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Abstract: Although big data from transcriptomic analyses have helped transform our understand-
ing of inflammatory bowel disease (IBD), they remain underexploited. We hypothesized that the
application of machine learning using lasso regression to transcriptomic data from IBD patients and
controls can help identify previously overlooked genes. Transcriptomic data provided by Ostrowski
et al. (ENA PRJEB28822) were subjected to a two-stage process of feature selection to discriminate
between IBD and controls. First, a principal component analysis was used for dimensionality reduc-
tion. Second, the least absolute shrinkage and selection operator (lasso) regression was employed
to identify genes potentially involved in the pathobiology of IBD. The study included data from
294 participants: 100 with ulcerative colitis (48 adults and 52 children), 99 with Crohn’s disease
(45 adults and 54 children), and 95 controls (46 adults and 49 children). IBD patients presented a wide
range of disease severity. Lasso regression preceded by principal component analysis successfully
selected interesting features in the IBD transcriptomic data and yielded 12 models. The models
achieved high discriminatory value (range of the area under the receiver operating characteristic
curve 0.61–0.95) and identified over 100 genes as potentially associated with IBD. PURA, GALNT14,
and FCGR1A were the most consistently selected, highlighting the role of the cell cycle, glycosylation,
and immunoglobulin binding. Several known IBD-related genes were among the results. The results
included genes involved in the TGF-beta pathway, expressed in NK cells, and they were enriched in
ontology terms related to immunity. Future IBD research should emphasize the TGF-beta pathway,
immunoglobulins, NK cells, and the role of glycosylation.

Keywords: inflammatory bowel disease; Crohn’s disease; ulcerative colitis; expression; TGF-beta

1. Introduction

Inflammatory bowel diseases (IBDs) present a major societal challenge as they remain
debilitating and incurable conditions. Their molecular dissection at multiple levels has
allowed for the identification of key genes involved in intestinal and immune homeostasis.
Several strategies have proven fit for this purpose: the search for monogenic causes of very
early-onset IBD [1,2], genome-wide association studies (GWAS) [3,4], and experiments in
animal models of gut inflammation [5].

Our growing knowledge of the genetic architecture of IBD points toward the crucial
interactions with the environment via regulatory mechanisms. Two promising approaches
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include transcriptome and methylome analysis. The former has aided in recognizing the
genes behind signals is GWAS [6] and has shown the capacity for discovering druggable
targets [7]. It seems, however, that the potential of transcriptomics in uncovering hidden
IBD pathobiology remains underexploited as the development of pragmatic expression-
powered applications gains steam.

The rise of machine learning (ML) approaches presents a new opportunity for using
existing transcriptomic data in the study of IBD, as applied in some other fields [8]. These
chances come with challenges, two of which should be mentioned. Firstly, the results
processed by artificial intelligence are often difficult to decipher, consisting of large datasets
themselves. Secondly, ML algorithms are considered a “black box” whose function may
depend on factors of which the medical researcher is unaware. These problems can be ad-
dressed by least absolute shrinkage and selection operator (lasso) regression by performing
feature selection to provide only the most relevant results. Lasso regression also works in
a way that is possible to retrace. We hypothesize that the application of ML using lasso
regression applied to transcriptomic data from IBD patients and controls can help identify
previously overlooked genes—the unexpected actors in IBD [9].

2. Materials and Methods

This study was built from a large dataset provided by Ostrowski et al. who searched
for blood transcriptome biomarkers in patients with ulcerative colitis (UC), Crohn’s disease
(CD), and controls [10]. This Polish multicenter study was designed to enroll approximately
50 participants in each of these categories, including adult and pediatric subjects, for a total
of approximately 300 participants. The IBD groups were heterogenous, with disease activity
ranging from remission (0) to an active flare (4 according to Ostrowski et al.). Briefly, blood
was collected in Tempus tubes, analyzed using the Ion AmpliSeq panel on an Ion Proton
(all Thermo Fisher), mapped to hg19 using the Torrent Mapping Alignment Program, and
counted using htseq-count v. 0.6 [11]. The methods used by Ostrowski et al. in their study
were described in detail by members of this team in an earlier publication [12]. The raw
data are accessible from the European Nucleotide Archive (PRJEB28822).

