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Abstract: The human microbiome is a complex community of microorganisms, their enzymes, and
the molecules they produce or modify. Recent studies show that imbalances in human microbial
ecosystems can cause disease. Our microbiome affects our health through the products of biochemical
reactions catalyzed by microbial enzymes (microbial biotransformations). Despite their significance,
currently, there are no systematic strategies for identifying these chemical reactions, their substrates and
molecular products, and their effects on health and disease. We present TransDiscovery, a computational
algorithm that integrates molecular networks (connecting related molecules with similar mass spectra),
association networks (connecting co-occurring molecules and microbes) and knowledge bases of
microbial enzymes to discover microbial biotransformations, their substrates, and their products. After
searching the metabolomics and metagenomics data from the American Gut Project and the Global
Foodomic Project, TranDiscovery identified 17 potentially novel biotransformations from the human
gut microbiome, along with the corresponding microbial species, substrates, and products.

Keywords: biotransformation; association network; molecular network; mass spectrometry; metage-
nomics; microbiome; riboflavin; sutterella; enterobacteria

1. Introduction

The human microbiome consists of over 22 million genes [1], many of which are biotrans-
formation enzymes that catalyze various chemical reactions. Currently, there is no systematic
approach for assigning a function to these enzymes. Therefore, the activity and substrate
specificity of these enzymes and their interactions with the host remain undetermined.

The products of microbial biotransformations could be both health-promoting and
detrimental [2]. Health-promoting capacities include digestion of the dietary molecules
that are indigestible by human enzymes and promoting absorption of nutrients [3]. These
processes provide a great source of energy for the host and prevent the accumulation of toxic
molecular byproducts [4–7]. Detrimental biotransformations include inactivation of drugs
by the human microbiome [8]. Moreover, carcinogenic compounds formed during cooking
procedures, such as acrylamide, are another example of detrimental biotransformations in
the human microbiota [9–12]. A comprehensive understanding of how microbial enzymes
transform dietary and drug molecules is crucial for inferring the effects of the microbiome
in health and disease.

Functional profiling approaches are widely used for annotating the function of mi-
crobial enzymes [13,14]. However, these techniques suffer from several shortcomings.
First, these methods are based on sequence homology, and they fail to correctly assign any
metabolic function to ∼80% of microbial enzymes [14–16]. Moreover, metabolic function
assignments are limited to the superfamily level, and these methods fail to predict the sub-
strate specificity of the enzymes [17,18]. Currently, elucidation of novel biotransformations
that microbial enzymes catalyze remains a time-consuming and expensive process that
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requires isolation of microbial strains and/or purification of microbial enzymes [19], which
cannot be performed in a high-throughput manner.

Recent advances in metagenomics have enabled the collection of sequencing data on
tens of thousands of human microbial communities as part of the Human Microbiome
Project [20,21] and the American Gut Project (AGP) [22]. Moreover, high-throughput mass
spectrometry technologies have enabled the collection of tandem mass spectral data on
various environments, including the human gut microbiome [22] and human diet [23]. The
molecular networking strategy (a network of spectra where similar molecules are connected
to each other [24,25]) has further revealed thousands of variants of these known molecules
that only appear in the gut environment (absent from food). Some of these variants are the
products of the chemical biotransformation of dietary molecules by enzymes from either
humans or their microbiome.

In the past, association network methods have been introduced for discovering bio-
transformations by detecting the cooccurrence of molecular and microbial features across
various microbial communities [26–28]. In an association network, various statistical tests,
including Pearson correlation, Spearman’s correlation, and mutual information, can be
used to detect the relationship between a molecular feature and a microbial feature. While
Pearson correlation focuses on measuring linear relationships, Spearman’s correlation
serves the goal of obtaining monotonic relationships, and mutual information can be used
to quantify the mutual dependence between two features. By using different correlation
tests, different types of relations between molecular features and microbial features can
be discovered.

While association networks have revealed several known and novel microbial natural
products and biotransformations, these methods suffer from a common shortcoming that
makes their application limited: All correlation-based methods report many strong correla-
tions that do not correspond to any biological interactions, e.g., two features affected by a
confounding feature could be correlated without any interaction. Therefore, association
networks are dense networks with many spurious edges. These spurious edges require
researchers to perform extensive computational searches to identify the true biological
interactions from the network.

