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We compute profile likelihoods for a stochastic model
of diffusive transport motivated by experimental
observations of heat conduction in layered skin
tissues. This process is modelled as a random walk
in a layered one-dimensional material, where each
layer has a distinct particle hopping rate. Particles
are released at some location, and the duration of
time taken for each particle to reach an absorbing
boundary is recorded. To explore whether these data
can be used to identify the hopping rates in each
layer, we compute various profile likelihoods using
two methods: first, an exact likelihood is evaluated
using a relatively expensive Markov chain approach;
and, second, we form an approximate likelihood by
assuming the distribution of exit times is given by a
Gamma distribution whose first two moments match
the moments from the continuum limit description of
the stochastic model. Using the exact and approximate
likelihoods, we construct various profile likelihoods
for a range of problems. In cases where parameter
values are not identifiable, we make progress by re-
interpreting those data with a reduced model with a
smaller number of layers.

2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2021.0214&domain=pdf&date_stamp=2021-06-09
mailto:matthew.simpson@qut.edu.au
https://doi.org/10.6084/m9.figshare.c.5450043
https://doi.org/10.6084/m9.figshare.c.5450043
http://orcid.org/0000-0001-6254-313X
http://orcid.org/0000-0001-9222-8763
http://orcid.org/0000-0001-9972-927X
http://orcid.org/0000-0002-6304-9333
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210214

...........................................................

1. Introduction
Mathematical models of biological phenomena are essential tools that can be used to improve
our understanding and interpretation of experimental data and underlying mechanisms [1].
Methods for identifiability analysis allow us to objectively determine if available biological data
are sufficient to estimate model parameters [2,3]. A mathematical model is said to be identifiable
when distinct parameter values imply distinct distributions of observations. This in turn means
parameters can be recovered from full knowledge of these distributions [4]. In the systems
biology literature, identifiability is also referred to as structural identifiability where we consider an
infinite amount of ideal, noise-free data [5–9]. By contrast, the term practical identifiability describes
whether it is possible to provide reasonably precise parameter estimates using finite amounts
of non-ideal, noisy data [10–13]. Practical identifiability can be assessed using both Bayesian
[11,14] and frequentist methods, where the latter is commonly carried out using profile likelihood
analysis [15,16]. Profile likelihood is often more computationally efficient [17], and also tends to
perform better in the presence of true structural non-identifiability [13].

In the systems biology literature, experimental data often take the form of time series that are
modelled using systems of ordinary differential equations [18]. A profile likelihood analysis can
be undertaken by making assumptions about both the process model (e.g. a system of ordinary
differential equations) and a noise model (e.g. Gaussian noise with zero mean and constant
variance) [10,11]. Together, these define a likelihood function, and numerical optimization tools
can be used to compute various profile likelihoods that provide rapid insight into identifiability.
For conditions where parameters are identifiable, the profile likelihood can be used to obtain
maximum-likelihood point estimates, as well as confidence intervals by choosing a threshold-
relative profile likelihood value [10]. Most profile likelihood analyses in the mathematical biology
literature have focused on deterministic process models, such as models based on ordinary
differential equations [10] and partial differential equations [17]. While some studies have
considered profile likelihood analysis of stochastic models [19,20], here we focus on computing
profile likelihoods based on first-exit time data from a stochastic model of diffusion in layered
media that is implemented to mimic a very practical experimental scenario that places tight
restrictions on how data are observed, which we will now explain.

We consider a stochastic model that describes the spatio-temporal diffusion of thermal energy
in a heterogeneous, layered biological material. We are motivated by the experimental work of
Andrews et al. [21–24] who consider heat conduction through living, layered porcine skin, shown
in figure 1a. Andrews’ experiments are performed by placing a constant temperature external heat
source at the surface of the skin, at the top of the epidermis. Over time, thermal energy conducts
across the epidermis and dermis, reaching the subdermal fat layer. Andrews et al. [21–24] measure
this heat conduction process in real time by obliquely inserting a temperature probe at the base
of the fat layer. For example, the data in figure 1b show the result of an experiment where a
constant heat source at 50◦C is placed at the top of the skin, and the subdermal temperature is
measured at intervals of 1 s at the base of the fat layer. The recorded data show that the subdermal
temperature remains approximately constant for the first 14 s of the experiment before increasing
with time. These data suggest that the thermal disturbance at the surface of the layered skin
takes approximately 14 s to affect the subdermal temperature. A key restriction of Andrews’
experimental design is that the living tissues are relatively thin and the temperature probe can
only be placed at a single location without destroying the integrity of the living tissue [21–24].
Given that Andrews’ data take the form of a time series of temperature data recorded at the base
of the fat layer, a key quantity of interest is to measure the duration of time required for the
temperature at the base of the fat layer to respond to the thermal disturbance at the surface of
the layered skin. While Andrews’ experiments focus on diffusive transport of thermal energy in
layered biological material [21–24], a very similar experimental design could be used to measure
the chemical diffusion of dissolved solutes through skin and other heterogeneous, layered media,
with broad applications including cutaneous drug delivery [25] as well as the design of landfill
liners for the storage of industrial waste [26,27].
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Figure 1. (a) Histology image of porcine skin [23] highlighting the layered structure of the tissue, including the epidermis,
dermis and fat layers, as indicated. (b) Experimental data fromAndrews et al. [21] showing the subdermal temperature response
after a constant heat source at 50◦C is placed on the surface of the skin. Subdermal temperatures are measured at 1 s intervals,
and it is clear that the thermal response at the surface takes approximately 14 s to reach the subdermal probe, as indicated by
the vertical line. (c) Schematic of the discretized domain with m= 3 layers and n= 17 lattice sites. Data in (b) are available
from Andrews et al. [21]. (Online version in colour.)