Statistical Analysis

The analyses were performed using the R language v. 3.6.2 (R Foundation for Statistical
Computing, Vienna, Austria). We removed genes with an expression ≤10, as well as sample
duplicates, and we filtered the data for quality to obtain transcriptome data (13,264 genes)
from 294 study participants. Because of the complete availability of data, which allowed for
an independent quality check, our dataset slightly differs from the original set employed by
Ostrowski et al. (the exact selection of patients was not available in the data). The counts
table was subjected to further normalization using DESeq2 v. 1.24.0, the addition of one
(the offset value), and log2 transformation [13]. This allowed the modification of the read
distribution prior to ML and the preservation of the initial zero values as null.

The following classification problems were investigated in all study participants, as
well as in adults and children separately: IBD vs. control, UC vs. control, and CD vs.
control. Furthermore, models were built for differentiating patients with active disease vs.
grouped controls and patients in remission: overall, in UC, and in CD. For each explored
contrast, an adequate subset (e.g., data from UC patients) underwent principal component
analysis (PCA) with scaling using the feature_select_PCA function from clustifyr v. 1.6.0 [14].
Top transcripts explaining 95% of the variance in the first three principal components were
selected for further analysis. The aim was to preselect variables most representative of
small-scale clusters of co-expression, which—crucially—also resulted in a reduction in
collinearity. Binomial lasso regression was conducted using the glmnet package [15]; the α

parameter was set at 1 and the values of λ ranged from 0.01 to 0.4 (by 0.01). Importantly,
the upper (0.1) and lower (−0.1) limits were set for coefficients. Model performance was
measured using the area under the receiver-operating characteristic curve (AUC) for the
classification of IBD and control cases. Following tenfold cross-validation, the median
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AUC value was calculated for the models with non-null discriminative values (AUC > 0.5)
to select the optimal lambda value. Therefore, the final model was selected on the basis
of a tradeoff between model precision and the strength of shrinkage. Moreover, setting
the aforementioned limits on coefficient values ensured that a few of the most highly
contributing genes entered the models. The cross-validation process provided not only
estimates of performance but also results; the number of occurrences of each transcript in
10 models across all lambda values was counted and summarized. Gene set enrichment
analysis (GSEA) was conducted using the following GSEA collections: gene ontology (C5)
and canonical pathways (CP), which included Reactome, KEGG, BioCarta, and the Pathway
Interaction Database [16]. The GSEA web interface available at www.gsea-msigdb.org was
used (The Broad Institute, Cambridge, MA, USA). A dataset by Peters et al. containing
both blood and intestinal tissues from CD patients was employed to explore the potential
correlations of interesting genes (R2 platform, University of Amsterdam, Amsterdam, the
Netherlands) [17].

3. Results

The study included data from 294 participants: 100 with UC (48 adults and 52 children),
99 with CD (45 adults and 54 children), and 95 controls (46 adults and 49 children). The
age range was 1–69 years. The majority of participants (57%) were female, and this trend
persisted in all subgroups. The disease was active in seven adults with UC (15%), seven
adults with CD (16%), 31 pediatric patients with UC (60%), and 29 pediatric patients
with CD (54%). 5-Aminosalicylates were used in approximately 90% of IBD patients,
immunosuppressants were used in 20% of UC patients and 50% of CD patients, and
steroids were used in 50% of pediatric CD patients and 25% of all adults with IBD. Biologics
were administered to 30% of adult CD and pediatric UC patients and to 12% of adult UC and
pediatric CD participants (please see Table 1 in the original study by Ostrowski et al. [10]).

Nine models were built to compare IBD, UC, and CD patients to controls, including
those with active and mild disease, as well as separate analyses for adults and children.
Full results can be found in Supplementary Table S1. The value of the models measured
using AUC ranged from 0.61 (mild IBD vs. controls) to 0.95 (IBD in children vs. controls).
The smallest number of included genes was two (severe CD vs. controls) and the highest
was 27 (severe IBD vs. controls).

