electric stunning, and it was set to
an output frequency of 700 Hz. The shock duration
was 10 s, and various voltages, 5, 15 and 25 V were
tested. During the test, the broilers were hung in the
slaughter line and stunned for 10 s at the pre-set fre-
quency at 1 of the 3 selected voltages. Images of the
stunned broilers were captured using a CMOS camera
(Microvision EM130C, Shanxi, China). A total of 2,319
images, at 240 x 320 pixels, for different stunned states
were collected. Then, using an annotation labeling tool,
the broiler heads and wings in the original images were
marked in accordance with the format used in the PAS-
CAL VOC (pattern analysis, statistical modeling and
computational learning visual object classes) database
(PASCAL VOC Project, 2012). This enabled a dataset
of the 3 stunned states to be obtained.

The stunned states of the shocked broilers were di-
vided into 3 categories: insufficiently stunned, mod-
erately stunned, and excessively stunned (Sams and
McKee, 2010; Ye et al., 2018). Figure 1 shows these
3 stunned conditions. Insufficiently stunned broilers
(Figure la—d) are still vaguely conscious. After apply-
ing the current, the broilers flutter or raise their heads.
The moderately stunned broilers (Figure le and f) tem-
porarily lose consciousness and appear to be still, with
their wings tucked in and their necks arched and stiff.
Excessively stunned broilers (Figure 1g and h) have
completely lost consciousness or are dead, and their
nerves are no longer in control of their bodies. Thus,
their heads hang loosely and their wings are open.

On the basis of the above observations, the 2,319
image samples were divided into the 3 categories of
insufficiently stunned, moderately stunned, and exces-
sively stunned, with the quantity of images for each
category being 1,075, 626, and 618, respectively. The
dataset was then divided up into training sets and test
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Figure 1. Sample images of broilers in the 3 stunned conditions.

sets by a ratio of 8:2, with the images in each set
being randomly selected. As a result of the small over-
all number of datasets, it was possible for overfitting
to occur during the training. Data augmentation can
help to expand a dataset and reduce the likelihood
of this happening (Sladojevic et al., 2016), thereby
improving the learning process and performance
(Grinblat et al., 2016). Data augmentation has to be
done before any training. Data augmentation tech-
niques include random cropping, scaling, rotation,
transposition, flipping, and PCA (Dyrmann et al., 2016;
Chen et al., 2017). In this study, the method proposed
by Ma et al. (2018) was used to enhance the dataset by
rotating the original dataset by 90, 180, and 270°, and
through horizontal and vertical flipping.

Faster-RCNN+MRMnet Model Development

Multi-Layer Residual Module For broiler stunned
state recognition, the principal objects to be identi-
fied are broilers, rather than different attributes and
other categories. This results in the extracted features
for each stunned state having many identical principal
parts. Special attention, therefore, has to be paid to
subtle feature differences in the images for each stunned
condition. To capture more comprehensive and finer-
grained image features, a MRM was used, based on
the principle of residual networks (Liu et al., 2019). Its
structure is shown in Figure 2.

(d)

(g) (h)

The MRM consisted of 3 convolutional layers
(CONV1, CONV2, CONV3), 3 ReLU activation func-
tions, and a dimension-matching shortcut connection.
CONV1 and CONV3 were 2 x 3 x 3 filters, with a
step size of 1. CONV2 was an X 3 x 3 filter, also with
a step size of 1. After convolution through the 3 con-
volutional layers, CONV1, CONV2, and CONV3, the
low-level X feature input and high-level X3 detailed fea-
tures were linked by means of the dimension-matching
shortcut connection. The output of this was then passed
to the network structure below to continue with finer
feature extraction. X and X3 were added together and
the output H(X) = X3+WiX was obtained. In MRM, if
X and X3 are dimension-matched, the addition opera-
tion can be performed directly. If the dimensions do not
match, an equivalent map is used to directly increase
the dimensions through zero padding.

MRMnet To extract the basic features of the stunned
state of the broilers, an additional MRMnet feature ex-
traction network can be used. The MRMnet architec-
ture is shown in Figure 3. MRMnet consists of 2 con-
volutional layers, 7 MRMs, and 4 max-pooling layers.
The max-pooling layer filter is 2 X 2 and has a span of
2. This means that the feature map is reduced by a fac-
tor of 2 along its width and height (Barré et al., 2017).
MRMnet is composed of 5 modules. The first module
consists of the 2 convolutional layers and 1 maximum
pooled layer. The convolutional layers have 64 3 x 3 fil-
ters, with a step size of 1. The second module consists of
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Figure 2. Structure of the multi-layer residual module.
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Figure 4. MRMnet flow diagram.