Some of our previous modelling work attempted to calibrate the solution of deterministic
partial differential equation models of heat transfer to match the kind of data reported by
Andrews et al. [21,22]. In this previous work, we treated the layered skin in figure 1a as a very
simple two-layer problem, where we took the thermal diffusivity of the combined epidermis
and dermis to be D1 > 0, and the thermal diffusivity of the fat layer to be D2 > 0 [24]. Using
this very simple approach, we showed that it is impossible to estimate D1 and D2 using time-
series measurements of temperature at one location since multiple combinations of D1 and D2
give rise to the same time-series temperature signal at the base of the material (see, for example,
fig. 2c,d in McInerney et al. [24]). A key question that remains unanswered by the work of
McInerney et al. [24] is whether our ability to identify thermal diffusivities using these kind of
observations can be improved by working with a stochastic, rather than a deterministic model.
To address this question, here we mimic the kind of data reported by Andrews et al. [21] using a
simple stochastic random walk model of heat conduction in a one-dimensional layered material.
We do not precisely mimic the exact layer thicknesses, boundary conditions, initial conditions
and temperature data reported by Andrews et al. [21]. Instead, we address a more fundamental
question of exploring whether working in a stochastic modelling framework offers additional
insights over working with simpler deterministic models. We address this question by working
with idealized boundary conditions and initial conditions that do not precisely capture the details
of Andrews’ experiments. However, even with this highly idealized modelling framework we
show that estimating diffusivities in layered materials with simple time-series data at one location
is extremely challenging. Indeed, we show that it is only possible to reliably estimate these
parameters by changing the experimental design. Since this work focuses on stochastic methods,
which are more computationally expensive than deterministic approaches, a major question we
address is the development of methodological tools that speed up identifiability analysis through
the development of an approximate likelihood. The approximations we develop and deploy are
novel, leading to significant computational savings, without sacrificing accuracy.
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We mimic Andrews’ experimental design using a stochastic random walk model of diffusion
in layered, heterogeneous media [28–30]. In this model, particles undergo a one-dimensional
random walk across a series of internal layers, where each layer has a different particle hopping
rate, shown schematically in figure 1c. To be consistent with Andrews’ experiments, in the
first instance, we consider releasing particles at a single location, such as the end of the
domain that represents the surface of the tissue, and the simulation proceeds until the particle
reaches an absorbing boundary at the other end of the domain, that represents the base of the
tissue. Simulations are summarized by recording the duration of time taken for the particle
to reach the absorbing boundary. Our aim is to understand if such data are sufficient to
characterize the hopping rates, and hence the thermal diffusivity, of each layer. To analyse the
practical identifiability of this model with these data, we construct profile likelihoods using
two approaches. First, we interpret the stochastic model as a Markov chain and compute an
exact likelihood from which we can compute various profile likelihoods. Second, we suppose
the likelihood can be approximated by a Gamma distribution where the first two moments are
defined in terms of properties of the stochastic model. Given this approximate likelihood we then
construct various profile likelihoods using numerical optimization. The first approach is exact
but relatively expensive, whereas the second approach is approximate but computationally fast.
Our results show that the approximate likelihood approach provides reasonably accurate, rapid
insight into parameter identifiability. In cases where the hopping rates are not identifiable, we
make progress on parameter estimation by either refining the experimental design to provide
more data, or by introducing homogenization approximations that allow us to consider a reduced
model with fewer parameters.

2. Results and discussion

(a) Stochastic model
We consider a stochastic random walk on an interval [0, L] that is partitioned into m non-
overlapping layers (x̂i−1, x̂i) for i = 1, 2, . . . , m, where 0 = x̂0 < x̂1 < x̂2 < . . . < x̂m−1 < x̂m = L are the
locations of the interfaces, and x̂i is the location of the interface between layer i and layer i + 1, as
shown in figure 1c. To simulate a random walk on this domain, we discretize the interval [0, L]
uniformly using a unit lattice, �= 1, giving n = L + 1 lattice sites. Sites are indexed so that the
position of site j is xj =�(j − 1) for j = 1, 2, . . . , n. The positions of the interfaces are chosen so they
coincide with a lattice site. This means that we have n lattice sites, indexed j = 1, 2, . . . , n, and m
layers indexed i = 1, 2, . . . , m. Typically, we consider applications where n � m so that we have
many more lattice sites than layers, as in figure 1c.

A particle is placed onto the lattice at position S and undergoes an unbiased random walk.
Time is uniformly discretized into intervals of unit duration, τ = 1. When a particle is located
within layer i, during the next time step of duration τ , the particle either: (i) hops left with
probability hi ≤ 0.5; (ii) hops right with probability hi ≤ 0.5; or (iii) remains stationary with
probability 1 − 2hi. When a particle is located at an interface x̂i, during the next time interval
of duration τ , the particle either: (i) hops left with probability hi ≤ 0.5; (ii) hops right with
probability hi+1 ≤ 0.5; or (iii) remains stationary with probability 1 − hi − hi+1. An absorbing
boundary condition is applied at j = 1 and a reflecting boundary condition is applied at j = n.
This means that a particle located at site j = n is unable to hop to the right, and a particle that
hops to site j = 1 is removed, and the simulation stops at that point where we record the duration
of time required for the particle to be captured at the absorbing boundary. When we consider
an ensemble of identically prepared realizations we obtain a distribution of exit times, and we
can interpret the mean of that distribution as a measure of the duration of time required for
some kind of disturbance to diffuse across the spatial domain [31,32]. Here, we use the most
straightforward stochastic modelling approach where we consider discrete space and discrete
time. However, other approaches, such as discrete space continuous time, or continuous space
discrete time modelling approaches are also valid approaches.
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Motivated by the experiments reported by Andrews et al. [21], we consider simulations for a
fixed geometry where the number of layers, m, and the location of the interfaces, x̂0, x̂1, . . . , x̂m,
are treated as known, measurable constants. Our aim is to determine whether the hopping
rates in the different layers, h1, h2, h3, . . . , hm, can be estimated by observing exit time data from
a suite of random walk simulations. An individual simulation is performed by releasing a
particle at a particular location, S. Each simulation is performed until the particle leaves the
system at the absorbing boundary after some duration of time. This exit time is related to the
measurements reported by Andrews et al. [21] since they are particularly interested in the time
taken for the thermal energy to diffuse across the layered skin. To perform a simulation we
must specify several parameters, φ = (h1, h2, . . . , hm, S). Compared to the interface locations, S is
a parameter in the sense that we can choose different values of S whereas we treat the positions
of the layer interfaces as fixed, measurable quantities [21]. Therefore, the free parameters that
we wish to estimate are θ = (h1, h2, . . . , hm). In this work, we first consider releasing particles
at the reflecting boundary, S = L, and those particles are captured at the absorbing boundary,
x = 0. This straightforward design reflects the geometry of Andrews et al.’s [21] experiments
illustrated in figure 1. Subsequently, we explore the effect of varying the choice of release
point, S, and later we also consider other designs by releasing particles at more than one initial
location to explore how this affects parameter identifiability. While placing heat sources at
different depths is not possible in Andrews et al.’s experiments [21], it is of theoretical interest
to explore how parameter identifiability is affected by releasing particles at more than one
location.