The study identified over 100 genes potentially associated with IBD. Table 1 presents
the results of the analyses that included the largest number of patients. All three models
achieved considerable discriminatory power (AUC 0.83–0.87). However, the shrinkage
coefficient was relatively low in the analysis of IBD vs. controls, which led to the inclusion
of a large number of transcripts in the final model. One of the most consistent associations
with IBD was SYTL2 (synaptotagmin-like 2), and the association was negative. Interest-
ingly, in the data from Peters et al., SYTL2 was negatively correlated with the IBD-related
transcripts SPI1 (Spi-1 proto-oncogene; r = −0.95, p = 3.42 × 10−279), NFE2 (nuclear factor,
erythroid 2; r = −0.95, p = 6.11 × 10−268), and TGFB1 (transforming growth factor beta 1;
r = −0.95, p = 4.02 × 10−267). Other interesting results included the proinflammatory medi-
ator CYSLTR1 (cysteinyl leukotriene receptor 1; negative association with IBD) and BLVRB
(biliverdin reductase B; greater in IBD), which not only converts biliverdin to bilirubin but
also acts on riboflavin that may improve CD symptoms [18]. Interestingly, BLVRB was
positively associated with TGFB1 (r = 0.87, p = 9.8 × 10−161) and negatively correlated with
ITGAV (integrin subunit alpha V; r = −0.89, p = 3.3 × 10−181). ITGAV takes part in the latent
activation of TGF-beta, as well as in the activation of SMAD5 (SMAD family member 5;
r = −0.88, p = 2.0 × 10−173), which is more easily phosphorylated when TGF-beta levels are
low. This suggests a negative feedback loop from high levels of TGF-beta. Although PGF
(placental growth factor; positively associated with IBD) did not have a strong correlation,
TGFBR2 was one of the 10 most prominent ones (transforming growth factor beta receptor
2; r = 0.68, p = 4.6 × 10−72). GALNT14 (polypeptide N-acetylgalactosaminyltransferase
14) was also included in the model; it takes part in protein glycosylation, a process shown

www.gsea-msigdb.org
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to be involved in IBD [19]. Overall, despite lasso regression selecting many transcripts
with unknown functions and significances (NPSR1-AS1 and YBX3P1), there seems to be
an underlying biological theme related to the TGF-beta pathway and factors known to be
important from other studies: SPI1 (PU.1) and NFE2 [20].

Table 1. Genes were selected by lasso regression to best discriminate patients with IBD from controls;
both adults and children were included. Coefficients are presented together with the number of times
the given transcript appeared in all tested model across the cross-validation/lambda grid (greater
values indicate transcripts more systematically linked to IBD). The top three genes (highest n) are
indicated in bold. The area under the curve (AUC; 90% confidence interval), lambda shrinkage
parameter, and the intercept for each model are also presented. Please note that the genes with the
most discriminatory power are present at the top and the bottom of the list.

IBD Ulcerative Colitis Crohn’s Disease

AUC = 0.85 (0.79–0.92), λ = 0.11 AUC = 0.87 (0.79–0.95), λ = 0.16 AUC = 0.83 (0.75–0.83), λ = 0.14

Gene Coefficient, n Gene Coefficient, n Gene Coefficient, n

(Intercept) 0.79 (Intercept) 0.06 PGF 0.05, 218
SERINC2 0.05, 122 TTC14 −0.01, 38 YWHAG 0.05, 164
GALNT14 0.05, 112 RBBP6 −0.01, 8 THEM5 0.05, 153

BLVRB 0.05, 105 TAS2R31 −0.01, 44 (Intercept) 0.04
PGF 0.03, 110 YBX3P1 −0.02, 146 EMC3 0.02, 104
TK1 0.02, 89 TOP2B −0.05, 50 DUSP3 0.00, 19