In this paper, we develop a culture-independent approach for assigning functions to
microbial biotransformation enzymes and specifying their substrates and products based
on large metagenomics and tandem mass spectral datasets. We introduce TransDiscovery,
a computational framework that integrates molecular networks with association networks
and knowledge bases of enzymatic transformations (e.g., BioTransformer [29]) to system-
atically characterize the microbial biotransformations. TransDiscovery overcomes the
challenge of spurious edges in association studies by integrating association networks with
molecular networks and biotransformation knowledge bases. TransDiscovery is based
on the hypothesis that whenever a microbial enzyme biotransforms a substrate molecule
into a product, we observe (i) a strong positive correlation between the enzyme or strain
and the product, (ii) a strong negative correlation between the enzyme or strain and the
substrate, and (iii) an edge in the molecular network between the substrate and the product
(Figure 1). The positive and negative correlations correspond to the increase in abundance
of the product and the decrease in the abundance of the substrate during the enzymatic
reaction. The edge in the molecular network represents the structural similarity between
the substrate and the product. These three relationships are referred to as golden triangles.
By finding the triplets of substrates, products, and microbial strains that form a golden
triangle, we ensure that the discovered biotransformations are biologically interpretable.
With the idea of the golden triangles, the spurious edges will be filtered out from in the
network, which decreases the false positives generated by using the correlation approach.
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Figure 1. TransDiscovery framework for discovering novel biotransformations of human dietary in-
gredients by (a) the gut microbiome. Starting with (b) the mass spectral data of small gut molecules
and (c) metagenomics data of gut microbes, the pipeline includes the following steps: extracting
(d) molecular and (e) microbial features from raw data, (f) constructing an association network [26–28]
of molecular and microbial features (edges shown in green), (g) constructing a molecular network [30]
(edges shown in red), (h) integrating associations and the molecular network, (i) extracting candidate
biotransformations as golden triangles, (j) identifying substrates of biotransformations with an in silico
database search with Dereplicator+ [31], and (k) characterizing molecular products of known biotrans-
formations using in silico predictions of BioTransformer [29]. Note that in steps (f,h–k), the nodes can
represent either strains or enzymes. In steps (f,h), the plus and minus labels indicate that the substrate
is negatively correlated with the microbial feature and the product is positively correlated with the
microbial feature.
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By applying TransDiscovery to the molecular and microbial features in the AGP and
Global Foodomics Project (GFoP) datasets, we discovered 17 unique biotransformations of
known substrates from PhenolDB [32], along with the corresponding microbial species and
molecular products. Our framework is a step forward toward harnessing the big data of
genomics/metagenomics, metabolomics, and the existing knowledge bases to illuminate
the function of microbial enzymes and their role in health and disease.

2. Results

Overview of TransDiscovery. The TransDiscovery pipeline (Figure 1) starts with (a)
samples of the human microbiome, then collects (b) mass spectra of small-molecule and (c)
metagenomics data of microbes and extracts (d) molecular and (e) microbial feature profiles
from the data. Afterwards, TransDiscovery constructs (f) the association network [26–28]
of molecular and microbial features and (g) the molecular network [30] of tandem mass
spectra. Further, (h) the integration of these two networks leads to the discovery of (i)
candidate biotransformations. The structures of the (j) substrates can be annotated through
a database search [31], while (k) the products can be further characterized through the
in silico prediction of BioTransformer [29].

Forming the association network for the AGP dataset. We constructed an association
network for 30,784 molecular features and 11,265 microbial features for 2125 human subjects
in the AGP dataset using Spearman’s correlation with a p-value threshold of 10−4 [27].
The molecular features and microbial features were stored in two CSV files. In each file,
each row represents one molecular or microbial feature, where each column represents one
subject. This resulted in 9,883,612 molecule–microbe associations. Among the obtained
associations, 1,379,075 had p-values below 10−4 and absolute rho values over 0.1. Figure S1
shows the frequency of molecular and microbial features in different samples. All the
features that formed a significant association appeared in at least a hundred samples.