Denote T ∼ F(t | θ ) as the random variable describing the exit time with cumulative distribution
function F(t | θ ) and corresponding probability density function f (t | θ ), where t is a realization of
T for fixed S. These distributions depend upon the hopping rates in each layer, θ = (h1, h2, . . . , hm).
We further assume the data available for analysis consist of R independent, identically prepared
experiments, producing a random sample t = (t1, t2, . . . , tR) drawn from T. After observing such
an ensemble of experiments we can visualize the exit time data as a histogram, and we can
summarize the data in terms of the moments of exit time.

The key question we address here can be stated as follows: given a particular geometry, where
x̂0, x̂1, . . . , x̂m are known, together with some observation of the exit time data, can we estimate
the transport coefficients, hi for i = 1, 2, 3, . . . , m, and what is the uncertainty in these estimates?
Motivated by Andrews et al. [21] we first consider a three layer problem, m = 3, with x̂0 = 0,
x̂1 = 30, x̂2 = 60 and x̂3 = L = 100, with free parameters θ = (h1, h2, h3). An ensemble of R = 104

simulations, each with S = 100, is summarized in terms of the distribution of exit times in figure 2.
Since all particles are released at S = L = 100, and are eventually absorbed at x = 0, every particle
passes through each layer and so the exit time is influenced by the hopping rates in each layer.
While, in principle, we could generate many ensembles for different θ and compare the resulting
histograms, this approach would be extremely computationally expensive owing to the stochastic
nature of the model. A much simpler approach that we will follow is to instead summarize the
histogram in terms of a parametric distribution. In this particular example, we also have the
ability to compute the exact exit time distribution by analysing the random walk as a Markov
chain. This gives us the ability to compare the accuracy of the approximation.

(b) Exact analysis
Given the independence of the R exit times, the likelihood function is a product of the individual
exit time likelihoods, and so we focus on discussing how to compute or approximate f (t | θ ) for a
single realization t. In this section, we discuss how to compute the probability density function,
and in §2c how it can be approximated in a computationally efficient manner.

In the discrete model, we have a reflecting boundary at x = L, so that attempts to move in the
positive x direction from x = L are aborted, and the absorbing boundary at x = 0 so that particles
are removed once they reach x = 0. The probabilities of moving left and right from site j in the
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Figure 2. Simulation data for a three-layered problemwithm= 3, x̂0 = 0, x̂1 = 30, x̂2 = 60 and x̂3 = L= 100. Simulations
correspond to θ = (0.2, 0.3, 0.4) and S = L= 100, with an absorbing boundary condition at x = 0 and a reflecting boundary
condition at x = L. The black histogram shows exit time data, fs(t | θ ), constructed using R= 104 identically prepared
simulations of the stochastic model. The red curve is fe(t | θ ), obtained by treating the random walk as a Markov chain. The
green curve is the approximate exit time distribution given by the Gamma distribution, fa(t | θ ). Here, we have a= 1.40 and
b= 1.45 × 104, which matches the first two moments of exit time in the continuum limit. (Online version in colour.)

three-layer problem are given by

Pl,j =

⎧⎪⎨
⎪⎩

h1, j = 2, 3, . . . , x̂1,
h2, j = x̂1 + 1, x̂1 + 2, . . . , x̂2,
h3, j = x̂2 + 1, x̂2 + 2, . . . , x̂3

(2.1a)

and

Pr,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h1, j = 2, 3, . . . , x̂1 − 1,
h2, j = x̂1, x̂1 + 1, . . . , x̂2 − 1,
h3, j = x̂2, x̂2 + 1, . . . , x̂3 − 1,
0, j = x̂3.

(2.1b)

Denote X(tk) ∈ {1, . . . , L}, k = 0, 1, 2, . . ., as a sequence of random variables describing the location
of a particle at time tk given that it was initially located at S. Here, k is an integer that denotes
the number of time steps and tk = τk is the discrete time value. The sequence X(tk) forms a time-
homogeneous Markov chain. We denote by p(x, tk) the probability mass function of X(tk) where
x ∈ {1, . . . , L} denotes a specific location. Denoting p(tk) = (p(1, tk), p(2, tk), . . . , p(L, tk))�, then p(tk)
can be obtained using standard results from Markov chain theory,

p(tk) = Pk · p(0), (2.2)

were P is the L × L tridiagonal transition matrix, with upper, main and lower diagonal entries
Pu = (Pl,2, Pl,3, . . . , Pl,L), Pd = (1 − Pl,1 − Pr,1, . . . , 1 − Pl,L − Pr,L), and Pl = (Pr,1, Pr,2, . . . , Pr,L−1),
respectively, and p(0) is a vector of zeros, except for the Xth element, which takes the value of
unity. With these definitions, the cumulative distribution function of the exit time distribution is

F(t | θ ) = p(1, t). (2.3)