BCAM 0.01, 108 STIM2 −0.05, 195 PIK3C2A −0.02, 44
MSMP −0.03, 66 CHML −0.05, 159 MSMP −0.05, 140

LINC00938 −0.04, 44 PURA −0.05, 297 PARP15 −0.05, 95
UBR7 −0.04, 93 CYSLTR1 −0.05, 153 ANKRD36 −0.05, 91

TAS2R31 −0.04, 30 ARAP2 −0.05, 150 PEG10 −0.05, 112
SP140L −0.05, 30 SP140L −0.05, 129 KIR2DL1 −0.05, 94

FLJ40194 −0.05, 92 STXBP4 −0.05, 164 ERMARD −0.05, 101
STIM2 −0.05, 105 SNORA19 −0.05, 233 YBX3P1 −0.05, 141

PIK3C2A −0.05, 135 NPSR1−AS1 −0.05, 138 PAXIP1−AS1 −0.05, 69
CYSLTR1 −0.05, 129 LINC00938 −0.05, 44

SMG6 −0.05, 142 FLJ40194 −0.05, 161
RTTN −0.05, 127
SYTL2 −0.05, 160

NPSR1-AS1 −0.05, 125
YBX3P1 −0.05, 141

Interestingly, severe IBD (Table 2) was related to a gene that we previously showed to
be associated with the need for treatment escalation in UC (in the long term), independent of
CRP: CACNA1E, calcium voltage-gated channel subunit alpha 1 E [21]. The aforementioned
glycosylating protein GALNT14 was included in the analysis of active IBD, along with
ITGB4 (integrin subunit beta 4), which plays a role in IGF-1 signaling (insulin-like growth
factor 1) and was linked to a case of UC [22]. The antibody receptors FCGR1A and FCGR1B
(Fc gamma receptors Ia and Ib) were also found in the results, along with Toll-like receptor
TLR5 and cluster of differentiation CD274, which is better known as PD-L1 (programmed
death ligand 1), an immunosuppressive protein targeted by oncological therapies. Of note,
CACNA1E, GALNT14, ITGB4, and FCGR1A were considered to be potential biomarkers in
the original study conducted by the members of this team when the data were analyzed
using a standard approach. Lasso regression provided additional results that warrant
attention, e.g., JCHAIN (joining chain of multimeric IgA And IgM). Thus, a key theme of
antibody production, antibody binding, and immune regulation can be readily identified
in these results.
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Table 2. Genes were selected by lasso regression to best discriminate patients with severe IBD from
controls. Coefficients are presented together with the number of times the given transcript appeared
in the tested models across the cross-validation/lambda grid (greater values indicate transcripts more
systematically linked to IBD). The top three genes (highest n) are indicated in bold. The area under
the curve (AUC, 90% confidence interval), lambda shrinkage parameter, and the intercept for each
model are also presented. Please note that genes with the most discriminatory power are present at
the top and the bottom of the list.

Severe IBD Severe Ulcerative Colitis Severe Crohn’s Disease

AUC = 0.91 (0.83–0.98), λ = 0.13 AUC = 0.90 (0.73–1.0), λ = 0.15 AUC = 0.92 (0.79–1.0), λ = 0.25

Gene Coefficient, n Gene Coefficient, n Gene Coefficient, n

ITGB4 0.05, 171 ITGB4 0.05, 196 FCGR1A 0.05, 270
FCGR1A 0.05, 275 BIK 0.05, 234 DUSP3 0.05, 141
FCGR1B 0.05, 116 CACNA1E 0.05, 193 (Intercept) −0.97
SEMA4A 0.05, 60 PGLYRP1 0.05, 138

CACNA1E 0.05, 219 DOK4 0.05, 131
PLP2 0.05, 93 LRRC61 0.05, 122
TK1 0.05, 143 GALNT14 0.05, 251

TLR5 0.05, 67 TXNDC5 0.05, 129
CD274 0.05, 119 JCHAIN 0.05, 152

OPLAH 0.05, 77 NATD1 0.05, 88
DOK4 0.05, 137 FCGR1A 0.03, 117

GALNT14 0.05, 300 NQO2 0.02, 84
JCHAIN 0.05, 216 IGLL5 0.01, 96
THEM5 0.05, 124 SMARCAD1 −0.01, 63
IGLL5 0.01, 96 LYPD2 −0.03, 73