Biotransformation of molecules from PhenolDB and HMDB. We predicted feasible
biotransformations for molecules from PhenolDB and HMDB using BioTransformer [29].
The input comprised SMI files that recorded the smile string for each molecule in the
database. This resulted in 2364 products for substrates from PhenolDB and 200,833 products
for substrates from HMDB.

Constructing molecular networks. We constructed a molecular network for the tan-
dem mass spectral data of AGP samples using a cosine threshold of 0.7. The input com-
prised mzML files that recorded the mass spectrometer output for each sample in the
dataset. The resulting network contained 39,219 nodes and 41,296 edges. The molecular
network of GFoP had 4950 nodes and 5593 edges. There were 2404 nodes at the intersection
of AGP and GFoP, and these nodes had 4809 neighbors that were unique to AGP. Overall,
we obtained 45,479 edges by combining the two networks.

Integrating the association network, molecular network, and predicted biotransfor-
mations. We integrated three previously obtained feature pair lists (Figures S2 and S3)
to extract more reliable biotransformations (Figure 2). Specific mass annotations for the
substrate identification process are listed in Table S1. Specific details of the molecular
features in the identified biotransformations are listed in Table S2. Table 1 shows 17 bio-
transformations from PhenolDB that were retained based on Spearman’s rank correlation
coefficients between the substrates or products and the strains. While most of the identified
biotransformations held negative/positive correlations between microbial features and
substrates/products, we noticed that for the decarboxylation of hydroxycinnamic acids by
Lactobacillus [33], which has previously been reported in the literature, the same sign was
shared in two correlations. The interpretation is that for some biotransformations, a higher
abundance of the substrate results in a higher yield of the product.
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positive association

known transformation

negative association

molecular network

Figure 2. Integrating molecular and association networks. As the size of the network is enormous
(41,765 nodes and 45,479 edges), here, we focus on some of the networking families that have a
known molecule identified by Dereplicator+ [34] as a polyphenol or a vitamin (25 molecules in total).
The network for all 25 molecules is shown in Figure S5. As the association network is currently too
dense to visualize, we only show the top two microbial features for each molecular feature (Fisher p-
value of 10−5). The known transformations were reported by BioTransformer [29]. By focusing solely
on edges in the molecular network and association network, one can get a large number of potential
biotransformations with a high chance of being spurious. However, focusing on the overlap between
the two networks (golden triangles) results in a much smaller set of potential biotransformations,
where many of them can be validated by a literature search.
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Table 1. TransDiscovery identified 17 biotransformations. The columns ρs and ρp represent Spearsman’s rank correlation coefficients between the microbial features
and substrate or product, respectively. The top biotransformations hold negative/positive biotransformations between substrates/products and microbial features,
and the bottom ones do not.

Substrate Name Biotransformation Name List of All Strains that Are Observed ρs ρp Description

Dihydroferuloylglycine Hydrolysis of carboxylic acid ester Prevotella, etc. −0.16 0.17 Lachnospiraceae bacterium AM48-27BH
5-(3′,4′-dihydroxyphenyl)-valeric acid Dehydroxylation Pseudomonas; Enterobacteriaceae −0.14 0.11 Escherichia coli DEC12C

Isoferulic acid; Ferulic acid Alpha,beta-ketoalkene double bond reductase Oscillospira, etc. −0.11 0.15 Corynebacterium aurimucosum 911 CAUR
5-(3′-Methoxy-4′-hydroxyphenyl)-valerolactone Dehydroxylation Methanobrevibacter −0.11 0.10 Methanobrevibacter woesei DSM 11979

3-Hydroxy-4-methoxyphenyllactic acid, etc. Dehydroxylation Dentocariosa −0.11 0.09 Rothia dentocariosa 694 RDEN
Dihydrocaffeic acid Catechol O-methylation Tissierellaceae; Finegoldia −0.10 0.16 Peptoniphilus senegalensis JC140