Here, the definition of the cumulative distribution function has a very straightforward
interpretation. Simulations continue until the particle is absorbed at j = 1. Therefore, p(1, t) is a
measure of the probability that the particle is captured, or accumulates, at the absorbing boundary
during the tth time step. Given this definition, the associated probability mass function, fe(t | θ ), is

fe(t | θ ) =
{

0, t = 0,
F(t | θ ) − F(t − 1 | θ ), t = 1, 2, . . . ,

(2.4)

where the subscript in fe(t | θ ) denotes that this is an exact formulation for the probability mass
function, which gives the probability that the particle is absorbed during the tth time step.
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In practice, we compute fe(t | θ ) by computing Pt and Pt−1 by diagonalizing the transition matrix.
The diagonalization of the transition matrix allows us to compute fe(t | θ ) efficiently, and it turns
out that this computation of fe(t | θ ) is faster than considering a sufficiently large number of
identically prepared realizations of the stochastic model. However, we still find that the Markov
chain computation is considerably more expensive relative to the approximations that we will
develop in §2c. To check our results, we compute the exact exit time probability mass function
for the three-layer problem described in figure 2, and compare fe(t | θ ) with data from R = 104

stochastic realizations in figure 2 where we see that the exact Markov chain calculation matches
the simulation data very well. Of course, the comparison between fe(t | θ ), fa(t | θ ) and fs(t | θ ) in
figure 2 is for one particular example of a three-layered problem for a particular choice of θ ;
however, additional results (not shown) indicate that we obtain a similarly good match between
these quantities for other problems with different m and θ .

(c) Approximate analysis
To proceed with deriving an approximate likelihood, we make the natural assumption that the
exit time is distributed according to a Gamma distribution with density Γ (t; a, b) for realization
t, with mean and variance a/b and a/b2, respectively. This amounts to assuming that the
time the particle spends in each layer is exponentially distributed, so that the sum of several
exponentially distributed events gives rise to an exit time distribution that is approximated as
a Gamma distribution. To demonstrate, we calculate the first two central moments of the exit
time distribution and compare it to the associated Gamma distribution, Γ (t; a, b), in figure 2.
This approximation gives a reasonable qualitative match with the simulated data and the
exact distribution. The main point here is that the Gamma distribution is a simple parametric
distribution that can be evaluated very cheaply. By contrast, the simulated and exact distributions
require far more computational effort, and the amount of computational effort depends upon the
geometry of the problem and the choice of parameter values. As in the case of many stochastic
models [33], we can formulate algebraic expressions for the moments in terms of the model
parameters, which allows us to approximate the exit time distribution, fa(t | θ ) = Γ (t; a, b), by
matching the first two moments to the Gamma distribution. To implement this approximation,
we now explain how to calculate the moments without using stochastic simulations.

We can analyse the stochastic model in terms of the moments of exit time by using ideas related
to the first passage time [29,34–36]. To make progress, we analyse the stochastic model in the
continuum limit by treating the starting location, S, as a continuous variable x on 0< x< L. In
the usual way, the stochastic model is associated with a macroscopic diffusivity Di =�22hi/2τ ,
in the limit that �→ 0 and τ → 0 jointly, as the ratio �2/τ remains finite [29,34–36]. This
means that we have Di = hi in our non-dimensional framework with �= τ = 1. Of course, this
non-dimensional model can be applied to any dimensional problem by re-scaling � and τ as
appropriate [37].

The nth raw moment of exit time for a particle released at x is governed by a system of linear
boundary value problems [29,30],

Di
d2M(i)

n (x)
dx2 = −M(i)

n−1(x), x̂i−1 < x< x̂i, (2.5)

for each layer i = 1, 2, . . . , m, and for each moment n = 1, 2, . . . , with M(i)
0 (x) = 1 for each layer

i = 1, 2, . . . , m. To solve for the nth moment, we specify boundary conditions

M(1)
n (0) = 0,

dM(m)
n (L)
dx

= 0, (2.6)

and to close this system we require additional conditions at each interface location:

M(i)
n (x̂i) = M(i+1)

n (x̂i), −Di
dM(i)

n (x̂i)
dx

= −Di+1
dM(i+1)

n (x̂i)
dx

. (2.7)
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The solution of equation (2.5) for the first raw moment, M1(x), is a piecewise quadratic function
of position within each layer, M(i)

1 (x) for i = 1, 2, 3, . . . , m. Applying the conditions (2.6)–(2.7)
determines the coefficients of these quadratic functions. For an arbitrary layer arrangement, the
first raw moment is given by

M(i)
1 (x) =

i−1∑
k=1

�2
k

2

[
1

Dk
− 1

Di

]
+

i−1∑
k=1

m∑
j=k+1

�k�j

[
1

Dk
− 1

Di

]
+ x (2L − x)

2Di
, x̂i−1 < x< x̂i, (2.8)

for i = 1, 2, 3, . . . , m, and �i = x̂i+1 − x̂i is the length of the ith layer. The solutions of equation (2.5)
for the second and higher raw moments are higher order polynomials of position. For an arbitrary
number of layers these solutions rapidly become algebraically complicated for n ≥ 2. However,
these expressions can be evaluated easily using symbolic software that is available on GitHub
(https://github.com/ProfMJSimpson/StochasticIdentifiability).

Given the geometry of the problem, x̂0, x̂1, . . . , x̂m, and the hopping probabilities, θ =
(h1, h2, . . . , hm), we can calculate the first two raw moments, M1(x) and M2(x), and convert
these into the mean and variance, T(x) = M1(x) and V(x) = M2(x) − M1(x)2, respectively. This
information allows us to approximate the distribution of exit times for a particle released at x, f (t |
θ ) ≈ fa(t | θ ) = Γ (a, b), with T(x) = a/b and V(x) = a/b2. This approach is computationally efficient
since it completely avoids performing stochastic simulations or Markov chain calculations. In the
electronic supplementary material S1, figure S1, we compare appropriately averaged data from
the stochastic model with the solution of the continuum expressions for the moments of exit time.