1 MRM and 1 maximum pooling layer, where the num-
ber of channels in the MRM, x, is 64. The third module
consists of 2 identical MRMs and a maximum pooling
layer, where the number of channels in the MRM, x, is
128. The fourth module consists of 2 identical MRMs
and a maximum pooling layer, where the number of
channels in the MRM, x, is 256. The fifth module con-

sists of 2 identical MRMs, where the number of chan-
nels in the MRM, x, is 256. Figure 4 shows, from left
to right, an arbitrary sized color image being passed
through the network, the input image having been re-
sized to an identical MxN. After the 2 convolutional
layers and the max-pooling layer, the low-level feature
information of the image is acquired. Then, through the
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Figure 5. The Faster-RCNN+MRMnet architecture.

7 MRMs and 3 max-pooling layers, convolution feature
maps of the stunned state of the broiler can finally be
obtained. For further detail, see the MRMnet algorithm
flow diagram in Figure 4.

Faster-RCNN+MRMnet The stunned state classifi-
cation of broilers requires both high accuracy and tem-
poral efficiency. On the basis of the Faster-RCNN net-
work architecture proposed by Ren et al. (2017), and
with MRMnet being used as a basic feature extraction
network, we designed a broiler stunned state classifica-
tion model entitled Faster-RCNN+MRMnet. The net-
work structure of the model is shown in Figure 5. An
input image of any size is first resized to 224 x 224 pix-
els, then MRMnet is used to extract convolution feature
maps of 14 X 14 pixels. After this, an region proposal
network (Sun et al., 2018; Yang et al., 2018) is used to
extract a set of object proposals, formulated according
to the region of the objects. Each object proposal is
mapped to the convolution feature map to get a cor-
responding feature map. This is then passed through a
region of interest (Quan et al., 2019) pooling layer to
get a fixed length feature vector. Finally, the feature
vector is input into the fully connected layer sequence
to obtain 2 sibling-level output layers. The first gen-
erates the respective Softmax probability estimates for
the 3 broiler stunned state categories and the back-
ground class. The second represents 4 coordinate pa-
rameters indicating the position of the bounding box
for the 4 categories. The details of the network model
are shown in the MRMnet flow diagram in Figure 6.

For this study, Faster-RCNN-+MRMnet was run on
an Ubuntul6.04, Python2.7.12 and CUDAS8.0 parallel
computing framework. The training was conducted on
a GTX 1070Ti AERO Caffe frame. To support the pro-
cess being focused upon here, the number of images con-
tained in the broiler stunned state dataset needs to be
quickly adapted to each new task using transfer learn-
ing (Pan and Yang, 2010) in a smaller dataset. A pre-
trained model taken from the large dataset, ImageNet
(1,000 classes, 10 million images), was therefore used to
share the underlying structural weight parameters, fol-

641

4096 4096
# » Bb dict
TxTx512 ox_predic

Object
Proposals ROI 4%(3+1)
z > 1
» Pooling - »
layer

feature map » | Cls_score

feature vector

lowed by modification and fine-tuning of the top-level
network structure of the model (Sa et al., 2016).

Faster-RCNN+MRMnet was trained using approxi-
mate joint training (Ren et al., 2017). A dropout layer
was used to reduce the overfitting effect of the deep neu-
ral network. The dropout factor was set to 0.5. A step
distance gap model was used to optimize the network
weights. The initial value of the learning rate was 0.001,
which was uniformly distributed. The iterative learning
rate had decreased by 0.1 gamma after every 10,000
iterations. The amount of display data per sample set
was 20. The momentum was 0.9 and this remained un-
changed during the training. The weight attenuation
term for the parameter-weight decay was 0.0005 and
the number of iterations was 120,000.