Hydroxybenzoic acid; Protocatechuic aldehyde Dehydroxylation Blautia −0.09 0.09 Blautia wexlerae BIOML-A4
Dihydrosinapic acid, etc. Dehydroxylation Ruminococcaceae; Lachnospiraceae −0.09 0.09 Lachnospiraceae bacterium MGYG-HGUT-00141

Matairesinol Dehydroxylation Prausnitzii −0.08 0.11 Faecalibacterium prausnitzii MGYG-HGUT-00195
3-Phenylpropionic acid Beta-Oxidation of carboxylic acid Blautia −0.08 0.09 Blautia wexlerae BIOML-A4

p-Coumaric acid; m-Coumaric acid Dehydroxylase; Dehydroxylation Faecalibacterium; Prausnitzii 0.13 0.14 Veillonella parvula BIOML-A2
Dihydroferulic acid Dehydroxylation Clostridiales; Granulicatella 0.11 0.14 Ruminococcus bromii ATCC 27255

3-Hydroxyphenylvaleric acid Dehydroxylation Enterobacteriaceae 0.11 0.11 Escherichia coli DEC12C
p-Coumaric acid Decarboxylation of phenolic acid/hydroxycinnamic acid Bifidobacterium; Clostridiales; Lactobacillus 0.10 0.17 Lactobacillus casei NBRC 101979

5-(3′,4′-dihydroxyphenyl)-valeric acid Catechol O-methylation Desulfovibrio; Enterobacteriaceae 0.10 −0.09 Ruminococcus torques 2789STDY5608867
Protocatechuic acid, etc. Dehydroxylation; Aldehyde oxidation Bacillales, etc. −0.10 −0.10 Finegoldia magna DSM 20470

3-Hydroxyphenylpropionic acid; Paeonol, etc. UDP-glucuronosyltransferase Pseudomonas −0.09 −0.09 Pseudomonas fragi F1786
If multiple strains are included in one row, the ρ value for the first strain is shown.



Metabolites 2022, 12, 119 7 of 15

Biotransformation identification with enzymatic features. We applied PICRUSt [35]
to 11,265 taxonomy-annotated microbial features to obtain 1535 enzymatic features. These
features were treated as the microbial feature input for TransDiscovery. We constructed an
association network between these enzymatic features and 30,784 molecular features to
obtain 7,075,238 molecule–enzyme associations with Spearman’s correlation p-value of less
than 10−4. These associations were integrated with the previously generated molecular
network and substrate–product pairs from PhenolDB. The resulting 17 biotransformations
are shown in Table S3.

Biotransformation identification with shotgun sequencing data. The shotgun sequenc-
ing data were available for 145 samples in the AGP dataset. We used KofamKOALA [36]
to extract 1074 enzymatic features from the shotgun sequencing data and obtained 4597 as-
sociations between these enzymatic features and molecular features with a p-value cutoff
of 10−3. However, due to the limited sample size, we failed to identify any significant
biotransformations in these association results (Table S4).

Degradation of riboflavin by Sutterella. TransDiscovery identified a variant of ri-
boflavin (Vitamin B2) with m/z 287.11 that was unique to the AGP dataset. Dereplica-
tor+ [34] identified this variant as hydroxyethylflavine (Figure 3), which is a known product
of the degradation of riboflavin by an unknown microbial strain in the human gut micro-
biota [37]. TransDiscovery identified a microbial strain that was negatively correlated with
riboflavin and positively correlated with hydroxyethylflavine (p-value threshold of 10−5).
The 16S rRNA of this microbial feature had 99.85% similarity to the Sutterella wadsworthensis
strain SW4. Further genome annotations revealed that this strain had a gene cluster with
ribonucleoside hydrolase and ribokinase, which are known to play a role in the degradation
of riboflavin in Microbacterium maritypicum [38] and Devosia riboflavina [39]. The gene cluster
of Sutterella is quite different from those of Microbacterium and Devosia, and its molecular
product is also slightly different (hydroxyethylflavine is predicted in the case of Sutterella,
versus lumichrome in the case of D. riboflavina and M. maritypicum), suggesting that this
riboflavin degradation pathway might be novel.