Our approximate method is a form of indirect inference (e.g. [38]), a method originally
developed in econometrics for parameter estimation of intractable likelihood models. The
approach involves selecting an auxiliary model with a tractable likelihood that is not designed
to explain how the data were generated, but can still provide a reasonable description of the data.
Denote the auxiliary likelihood as fA(t|φ) where φ is the parameter of the auxiliary model and
we must have dim(φ) ≥ dim(θ ). The main objective of indirect inference is to establish a mapping
between the auxiliary parameter φ and parameter of interest θ ; abusing the notation we define this
as φ(θ ). In our application, φ represents the parameters of the Gamma distribution. Fortunately, in
our case, we have a method for directly computing the mapping. Following [38], we approximate
the likelihood as f (t|θ ) ≈ fA(t|φ(θ )). More information on the form of the likelihood for our model
is provided in the next section.

(d) Likelihood function
Given a suite of R identically prepared observations associated with a particular geometry,
x̂0, x̂1, . . . , x̂m, a particular release point, S, and hopping rates, θ = (h1, h2, . . . , hm), we can now
develop expressions for the exact and approximate likelihood functions. Denoting the full observed
dataset as t = (t1, . . . , tR) the exact likelihood function is given by

Le(θ | t) =
R∏

r=1

fe(tr | θ ), (2.9)

where fe(tr | θ ) is the exact probability mass function for the rth observed exit time. An exact
expression for the log-likelihood is then

�e(θ | t) =
R∑

r=1

ln
(
fe(tr | θ )

)
. (2.10)

Similarly, the approximate likelihood function is given by

La(θ | t) =
R∏

r=1

fa(tr | θ ). (2.11)

https://github.com/ProfMJSimpson/StochasticIdentifiability
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Here, fa(tr | θ ) = Γ (tr; a, b) is the approximate probability mass function for the rth observed exit
time, where T(x) = a/b and V(x) = a/b2. An expression for the approximate log-likelihood is

�a(θ | t) =
R∑

r=1

ln
(
fa(tr | θ )

)
. (2.12)

In equations (2.10) and (2.12), we write the summation from r = 1 to r = R which we can
interpret as releasing R particles at one particular location, S. Later, we will compare estimates
where we release particles at multiple locations. Since the particle trajectories are all independent,
we compute the exact and approximate log-likelihoods in the same way, by summing over the
total number of particles released.

(e) Profile likelihood
Here, we describe how profile likelihood identifiability analysis can be undertaken. We will
describe the process in terms of the exact log-likelihood function, �e(θ | t), but the analogous
calculations can be performed with the approximate log-likelihood function, �a(θ | t). These
definitions are based on the same log-likelihood function �e(θ | t), but here we will present results
in terms of the normalized log-likelihood function, denoted

�̂e(θ | t) = �e(θ | t) − sup
θ

�e(θ | t), (2.13)

which we consider as a function of θ for fixed data, t.
We assume our full parameter θ can be partitioned into an interest parameter ψ and nuisance

parameter λ, i.e. θ = (ψ , λ). Given a set of exit time data, t, the profile log-likelihood for the interest
parameter ψ can be written as [2,39]

�p(ψ | t) = sup
λ

�̂(ψ , λ | t). (2.14)

In equation (2.14), λ is optimized out for each value of ψ , and this implicitly defines a function
λ∗(ψ) of optimal λ values for each value of ψ . For example, given the full parameter for the
three-layer problem θ = (h1, h2, h3), we may consider the hopping rate for the first layer as the
interest parameter and the other two hopping rates as nuisance parameters, i.e. ψ(θ ) = h1 and
λ(θ ) = (h2, h3), giving

�p(h1 | t) = sup
(h2,h3)

�̂(h1, h2, h3 | t). (2.15)

We implement this optimization using MATLAB’s fmincon function with bound constraints [40].
For each value of the interest parameter, taken over a sufficiently fine grid, the nuisance parameter
is optimized out and the previous optimal value is used as the starting guess for the next
optimization problem. Uniformly spaced grids of 40 points, defined on the interval hi ∈ [0.05, 0.5]
for i = 1, 2, 3. Results are plotted in terms of the normalized profile likelihood functions.

The likelihood function is often characterized as representing the information that the data
contain about the parameters, and the relative likelihood for different parameter values as
indicating the relative evidence for these parameter values [2]. As such, a flat profile is indicative
of non-identifiability, therefore a lack of information in the data about a parameter [10]. In
general, the degree of curvature is related to the inferential precision [10,13,41]. Likelihood-based
confidence intervals can be formed by choosing a threshold-relative profile log-likelihood value,
which can be approximately calibrated via the χ2 distribution (or via simulation). For univariate
and bivariate profiles, we use thresholds of −1.92 and −3.00, respectively, which correspond
to approximate 95% confidence regions for sufficiently regular problems [2,42]. The points of
intersection can be determined using interpolation.
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(f) Case study 1: two layers
In the first instance, we explore the simplest possible heterogeneous problem, which is a system
with just two layers, m = 2. In this system, we specify x̂1 = 30, x̂2 = L = 70 with θ = (0.2, 0.4). We
begin considering a modest suite of exit time simulations by releasing R = 100 particles at S = 70,
indicated schematically in figure 3a. Profile likelihoods in figure 3b,c lead to maximum-likelihood
estimates (MLE) of θ̂ = (0.5000, 0.1301) for the approximate likelihood and θ̂ = (0.4878, 0.1327)
with the exact likelihood. Comparing the shapes of the exact and approximate profiles in
figure 3b,c indicates that the approximation is reasonable. However, comparing the MLE with the
expected values indicates that these data do not lead to accurate estimates; indeed the true values
of h1 and h2 are outside of the 95% confidence intervals with this modest set of simulations.

In the electronic supplementary material, S2, figure S2, we consider the simulated coverage
of these intervals. We find that the coverage of the 95% confidence intervals based on the exact
likelihood is high (close to 100%, indicating the case shown here is ‘unlucky’). By contrast, the
simulated coverage of the likelihood-based intervals based on the approximate likelihood is
lower (closer to 50%) due to a slight overall right shift in the likelihood function and sharp lower
interval bounds. However, the likelihood functions are relatively asymmetric in both cases, with
associated confidence intervals typically intersecting with upper bound constraints, indicating
one-sided practical identifiability at best under both exact and approximate likelihood analyses.
Overall, these features suggest that this experimental design leads to low precision, typically one-
sided, interval estimates and can enhance any slight bias in the approximate likelihood. We hence
now explore more refined experimental designs where we first consider introducing particles at
two locations, and then we consider increasing the total number of particles.