GPR160 0.00, 44 PIK3C2A −0.05, 108
RAD23A 0.00, 93 PURA −0.05, 265
TAS2R31 0.00, 47 SNORA19 −0.05, 183
DDX12P −0.03, 122 NPSR1−AS1 −0.05, 185

SNORA19 −0.03, 55 (Intercept) −0.97
CRYGS −0.04, 93
PURA −0.05, 54
LYPD2 −0.05, 95

SCARNA5 −0.05, 123
NPSR1-AS1 −0.05, 205

YBX3P1 −0.05, 124
LOC200772 −0.05, 142
(Intercept) −0.27

The accuracy of the IBD recognition model in children was the highest, allowing for a
greater shrinkage of coefficients (Table 3). These results included TAS2R31, a taste receptor
that binds saccharin (which may alter gut microbiota and was proposed to have a role in
IBD etiology) and acesulfame K, both of which are artificial sweeteners. Farnesyltransferase
FNTA (farnesyltransferase, CAAX box, alpha) was also among the results, along with BLK
tyrosine kinase (BLK proto-oncogene, Src family tyrosine kinase), which may phosphorylate
FCGR2A, -B, and -C, and which is correlated with IBD genes ZAP70 (zeta chain of T-cell
receptor-associated protein kinase 70; r = 0.81, p = 1.4 × 10−121) and ITGAL (integrin
subunit alpha L; r = 0.80, p = 4.1 × 10−119). In adults, the main results involved the vesicle-
related AP3S1 (adaptor related protein complex 3 subunit sigma 1) that correlated with
ITGAV (r = 0.88, p = 2.5 × 10−167) and TGFB1 (r = −0.87, p = 2.4 × 10−161), which seems
analogous to BLVRB (albeit inverse). Killer cell lectin KLRF1 (killer cell lectin-like receptor
F1) was included, which is expressed chiefly by natural killer (NK) cells. PURA (purine-rich
element-binding protein A) correlates positively with TGFBRAP1 (transforming growth
factor beta receptor-associated protein 1; r = 0.79, p = 4.79 × 10−112). Overall, the most
frequently selected genes (Tables 1–3) included NPSR1-AS1, PIK3C2A, PURA, TAS2R31,
and YBX3P1 (all n = 4), followed by FCGR1A, GALNT14, SNORA19, SP140L, and STIM2
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(n = 3). From the cross-validation data, the most consistently selected genes included
GALNT14, PURA, and FCGR1A.

Table 3. Genes were selected by lasso regression to best identify IBD in children and adults (adult
patients presented a more quiescent disease relative to children). Coefficients are presented to-
gether with the number of times the given transcript appeared in all tested model across the cross-
validation/lambda grid (greater values indicate transcripts more systematically linked to IBD). The
top three genes (highest n) are indicated in bold. The area under the curve (AUC; 90% confidence
interval), lambda shrinkage parameter, and the intercept for each model are also presented. Please
note that the genes with the most discriminatory power are present at the top and the bottom of
the list.

IBD
Children

IBD
Adults

AUC = 0.95 (0.89–1.0), λ = 0.20 AUC = 0.86 (0.75–0.98), λ = 0.15

Gene Coefficient, n Gene Coefficient, n

(Intercept) 0.78 (Intercept) 0.73
NBEAL1 0.05, 132 ADAMTS1 0.00, 118

FNTA 0.05, 234 METTL14 −0.01, 45
RAD23A 0.05, 178 STIM2 −0.03, 31
BLVRB 0.02, 137 SLX4IP −0.05, 142
BCAM 0.01, 176 MYBL1 −0.05, 63