Decarboxylation of hydroxycinnamic acids by Enterobacteria. The association net-
works revealed a strong negative correlation between various Enterobacteria species and
p-coumaric acid (m/z 165.054), ferulic acid (m/z 175.064), and caffeic acid (m/z 181.094).
The same Enterobacteria species showed strong positive correlations with molecular features
with m/z 121.065, 137.060, and 151.074. These features matched the masses of p-coumaric,
caffeic, and ferulic acid after the loss of CO2 (43.989 Da). BioTransformer predicted that
p-coumaric, caffeic, and ferulic acid are decarboxylated in the human gut environment.
Moreover, decarboxylation of hydroxycinnamic acids by Enterobacteria has been previously
reported in the literature [40]. Associating molecular features against KEGG enzymes
further revealed strong positive associations of molecular features at m/z 121.065, 137.060,
and 151.074 with phenolic acid decarboxylase (K13727), an enzyme frequently observed in
Enterobacteria, Lactobacillus, and Actinomyces.

Dihydroxylation of hydroxybenzoic acid by Blautia. In the association network
results, a strong negative association between hydroxybenzoic acid (m/z 139.039) and
Blautia and a strong positive association between molecular features with m/z 123.044
and Blautia were identified. The mass for this molecular feature matched the loss of
an oxygen atom (15.99 Da). It has been previously reported that hydroxybenzoic acid
undergoes a dihydroxylation reaction with 4-hydroxybenzyl CoA reductase from the
Blautia species [41,42].
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Figure 3. One of the molecular features (orange circle) in the molecular network (same color scheme
as in Figure 2) is specific to AGP, and Dereplicator+ [34] identified it as hydroxyethylflavine, a known
product of the degradation of riboflavin by an unknown microbial enzyme in gut microbiota [37].
A microbial feature annotated as Sutterella wadsworthensis is positively correlated with this product and
negatively correlated with riboflavin (highlighted green circle). The predicted riboflavin degradation
gene cluster in Sutterella wadsworthensis is shown, along with two known riboflavin degradation gene
clusters from Microbacterium maritypicum and Devosia riboflavina. Sutterella wadsworthensis is predicted
to degrade riboflavin to hydroxyethylflavine, while the other two bacteria degrade it to lumichrome.

3. Discussion

In this paper, we introduce TransDiscovery, a powerful method for systematically
identifying microbial biotransformations by combining a molecular network, association
network, and knowledge bases of microbial enzymes. Experimental advances in high-
throughput sequencing and mass spectrometry technologies have enabled the collection of
genomic and tandem mass spectrometry data from tens of thousands of human microbial
communities. Tens of thousands of microbial features (microbial species) and molecular
features (molecular substrates and products) from these communities, coupled with in-
creasingly accessible knowledge bases of microbial enzymes, provide great opportunities
to dissect the complex biotransformations from the human microbiome. By applying Trans-
Discovery to the existing database, 17 biotransformations were identified. While some of
the biotransformations were validated by a literature search, others are potentially novel
biotransformations for further experiments.

The Human Microbiome Project (HMP) has provided a comprehensive catalog of
microbial genes in human microbiota. While this catalog is a gold mine for future studies
of human health and disease, in order to fully utilize the promise of the HMP, we need
to have a better understanding of the mechanisms of action for these genes and how they
affect the human host.
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Currently, there are no high-throughput technologies for revealing the activity of
microbial enzymes, their substrates’ specificity, their molecular products, and their roles
in health and disease. Tandem mass spectrometry is a promising technology for high-
throughput identification of the substrates and products of microbial biotransformations.
However, in contrast to the computational techniques available for high-throughput analy-
sis of metagenomics data of the microbiome, well-established methods for tandem mass
spectrometry data analysis are not available.

In the past, association studies have been applied for the detection of molecular products
of microbial biotransformations. However, these techniques report many spurious pairs,
as they are based on correlation, rather than causation. TransDiscovery improves association
networks by integrating them with molecular networks and biotransformation knowledge
bases to reliably discover microbial biotransformations.