We now examine how the identifiability of the hopping rates changes by altering the
experimental design. Results in figure 3e–f show profile likelihoods for a similar problem where
we release R = 50 particles at S = 70 and a further R = 50 particles at S = 30, so that the data we use
consist of 100 stochastic realizations in total, as indicated schematically in figure 3d. Here, the MLE
based on the approximate and exact likelihoods are θ̂ = (0.2094, 0.4650) and θ̂ = (0.2141, 0.3467),
respectively. There are several interesting observations to make about these results. First, the
profile likelihoods based on the exact and approximate likelihood function in figure 3e–f compare
well, again suggesting that the approximation is reasonably accurate. Second, if we compare
profiles in figure 3e–f with those in figure 3b–c we see that releasing particles at two locations
leads to accurate estimates, with a relatively small uncertainty in our estimate of h1, and a larger
uncertainty in our estimate of h2, which is one-sided identifiable.

A final set of results in figure 3h–i shows approximate and exact profile likelihoods for the
experimental design shown schematically in figure 3g, where we release R = 500 particles at
S = 100 and a further R = 500 particles at S = 30, giving a total of 1000 stochastic realizations.
Again, the exact and approximate profile likelihoods compare well, with θ̂ = (0.2009, 0.4394) for
the approximate likelihood, and θ̂ = (0.2046, 0.4311) for the exact likelihood. Overall, comparing
the suite of results in figure 3 we see that our ability to estimate the parameters is strongly
dependent upon the available data, with the uncertainty in our estimates reducing as the quality
and quantity of data increase. In particular, we find that a simple experimental design where
we have one release point and one capture point, analogous to Andrews’ experiments [21,22] in
figure 1b, are insufficient for us to reliably estimate hopping rates in the simple two-layer system.
However, our ability to estimate h1 and h2 is improved when we release more particles at different
locations, as illustrated in figure 3h–i. Despite these challenges, a key outcome of this case study
is that the approximate profile likelihoods compare very well with the exact profile likelihoods.
This is a useful finding since the approximate profiles are relatively inexpensive to compute.

(g) Case study 2: three layers
We now consider a three layer problem with θ = (h1, h2, h3), which means that in addition to
constructing univariate profile likelihoods we can also compute bivariate profile likelihoods.
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Figure 3. Exact and approximate univariate likelihood profiles for a suite of two-layer problems with x̂1 = 30, x̂2 = L= 70
and θ = (0.2, 0.4). In each row, we show a schematic together with the exact and approximate profile likelihoods in red and
green, respectively, with expected value indicated with a vertical dashed black line. (a–c) Corresponds to R= 50 particles
at S= 100, giving ĥ1 = 0.500 [0.2397, 0.5000] and ĥ2 = 0.1301 [0.1036, 0.2975] for the approximate likelihood and ĥ1 =
0.4878 [0.2137, 0.5000] and ĥ2 = 0.1327 [0.1063, 0.3462] with the exact likelihood. Here, the 95% confidence intervals are given
in square brackets, and the −1.92 threshold is indicated by the horizontal lines. (d–f ) Corresponds to R= 50 particles at
both S= 30 and S= 70, giving ĥ1 = 0.2094 [0.1702, 0.2630] and ĥ2 = 0.4650 [0.2155, 0.5000] for the approximate likelihood
and ĥ1 = 0.2141 [0.1732, 0.2686] and ĥ2 = 0.3462 [0.1949, 0.5000] with the exact likelihood. (g–i) Corresponds to R= 500
particles at both S = 30 and S = 70, giving ĥ1 = 0.2009 [0.1883, 0.2149] and ĥ2 = 0.4394 [0.3246, 0.5000] for the approximate
likelihood and ĥ1 = 0.2046 [0.1922, 0.2177] and ĥ2 = 0.4311 [0.3403, 0.5000] using the exact likelihood. (Online version
in colour.)
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To achieve this, we take the full parameter vector, θ = (h1, h2, h3), and we consider the hopping
rates in the first and second layers as the interest parameters and the hopping rate in the third
layer as a nuisance parameter, ψ(θ ) = (h1, h2) and λ(θ ) = h3. This allows us to evaluate

�p(h1, h2 | t) = sup
h3

�(h1, h2, h3 | t), (2.16)

which we compute using MATLAB’s fmincon function [40]. In this case, we consider a uniform
mesh of pairs of the interest parameter and optimize out the nuisance parameter. For our results,
we use uniformly spaced grids of 20 × 20 points on the interval hi ∈ [0.05, 0.5] for i = 1, 2, 3.

We now re-visit the same three layer problem from figure 2 with x̂1 = 30, x̂2 = 60 and x̂3 = L =
100, with θ = (0.2, 0.3, 0.4). Based on our two-layer results in figure 3, here we consider a suite of
simulations where we release R = 50 particles at each interface location, S = 30, S = 60 and S = 100,
giving a total of 150 stochastic simulations as indicated in figure 4a. Using these data, we construct
univariate profiles, using both the exact and approximate likelihoods, as shown in figure 4b–d,
giving θ̂ = (0.1882, 0.4636, 0.3856) for the approximate likelihood and θ̂ = (0.1873, 0.3538, 0.3162)
for the exact likelihood. These results are consistent with the two layer problem since we obtain
accurate estimates of h1, but our estimates of h2 and h3 are one-sided identifiable.