Faster-RCNN+MRMnet Evaluation

Based on a confusion matrix (Powers, 2011), the per-
formance of the classifier was evaluated according to
its sensitivity, precision, F1 score, and accuracy. The
calculations for these 4 indicators are as follows:

number of correct predictions

Sensitivity = x 100%
number of true cases
(1)
number of correct predictions
Precision = P x100%

number of predictions

(2)

sensitivity X precision

F1 score = 2x x100%

(3)

sensitivity + precision

total number of correct predictions
P %100%

(4)

A =
cetracy all samples
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Figure 6. The developed MRMnet flow diagram.
Table 1. Details of the datasets used to construct the model.
Stunned state Original dataset Augmented dataset Training Validation Test
Insufficiently stunned 1,075 12,900 8,256 2,064 2,580
Moderately stunned 626 7,512 4,812 1,200 1,500
Excessively stunned 618 7,416 4,740 1,188 1,488
Total 2,319 27,828 17,808 4,452 5,568

RESULTS AND DISCUSSION

Chicken Stunned Status Recognition

An augmented dataset containing 27,928 stunned
state images was constructed by using the data aug-
mentation method mentioned above. The 3 datasets are
listed in Table 1.

MRMnet was used to extract features from the input
images and to visualize the feature map. The results are
shown in Figure 7. It can be seen from the feature maps
extracted from each convolution layer that the low-level
convolution layer extracted the shape and color features
of the image, while the more abstract features were ob-
tained from the high-level convolution layer. MRMnet
automatically extracts features that are more abundant
rather than artificially extracted features, which are dif-
ficult to imitate.

The developed model was tested using the test
dataset. The results are shown in Figure 8 and Table 2.
It can be seen from the confusion matrix that the

accuracy of Faster-RCNN-+MRMnet reached 98.06%,
indicating that the predictions matched the real situa-
tion. The average detection time for a single image was
0.0822 s, so 43,700 broilers can be detected per hour.
With regard to the detection performance for each cat-
egory, Faster-RCNN+MRMnet had the highest detec-
tion sensitivity for the insufficiently stunned category
(F1 =98.39), with 98.41% of the 2,580 real samples be-
ing correctly predicted. The prediction sensitivities for
moderately stunned and excessively stunned were 98.20
and 97.31%, respectively. Faster-RCNN+MRMnet was
especially effective at detecting the insufficiently
stunned category. This may because the amount of
data in this category was greater than the other cate-
gories, making Faster-RCNN+MRMnet more inclined
to detect it.

A balanced dataset was used to test whether the
amount of data can affect the detection performance
of Faster-RCNN+MRMmnet. A total of 4,000 stunned
state images from each category in the augmented train-
ing dataset were randomly selected, together with 1,000
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Figure 7. Partial feature maps extracted from the convolution layers.

stunned state images from each category in the aug-
mented test dataset. In total, 15,000 stunned state im-
ages were collected to build the balanced dataset, which
contained the same number of image samples for each
category. A total of 9,600 samples were used for model
training, 2,400 samples were used to verify the model,
and 3,000 samples were used for testing. The test results
are shown in Table 3.

When compared with the unbalanced data, the detec-
tion performance accuracy of Faster-RCNN-+MRMnet
had slightly declined. This suggests that the amount of
data in the dataset does have an impact on the perfor-
mance of Faster-RCNN+MRMnet, which is consistent

(g)Conv3_4 (h)Conv3_6

(k)Conv4_4 (l)Conv4_6

(p)Conv5_6

(o)Conv5_4

with prior observations that CNN gets better results
when it is given more training data (Kamilaris and
Prenafeta-Boldd, 2018). Unlike the unbalanced data,
Faster-RCNN+MRMnet had the best detection per-
formance for the moderately stunned category (F1 =
97.85). Approximately 97.90% of the 1,000 real sam-
ples were correctly predicted. Faster- RCNN+MRMnet
had the lowest sensitivity for the 1,000 insufficiently
stunned samples, with only 96.70% being correctly pre-
dicted. This may be due to the morphological charac-
teristics of the insufficiently stunned broiler in the im-
ages, which are more complicated than they are for the
other 2 types. This implies that the complexity of the
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Figure 8. Prediction results for a partial test set.

Table 2. Faster-RCNN+MRMnet confusion matrix statistics with unbalanced data.

Stun states Insufficiently Moderately Excessively Sensitivity Precision F1 score Accuracy Time on
stunned stunned stunned (%) (%) (%) (%) GPU (s)

Insufficiently stunned 2,539 18 23 98.41 98.37 98.39

Moderately stunned 17 1,473 10 98.20 97.81 98.00 98.06 0.0822

Excessively stunned 25 15 1,448 97.31 97.78 97.54

Table 3. Faster- RCNN+MRMnet confusion matrix statistics with balanced data.