After searching metagenomics and metabolomics data from the American Gut Project
and Global Foodomics Project, TransDiscovery reported 17 potential biotransformations.
Several of these biotransformations were validated by a literature search. Currently, there is
no comprehensive database of microbial biotransformations. By searching against the most
extensive databases, such as HMDB [43] and MetaCyc [44,45], only a few of the substrates
identified by TransDiscovery had any reactions assigned to them. Moreover, the enzymes
involved in these reactions are usually unknown. The remaining biotransformations
predicted by TransDiscovery are potentially novel, and validating them requires further
experimental investigations.

Discovery of novel biotransformations is a computationally laborious task, and usu-
ally, each paper in this area reports a single novel biotransformation. TransDiscovery
enables the discovery of numerous biotransformations in a single study. Validation of
the biotransformations predicted by TransDiscovery requires culturing of the predicted
microbial strains in media containing the substrate and screening for the presence of the
product molecule over time. Validation of the predicted gene clusters further requires
knock-out experiments. Wet-lab validation can become a path to the confirmation of the
results of TransDiscovery.

While so far, we mainly focused on reporting novel biotransformations identified
by combining the AGP and GFoP datasets with PhenolDB, TransDiscovery can take any
knowledge base of interest as input. Compared to PhneolDB, other knowledge bases, such
as HMDB and FooDB, hold hundreds of times more chemical structures of small molecules
from the human body. In the analysis between the AGP and GFoP datasets and HMDB, we
were able to obtain hundreds of candidate biotransformations with an even more stringent
rho value threshold, which can be used for further experimental validation.

One of the limitations of reliance on marker gene data (16S) for the annotation of mi-
crobial features is that it makes it difficult to conduct accurate functional profiling analyses.
Currently, TransDiscovery supports the incorporation of shotgun metagenomics data, which
enable higher-resolution functional annotation. With shotgun metagenomics data, the identi-
fied biotransformations can be linked to the specific enzymes. This will not only help further
screen valid biotransformations, but can also provide insight for interpretation and follow-up
experiments. However, shotgun metagenomics are more expensive, and currently, there are
only a limited number of public samples (a few hundred) with paired shotgun metagenomics
and tandem mass spectrometry data. Therefore, it has been impossible to detect any highly
significant associations based on shotgun metagenomics data.

Another limitation of the existing approaches is that, while extensive genomics data
are available from reference microbial isolates, currently, reference metabolomics datasets
from microbial isolates are not available. Reference genomics data have made it possible to
map a large number of microbial features to their corresponding taxonomies, but currently,
the majority of molecular features of the microbiome remain orphans, as it remains unclear
whether they are produced by the host or the microbial strains. While TransDiscovery is a
step forward toward annotation of the microbiome metabolites in complex datasets, the
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availability and incorporation of metabolomics data from reference microbial isolates can
vastly increase the power of such computational approaches.

In conclusion, TransDiscovery provides a culture-free approach for assigning functions
to microbial enzymes from complex microbial communities that does not require isolation
of the microbes and purification of the enzymes. Applications of this strategy include
high-throughput characterization of the biotransformation products of dietary molecules
by enzymes from the human microbiota. We believe that with the rapid growth of mass
spectrometry/metagenomics datasets and knowledge bases, TransDiscovery can become a
crucial tool for better understanding gut microbial mechanisms.

4. Materials and Methods

Datasets. The AGP dataset [22] contains LC-MS/MS and 16S rRNA data from the
human gut microbiomes of 2125 human subjects. Shotgun metagenomics data are also
available for some of the samples. The GFoP dataset [23,46] contains LC-MS/MS data
for 3579 food and 116 beverage samples. When generating features for the association
network, Optimus [47] was used to extract 30,784 molecular features from the LC-MS
data from the AGP dataset, and QIIME [48] was used to extract 11,265 unique microbial
features from the 16S rRNA data based on the Green-Genes Database as the reference.
The precursor ion mass tolerance was set to be 0.02 Da, and the retention time tolerance
was set to be 5 for Optimus (default parameters). When generating nodes for the molecular
network, LC-MS/MS spectra from AGP and GFoP were merged using MSCluster [49].
The precursor ion mass tolerance was set to be 0.02 Da for MSCluster (recommended
by MSCluster for qTOF data). The resulting molecular network contained 41,765 nodes.
The molecular features from Optimus and the molecular network were combined using a
mass tolerance of 0.02 Da. We additionally annotated the extracted molecular features using
a spectral library search and Dereplicator+ with default parameters. The spectral library
search was level 2 identification, and Dereplicator+ was level 4 identification of metabolites,
according to the Chemical Analysis Working Group Metabolomics Standard Initiative [50].
The Phenol Database (PhenolDB) [32] is a public database containing the chemical structures
of 370 phenolic compounds. The Human Metabolome Database (HMDB) [43] is a public
database containing the chemical structures of 41,919 small molecules from the human body.