We provide additional insight into the identifiability of θ for the three-layer problem by
computing various bivariate profiles. Results in figures 4e–g and 4h–j show the two-dimensional
regions that define 95% confidence interval based on the exact (red) and approximate (green)
likelihoods, respectively. As in the univariate profiles, these bivariate profiles indicate that
we can accurately estimate h1, but h2 and h3 are not identifiable with these data. As in the
two-layer problem, one option to improve the identifiability of h2 and h3 would be to collect
additional data. For example, one option for this would be to increase the number of points at
which particles are released, and another option would be to increase the number of particles
released at each point. Varying these aspects of the experimental design is straightforward using
the codes provided on GitHub (https://github.com/ProfMJSimpson/StochasticIdentifiability).
While generating additional data is straightforward using the simulation model, if we recall the
experimental constraints faced by Andrews et al. [21], it is clear that simply collecting additional
measurements at different spatial resolutions is not always feasible in practice. Therefore, another
approach is to interpret the same data using a simpler model, often called model reduction [7,8].

(h) Model reduction
Comparing results in figures 3 and 4 indicates that we can obtain reasonably accurate parameter
estimates for a two-layer problem, whereas it can be more challenging to deal with a three-
layer problem. Another approach to interpret the three-layer data in figure 4 is to use a simpler,
partially homogenized two-layer model. In the partially homogenized model, we consider two
layers with x̂1 = 30 and x̂2 = L = 100. This means that we can interpret the first layer, 0< x< 30,
as being identical in geometry to the first layer in the true three-layer problem, whereas we can
interpret the second layer, 30< x< 100, as a combined or effective layer, with a single transport
coefficient, as shown schematically in figure 5a. For this reduced model, we refer to the parameters
as H1 and H2. Intuitively, we might expect that H1 would be very close to h1, whereas H2
would be some kind of weighted average of h2 and h3. Using the same data as in figure 4, we
construct exact and approximate likelihoods for the reduced model as shown in figure 5b,c. Using
the approximate likelihood, we obtain θ̂ = (0.1887, 0.4411), and θ̂ = (0.1873, 0.3451) for the exact
likelihood. Comparing results in figure 5b with those in figure 4b, we see that the profiles for H1
and h1 are very similar. In particular, the profile likelihoods for H1 are peaked, the confidence
intervals are relatively narrow, and again the exact and approximate profile likelihoods compare
very well. If we compare results in figure 5c with those in figure 4c,d we see that the profile for the
homogenized hopping rate, H2, is consistent with the hopping rates in the three layer problem,
and again the exact and approximate profile likelihoods compare well. This comparison suggests
that simplifying the three-layer model into a partially homogenized two-layer model can be a

https://github.com/ProfMJSimpson/StochasticIdentifiability
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Figure 4. Exact and approximate univariate and bivariate profiles for a three-layer problem with x̂1 = 30, x̂2 = 30, x̂3 = L=
40 with θ = (0.2, 0.3, 0.4), indicated in (a). Univariate profile likelihoods for h1, h2 and h3 are shown in (b–d), respectively,
where the exact and approximate results are shown in red and green, respectively, with expected value indicated with a
vertical dashed black line. Univariate profiles indicate: ĥ1 = 0.1882 [0.1548, 0.2364], ĥ2 = 0.4636 [0.1128, 0.5000] and ĥ3 =
0.3856 [0.0857, 0.5000] for the approximate likelihood, and ĥ1 = 0.1873 [0.1509, 0.2367], ĥ2 = 0.3538 [0.2306, 0.5000] and
ĥ3 = 0.3162 [0.1300, 0.5000]with the exact likelihood. The−1.92 threshold is indicated by the horizontal lines. Bivariate profile
likelihoods for (h1, h2), (h1, h3) and (h2, h3) pairs are shown in (e–j). Results in (e–g) and (h–j) correspond to the exact and
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(Online version in colour.)
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with the exact likelihood. The−1.92 threshold is indicated by the horizontal lines. All results correspond to R= 50 particles
released at S= 30, S= 60 and S = 100, giving a total of 150 particles. Results in (d,e) compare fs(t | θ ) constructed using
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useful way of obtaining insight in the face of constraints that prevent us from simply collecting
more and more data [21]. We repeated this profiling exercise using additional data (electronic
supplementary material, figure S3), showing that the profiles become narrower as the number of
particles increases, as expected.

To conclude we compare the ability of the reduced, partially homogenized two-layer model to
capture the full three-layer exit time distributions. Results in figure 5d show fs(t | θ ) and fe(t | θ )
for the full three-layer problem with θ = (0.2, 0.3, 0.4) and S = 100. As expected, this comparison
shows that the exact Markov chain result compares very well with simulation data from the three
layer problem. We also superimpose the exact distribution for the reduced, partially homogenized
two-layer model with θ̂ = (0.1873, 0.3451), which we denote fh(t | θ̂ ). At this scale, fe(t | θ ) is
visually indistinguishable from fh(t | θ̂ ), confirming that the reduced, partially homogenized
model can accurately capture the exit time distribution of the full three-layer problem with
S = 100. A similar comparison in figure 5e with particles released at S = 50 further confirms
that the reduced, partially homogenized two-layer model can be used to capture the exit time
distribution for particles released at different locations. These results, overall, point to model
reduction through partial homogenization as a useful strategy to gain partial insight into the
spatial structure of particle hopping rates in a heterogeneous material with these kinds of data.

All results and discussion in this work focus on two- and three-layer systems since the original
work of Andrews et al. [21,22] involves a three-layered material. For completeness, we have also
applied our methods to a simple homogeneous single layer and a more complicated four-layer
problem (electronic supplementary material, figures S3–S4), where we see that all methodologies
and trends established here for the two- and three-layered examples also carry across to
four layers.