Stun states Insufficiently Moderately Excessively Sensitivity Precision F1 score Accuracy

stunned stunned stunned (%) (%) (%) (%)

Insufficiently stunned 967 12 96.70 96.60 96.65

Moderately stunned 16 979 97.90 97.80 97.85 97.27

Excessively stunned 18 10 97.20 97.34 97.27

morphological characteristics of each stunned state may
also affect the accuracy of the Faster- RCNN+MRMnet
classification.

Comparison Between
Faster-RCNN+MRMnet, Faster-RCNN, and
BP-NN

To compare the detection performance of Faster-
RCNN+MRMnet with Faster-RCNN across the same
pre-training parameters presented above, Faster-RCNN
was tested using both the unbalanced dataset and the
balanced dataset. The confusion matrix for the Faster-
RCNN test results is shown in Table 4.

The results show that the accuracy of Faster-
RCONN across the 2 datasets was 96.86 and 96.17%,
respectively, which is lower than the accuracy of
Faster-RCNN+MRMnet. The average detection time
for Faster-RCNN was 0.0954 s, about 16% higher
than Faster-RCNN+MRMnet. Therefore, Faster-
RCNN+MRMnet is able to identify the stunned state
of broilers with higher degrees of accuracy and more
quickly. Table 4 also shows that Faster-RCNN trained
with unbalanced data achieved the best detection
performance for the insufficiently stunned category (F1
= 97.40), but, when it was trained with balanced data,
the best detection performance was for the moderately
stunned category (F1 = 96.79). At the same time, the
accuracy for the balanced dataset was lower than it
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Stun states Insufficiently Moderately Excessively Sensitivity Precision F1 score Accuracy Time on
stunned stunned stunned (%) (%) (%) (%) GPU (s)
Faster-RCNN confusion matrix statistics with unbalanced data
Insufficiently stunned 2,509 32 39 97.25 97.55 97.40
Moderately stunned 28 1,453 19 96.87 96.42 96.64 96.86 0.0954
Excessively stunned 35 22 1,431 96.17 96.10 96.13
Faster-RCNN confusion matrix statistics with balanced data
Insufficiently stunned 955 19 26 95.50 95.21 95.35
Moderately stunned 23 967 10 96.70 96.89 96.79 96.17 0.0954
Excessively stunned 25 12 963 96.30 96.40 96.35

was for the unbalanced dataset, which is consistent
with the results for Faster-RCNN+MRMnet. This
also shows that both the number of datasets and the
proportion of each category in the dataset will affect
CNN performance.

If either Faster-RCNN+MRMnet or Faster-RCNN is
compared to the broiler stunned state recognition ac-
curacy of 90.11% obtained by using BP-NN, as docu-
mented by Ye et al. (2018), the recognition accuracy
is significantly improved. This suggests that using fast
region-based convolutional neural networks to identify
the stunned state of broilers will provide better predic-
tion accuracy than traditional classifiers.

CONCLUSION

By using the improved fast region-based convolu-
tion neural network algorithm proposed in this pa-
per to detect the stunned state of broilers, bet-
ter results can be achieved than previously proposed
methods. The detection accuracy can reach 98.06%
(for unbalanced datasets) and 97.27% (for balanced
datasets), and 43,700 broilers can be tested every
hour. The amount of data in the dataset and the
complexity of the morphological characteristics of the
detected objects may affect the classification accu-
racy of Faster-RCNN+MRMnet. When compared with
the performance of Faster-RCNN, the introduction
of an MRM into Faster-RCNN+MRMnet further en-
hanced its performance. The average detection time
for Faster-RCNN was 0.0954 s, about 16% higher
than Faster-RCNN+MRMnet. We have also found here
that, whether using Faster-RCNN-+MRMnet or Faster-
RCNN, the detection results for the stunned state of
broilers are significantly better than those produced by
traditional classifiers such as BP-NN. In future work, we
intend to use the Faster-RCNN+MRMnet method de-
veloped in this research for the design of a smart electric
stun control system that can integrate stunned state
recognition and automatic stun optimization. Our goal
is to promote this approach for the electric stunning
of broilers in the poultry slaughter industry, thereby
replacing the currently flawed processes of manual de-
tection and adjustment. This should help to alleviate
the problem of insufficiently stunned and excessively

stunned broilers and the concomitant carcass damage
caused by improper stunning.
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