Liquid chromatography mass spectrometry. The AGP dataset was collected on an
UltiMate 3000 UHPLC system equipped with a reverse-phase C18 column coupled to a
Bruker Impact HD quadrupole time-of-flight (qTOF) mass spectrometer [22]. The GFoP
dataset was collected on an UltiMate 3000 UHPLC system equipped with a reverse-phase
C18 column coupled to a Maxis qTOF Impact II mass spectrometer [23].

Molecular feature extraction. Molecular features of the LC-MS/MS data were ex-
tracted using Optimus [47]. The result was a feature intensity matrix FI, where thecell
FI(x, s) represents the intensity of feature x in sample s. Features present in less than two
samples were discarded.

Microbial feature extraction. Microbial features with taxonomy annotations used in
the main analysis were extracted from the 16S rRNA data using QIIME [48]. The result
was OTUMatrix, where the cell OTUMatrix(y, s) represents the count of OTU y in sample
s. The strain annotation listed in Table 1 was obtained by matching the 16S rRNA data
with the NCBI RefSeq database using BLAST alignment. The annotation scores are listed
in Table S5. Additionally, we used PICRUSt [35] to predict the KEGG enzymes associated
with taxonomies based on their 16S rRNA data. This resulted in EnzymeMatrix, where
EnzymeMatrix(z, s) represents the abundance of KEGG enzyme z in sample s. Enzymatic
features from shotgun sequencing data were identified using KofamKOALA [36]. This
resulted in Shotgun-EnzymeMatrix, where Shotgun-EnzymeMatrix(e,s) represents the presence
or absence of KEGG enzyme e in sample s. OTUMatrix, EnzymeMatrix, and Shotgun-
EnzymeMatrix were correlated with the molecular features.

Association network construction. An association network was constructed by cal-
culating a pairwise association test between molecular features and microbial features [27].
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The statistical test used was Spearman’s correlation test. Given the molecular feature x
and microbial feature y, the null hypothesis assumed that “the abundance of molecular
feature x in samples” and “the count of microbial feature y in samples” were independent.
If the probability of null hypothesis Px,y was lower than a threshold Pthreshold, then the null
hypothesis was rejected and (x, y) were reported as associated.

Molecular network construction. A molecular network was constructed using the
global natural-product social molecular networking (GNPS) infrastructure [30]. First, all of
the MS/MS spectra were clustered by MSCluster [49], and identical spectra were merged
into the same clusters and represented as nodes in the network. Then, the nodes were
matched pairwise using the modification-tolerant spectral matching scheme [24]. Edges
in the molecular network were formed when two nodes had cosine scores higher than a
threshold of 0.7. The cosine score threshold of 0.7 was recommended by the Molecular
Network software as the default value.

Identifying candidate biotransformations. In the molecular network, if two spectra
(nodes) were very similar (high cosine similarity score), they were connected with an
edge. Generally, spectral similarity implies structural similarity [51]. Under the hypothesis
that the substrate and product of a biotransformation are structurally similar, candidate
biotransformations were identified as triplets of microbial features, substrates, and products
where there was (i) a positive correlation between the microbial feature and the product,
(ii) a negative correlation between the microbial feature and the substrate, and (iii) an edge
in the molecular network between the substrate and the product (Figure 4).

Substrate identification. The substrate molecular features were identified by searching
them against a chemical structure database (e.g., PhenolDB [32] and HMBD [43]) using
Dereplicator+ [34]. Precursor and product mass tolerance of 0.002 Da were used. Since
Dereplicator+ currently cannot identify molecules with smaller masses, in the case of molec-
ular features with precursor masses below 200 Da, only parent mass matching is performed.