3. Conclusion and outlook
In this work, we analyse parameter identifiability of a stochastic model of diffusive transport.
Motivated by the heat transfer experiments reported by Andrews et al. [21,22], we consider
a one-dimensional model of diffusion through a layered structure that is spatially discretized
with a unit lattice. The domain consists of several layers where the hopping rate of particles
can be different in each layer. With a reflecting boundary condition at one end of the domain
and an absorbing boundary condition at the other, simulations are performed by releasing
particles at a particular location, S, and the simulation proceeds until the particle is captured
at the absorbing boundary and the duration of time required for absorption is recorded. We are
interested to explore the following question: give the number of layers, m, and the positions of the
interfaces, x̂0, x̂1, . . . , x̂m, can we use the exit time data to estimate the hopping rates in the layers,
θ = (h1, h2, . . . , hm)? In particular, we address this question using a profile likelihood analysis, and
our approach involves several novel features. Most previous profile likelihood analyses in the
literature focus on deterministic process models, such as ordinary differential equations or partial
differential equations. These approaches require the separate specification of a process model
and a noise model, such as a zero mean, constant variance Gaussian noise. Once the process
and noise models are specified, a likelihood function can be formed and numerical optimization
methods can be implemented to compute the profile likelihood. Our work is different since we
focus on a stochastic process model and this avoids the need for specifying a separate noise
model. This can be advantageous since the usual adoption of Gaussian noise models can be
inappropriate for count data [23], density data [11] or length data [43], or any other data that
are, by definition, non-negative. While the work here is motivated by experimental observations
of diffusive transport in the context of heat transfer through a heterogeneous material, there are
also many other applications, particularly in biophysics, that involve diffusive transport through
layered structures where it is difficult to make observations at high spatial resolution [44,45].

Our approach to compute the likelihood for our model is insightful since we have the
opportunity to construct both an exact, albeit computationally expensive likelihood, as well as
an approximate but computationally cheap likelihood. The exact likelihood can be obtained by
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analysing the random walk model as a Markov chain provides an excellent match with simulation
data, whereas the approximate likelihood captures the main features of the model by treating the
distribution of exit times as a Gamma function whose first two moments match those obtained by
analysing the continuum limit description of the stochastic model. Working with a simple two-
layer problem, θ = (h1, h2), we show that the experimental designs used by Andrews et al. [21] can
lead to inaccurate estimates if the number of realizations is small. Our work provides insight by
showing that working with increased data quality and data quantity we can obtain increasingly
reliable estimates of the hopping rates, and in all cases, we consider the results obtained using the
approximate likelihood are reasonably accurate. Extending the analysis to deal with a three-layer
problem, θ = (h1, h2, h3), again shows that the hopping rate in the first layer, h1, can be estimated
reasonably easily, whereas it can be more difficult to estimate the other hopping rates, h2 and
h3. One way of dealing with this challenge is to simply incorporate an increasing amount of data.
However, since this might not always be possible owing to experimental constraints, we show that
another way forward is to interpret the three-layer data using a reduced, partially homogenized
two-layer model, for which we can obtain reliable parameter estimates. Indeed, we show that we
can accurately capture exit time distributions from the three-layer system using an appropriately
parametrized two-layer model.

There are many opportunities to explore extensions of the present study, both in terms of
extending the mathematical modelling framework, and in terms of extending the approximations
that we invoke for the likelihood function. In terms of the stochastic model, here we consider the
most fundamental stochastic model that incorporates an unbiased random walk without particle
decay or bias. Further extensions would be to consider a more general model that incorporates
biased motion with decay. This would involve specifying a unique decay rate for particles in
each layer and a separate bias parameter in each layer [31]. Incorporating such mechanisms
could be helpful to describe the loss of heat due to perfusion into the blood supply in Andrews’
experiments [21]. However, such an extension would triple the size of the parameter vector. For
example, in the three layer problem, m = 3, the model would involve specifying three hopping
rates, three bias parameters and three decay rates. Although we could follow an analogous
procedure to analyse such an extended model in terms of both the exact probability mass
function, fe(t | θ ), and an approximate probability mass function, fa(t | θ ), we do not follow this
procedure here since the kinds of data we are working with lead to identifiability issues for the
simpler, more fundamental case where bias and decay are not incorporated into the model. All
work in this study is restricted to random walks in one dimension, and the decision to restrict
this work to one dimension is because of the geometry of the heat conduction experiments
reported by Andrews et al. [21,22]. In principle, all approaches outlined in this work can be
applied to higher dimensional problems. For example, Carr et al. [30] show how to implement
the stochastic random walk model for two- and three-dimensional problems where the hopping
rate is piecewise constant [30]. For these higher dimensional problems, M1(x) and M2(x) are
given by the solution of a set of partial differential equations that do not have closed-form
solutions. Therefore, the boundary value problems for M1(x) and M2(x) would have to be solved
numerically, as demonstrated by Carr et al. [29], or approximately using perturbation methods, as
demonstrated by Simpson et al. [46]. Once the numerical or perturbation estimates of M1(x) and
M2(x) are obtained, the analysis outlined here for the one-dimensional case would apply without
change. Of course, in this first preliminary attempt at identifiability analysis of a stochastic spatial
model, we have restricted ourselves to the most fundamental problem of working with a one-
dimensional domain. However, in the future it would be very interesting to explore how these
ideas apply to higher dimensional problems, and we leave this for future consideration.

Other extensions of this work would involve developing different, perhaps more accurate
approximations of the probability mass function, fa(t | θ ). In this work, we approximate
f (t | θ ) as a Gamma distribution, Γ (t; a, b), with a and b chosen so that the first two moments
match the first two moments of exit time when the stochastic model is analysed in terms
of the continuum limit. The choice of using the Gamma distribution to approximate the exit
time distribution is convenient, but not necessary. The approximation is convenient since it
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is straightforward to choose a and b to match the first two moments, and our results show
that the approximation can be very accurate. However, other approximations, including the
generalized Gamma distribution with three free parameters could be used to develop alternative
approximations. In this case, the parameters could be chosen to match the first three moments
of exit time in the continuum limit analogue of the stochastic model [31]. Additional candidates
for developing alternative approximation would be a phase type distribution, where additional
moments can be incorporated to refine the approximation.

Returning to the indirect inference interpretation of our approximate method, here we were
able to directly compute the mapping between the auxiliary parameter and parameter of interest.
However, for a large class of complex stochastic models, it will not be feasible to obtain such
a direct mapping. In such cases, it becomes necessary to estimate the mapping via simulation,
and then dealing with a noisy approximate likelihood. We plan to explore such models in future
research.
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