BIK 0.00, 154 DTHD1 −0.05, 164
BLK −0.05, 201 AP3S1 −0.05, 254

TAS2R31 −0.05, 237 PIK3C2A −0.05, 156
PAXIP1-AS1 −0.05, 41 PURA −0.05, 174

KLRF1 −0.05, 197
ERMARD −0.05, 59

SP140L −0.05, 83
SYTL2 −0.05, 96

The GSEA of transcripts selected by the lasso regression models within the cross-
validation loop revealed the enrichment of processes typically associated with IBD, immune
responses, and cell activation (Figure 1). UC ontology strongly pointed toward cellular
killing mechanisms. Apart from the immune system, in general, CD was associated with
innate immunity, proteolysis, and the host’s response to bacteria.
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4. Discussion

We applied an ML algorithm to IBD transcriptomic data and obtained a list of genes
that may be involved in the pathogenesis of IBD. At study conception, the source expression
data from Ostrowski et al. presented the richest whole-blood IBD transcriptome and
had not been explored using ML methods. The results from lasso regression implicate
inflammation, the TGF-beta pathway, immunoglobulins, NK cells, and other mechanisms
in the pathogenesis of IBD.

Interestingly, most of the genes identified by PCA and lasso were not among the
top differentially expressed genes in the original study by Ostrowski et al. [10]. This can
potentially be explained by less pronounced, more systematic differences. In children,
individuals that expressed the most differential transcripts in Ostrowski et al. had very
high AUC values within the test set, even superior to those obtained by lasso. However,
the diagnostic accuracy was found to be lower in an independent replication using qPCR.
In adults, the highest AUC achieved by Ostrowski et al. in the validation cohort using a
set of five genes was 0.78 (active UC). Our study, using a set of two genes, was capable of
identifying active CD with an average AUC of 0.92 in 10-fold cross-validation. However,
it is uncertain how this classifier would perform when translated to qPCR. These results
suggest that the approach by Ostrowski et al. was highly efficient. Consequently, in this
study, we did not propose any diagnostic panels.

Lasso provides an alternative approach for the analysis of transcriptomic data and is
capable of drawing attention to new targets. A lasso-derived classifier is not a grouping
of all the genes that strongly differ between two groups (many of which are correlated),
but a selection of complementary transcripts which can hypothetically represent various
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co-expression clusters and pathways. For this reason, we did not utilize final models as the
input for GSEA but rather focused on the list of genes obtained from cross-validation. The
results appear to be typical for IBD biology and were strongly related to immune system
activation and control, as well as cell activation and survival. The employed gene ontology
was rich and contained thousands of gene sets. Nevertheless, the most enriched functional
categories were broad. The biological themes identified by the investigation of the final
lasso models (presented in the tables) are more specific.

Firstly, the results bring attention to the TGF-beta pathway, which is disrupted in
IBD. Defects in TGF-beta processing and signaling (e.g., ITGAV), especially in dendritic
cells, can trigger colitis [23]. The microbiota likely impacts TGF-beta signaling within the
intestinal mucosa to promote renewal and regeneration. The genes selected for the models
do not belong to the TGF-beta pathway but display several striking correlations, as in
the case of SYTL2 and BLVRB. It can be inferred that, in this study, IBD was positively
associated with TGF-beta production but negatively associated with its processing. In this
cross-sectional transcriptomic analysis, it is difficult to distinguish between the cause (core
IBD characteristics) and effects (inflammation), as well as the mechanisms meant to contain
inflammatory damage.

Secondly, attention is focused on the processes involving immunoglobulins. Anti-
commensal IgG antibodies are present in the mucosa of patients with UC and lead to the
induction of interleukin-1β through Fc gamma receptors [24]. FCGR2A, a gene indicated
by the GWAS of IBD, is involved in this process. FCGR1A and FCGR1B (the expression
of which tends to correlate) may play a role in IBD as demonstrated by their association
with a lack of response to anti-tumor necrosis factor α (TNF) [25]. In the current study,
FCGR1A had a strong positive correlation with active CD. Yet, BLK—which phosphorylates
FCGR2A—was negatively associated with an IBD diagnosis. Again, identifying the nature
of the dynamic interactions between these actors using transcriptomics is challenging and
calls for mechanistic studies.