Product identification. For each identified substrate molecule, we used BioTrans-
former [29] to identify the product. Given a substrate molecule, Biotransformer predicts
the molecular product of a biotransformation using a rule-based approach, where the rules
are extracted through literature mining.

O

OH O

HO

OH

O

OOH

OH

HO

OH

Substrate Product

Microbial Feature

Spectra similarity

Negative correlation Positive correlation

+

+

Figure 4. Candidate biotransformations were identified as triplets of microbial features, substrates,
and products where there was (i) a positive correlation between the microbial feature and the product,
(ii) a negative correlation between the microbial feature and the substrate, and (iii) an edge in the
molecular network between the substrate and the product.
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Supplementary Materials: The following supplementary figures and tables are available online
at https://www.mdpi.com/article/10.3390/metabo12020119/s1. Figure S1: Distribution of the
samples counting molecular and microbial features that appear in the dataset. The label ’with-
association’ represents features that form at least one significant correlation with p-value < 10−4

and abs(rho) > 0.1. None of the features present in less than 100 samples correspond to a significant
correlation with other features. Features with more than 500 samples are not shown, Figure S2: The
graph represents (a) 2364 substrate–product reaction pairs from BioTransformer between 370 phenol
compounds and their predicted products. (b) A total of 45,479 molecule–molecule association
pairs from the molecular network with 30,783 molecular features. (c) A total of 9,883,612 molecule–
microbe association pairs from the association network between 30,783 molecular features and
11,265 microbial features. The numbers in the intercept area (d,e,f,g) represent numbers of pairs
that exist in both (or all) studies, Figure S3: The graph represents (a) 200,833 substrate–product
reaction pairs from BioTransformer between 41,919 HMDB molecules and their predicted products.
(b) A total of 45,479 molecule–molecule association pairs from the molecular network between
30,783 molecular features. (c) A total of 9,883,612 molecule–microbe association pairs from the
association network between 30,783 molecular features and 11,265 microbial features. The numbers
in the intercept area (d,e,f,g) represent numbers of pairs that exist in both (or all) studies, Figure S4:
The expected format for the input and output files in each step of TransDiscovery. The expected
inputs for the association network are TSV files containing abundance tables for molecular and
microbial features. The expected output is a TSV file with the statistic of the obtained associations.
The expected input for molecular network is the mzML file containing the tandem mass spectrometry
for each sample. The outputs are two TSV files with node information and edge information for the
molecular network. The expected input for BioTransformer is an SMI file containing the smile strings
for each molecule. The outputs are the reactions obtained by in silico search. The final output of
TransDiscovery is a TSV file containing detailed information of every identified biotransformation,
Figure S5: Integrating molecular and association networks. As the size of the network is enormous
(41,765 nodes and 45,479 edges), here, we focus on some of the networking families that have a known
molecule identified by Dereplicator as a polyphenol or a vitamin (25 molecules in total). As the
association network is currently too dense to visualize, we only show the top two microbial features
for each molecular feature (Fisher p-value of 1 × 10−5), Table S1: Mass annotation for matched
molecular features obtained from AGP and molecules from PhenolDB, Table S2: Specific details of
molecular features in identified biotransformations. The first two columns are the molecular masses
for substrates and products. The following two columns are the p-values between the microbial
features and substrate or product molecules, respectively. The last three columns are the number of
samples that hold substrates, products, or substrate–product pairs for the 17 given biotransformations,
Table S3: Identified biotransformations with enzymatic features as input. The enzymatic features were
extracted from taxonomy-annotated microbial features using PICRUSt, Table S4: Biotransformations
identified using enzymatic features from shotgun sequencing data with a p-value threshold of 10−3.
Due to the limited sample size, none of these identified biotranformations are significant (with
p-values less than 10−4), Table S5: Bacterial species annotation for identified strains. The scores listed
in the table were obtained by matching the strain sequence with the NCBI RefSeq database using
BLAST alignment.
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