Thirdly, the results confirm the link between IBD and NK cells. SYTL2, the most
consistent result in the comparison between IBD and controls, was recently shown to
strongly associate with NK cell markers in the peripheral blood [26]. It is also one of the
most frequently mutated genes in colorectal cancer [27], the risk of which is increased in
IBD. SYTL2 was suggested to be related to MAP kinases, which is of interest because, in
this study, DUSP3 was overexpressed in patients with active CD, possibly testifying to the
negative control of the kinases. Returning to NK cells, two other genes were also negatively
associated with IBD within the lasso models: KIR2DL1 (killer cell immunoglobulin-like
receptor, two Ig domains and long cytoplasmic tail 1) and KLRF1. Killer cell immunoglob-
ulin genes were also linked to IBD by genetic studies, including KIR3DL1, KIR3DL2 [28],
KIR2DL2, and KIR2DL1. KLRF1 encodes a C-type lectin receptor (which binds CLEC2B, also
known as AICL, to activate TNF production). We recently showed that one of the C-type
lectins (CLEC5A) strongly correlates with treatment escalation in UC [20]. Additionally,
evidence regarding the importance of C-type lectins/receptors in IBD is accumulating.
Of note, these genes can be expressed not only in NK cells, but also in specific subsets
of T cells (e.g., naïve activated CD4+ cells, i.e., receptors) and monocytes/macrophages
(ligands). There seems to be a clear negative association between NK cell-related transcript
abundance and IBD, and it is of great interest as to which cell subtypes are responsible for
the observed effects.

Lastly, several other results put the spotlight on various aspects of IBD inflammation.
GALNT14 plays a role in glycosylation, and its association with the immune system
can be inferred from its usefulness as a predictor in several cancers. TLR5 (Toll-like
receptor 5) knockout mice may serve as a model of colitis that is dependent on the presence
of microbiota [29]. The aforementioned CD274 (PD-L1) is widely known for its key role
in the immunosuppressive tumor microenvironment and is a target for cancer therapies
(together with PD-L1 receptor, PD-1), which can cause colitis through the activation of
resident memory CD8+ T cells [30]. There is more exciting IBD biology to be explored,
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including ion channels (CACNA1E) and leukotrienes (CYSLTR1). Genes of unknown
significance that were consistently selected by the models include PURA (in UC), which
plays a role in the cell cycle and may cause myelodysplasia in case of hemizygosity. Even
though the complexity of inflammation draws attention to a large number of fascinating
genes, this knowledge alone may be insufficient to uncover the origin of the disease and to
pinpoint the persisting changes in the organism that are responsible for recurrences in IBD.

The presence of multiple transcripts that are strongly associated with IBD confirms
that our choice of methods was correct. Yet, there are limitations to the standard two-stage
feature selection process that included PCA and lasso regression. Firstly, a majority of
transcripts were excluded as they did not explain the variance within the dataset sufficiently
well. Secondly, lasso may prefer one variable over many that are correlated despite minute
differences between them. Therefore, the results may be unstable even when differences
between datasets are minimal. For this reason, a large number of models were built, and
only the most consistent results were discussed and accompanied by pertinent transcrip-
tomic correlates. This is why we attached a Supplementary Table S1 with a list of the most
consistent results from the models built within the cross-validation loop. The use of lasso
enabled our study to avoid overfitting and to select key results. Because the original study
design by Ostrowski et al. benefits from subgroup stratification, statistical compensation
for confounding variables, such as gender and age, was unnecessary.

5. Conclusions

In conclusion, the application of ML to IBD transcriptomic data obtained by Ostrowski
et al. allowed us to identify several plausible targets for future mechanistic investigation.
In particular, the obtained results highlight the role of the TGF-beta pathway, immunoglob-
ulins, and NK cells.
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