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INTRODUCTION 
 

Non-small-cell lung cancer (NSCLC) is a main cause of 

cancer death worldwide and accounts for approximately 

80–85% of all lung cancer cases [1]. Recent advances in 

diagnosis and treatment have improved the survival of 

patients with early stage NSCLC [2]. Although a 

growing number of studies have examined the 

molecular mechanisms of NSCLC carcinogenesis, they 

remain largely unknown. In addition, the mild 

symptoms and clinical signs that characterize early-

stage NSCLC can preclude early detection, and NSCLC 

progresses rapidly. Most patients are diagnosed at 

advanced stages, resulting in poor prognosis and low 

survival rates [3]. Importantly, some NSCLC subtypes 

are highly resistant to radiotherapy/chemotherapy and 

are therefore treated mainly by surgery [4]. Additional 

studies are needed to improve understanding of the 

pathogenesis and molecular mechanisms of NSCLC and 

to identify potential treatment targets to reduce NSCLC 

cell survival, invasion, and proliferation. 

 

Rho-associated kinase 1 (ROCK1) was originally 

described as a downstream effector of the small GTPase 

RhoA. As a serine/threonine kinase, ROCK1 plays an 

important role in sustaining cellular cytoskeleton 

turnover by promoting the formation F-actin [5, 6]. 

Interestingly, F-actin synthesis and degradation are 

closely associated with the migration and mobilization 

of various types of tumors, including liver cancer [7], 

endometrial cancer [8], prostate cancer [9], colorectal 

cancer [10], breast cancer [11] and lung cancer [12]. 

This suggests that ROCK1 might also affect lung cancer 

development and progression [13]. Other studies have 

demonstrated that ROCK1 enhances mitochondrial 

function [14], augments cellular energy metabolism 

[15], and promotes cell cycle transition [16]. These 

findings indicate that ROCK1 may modulate lung 

www.aging-us.com AGING 2020, Vol. 12, No. 12 

Research Paper 

ROCK1 knockdown inhibits non-small-cell lung cancer progression by 
activating the LATS2-JNK signaling pathway 
 

Ting Xin1, Wei Lv1, Dongmei Liu1, Yongle Jing1, Fang Hu1 
 
1Department of Cardiology, Tianjin First Central Hospital, Tianjing 300192, P.R. China 
 

Correspondence to: Ting Xin; email: 820826393@qq.com  
Keywords: ROCK1, LATS2, JNK, NSCLC, apoptosis 
Received: October 22, 2019 Accepted: May 1, 2020  Published: June 17, 2020 
 

Copyright: Xin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 

ABSTRACT 
 

Rho-associated kinase 1 (ROCK1) regulates tumor metastasis by maintaining cellular cytoskeleton homeostasis. 
However, the precise role of ROCK1 in non-small-cell lung cancer (NSCLC) apoptosis remains largely unknown. 
In this study, we examined the function of ROCK1 in NSCLS survival using RNA interference-mediated 
knockdown. Our results showed that ROCK1 knockdown reduced A549 lung cancer cell viability in vitro. It also 
inhibited A549 cell migration and proliferation. Transfection of ROCK1 siRNA was associated with increased 
expression of large tumor suppressor kinase 2 (LATS2) and c-Jun N-terminal kinase (JNK). Moreover, ROCK1 
knockdown-induced A549 cell apoptosis and inhibition of proliferation were suppressed by LATS2 knockdown 
or JNK inactivation, suggesting that ROCK1 deficiency triggers NSCLC apoptosis in a LATS2-JNK pathway-
dependent manner. Functional analysis further demonstrated that ROCK1 knockdown dysregulated 
mitochondrial dynamics and inhibited mitochondrial biogenesis. This effect too was reversed by LATS2 
knockdown or JNK inactivation. We have thus identified a potential pathway by which ROCK1 downregulation 
triggers apoptosis in NSCLC by inducing LATS2-JNK-dependent mitochondrial damage. 

mailto:820826393@qq.com


 

www.aging-us.com 12161 AGING 

cancer bioenergetics and proliferation. Although a 

recent study demonstrated that ROCK1 is involved in 

lung cancer migration/invasion [12], the mechanisms by 

which ROCK1 impacts lung cancer survival are not 

fully understood. 

 

At the molecular level, large tumor suppressor kinase 2 

(LATS2) has been identified as a novel pro-apoptotic 

factor. Together with macrophage stimulating 1 (Mst1), 

LATS2 interacts with BCL-xL to inhibit the activity of 

mitochondria-related anti-apoptotic proteins such as 

Bcl2 or c-IAP1 [17, 18], leading to an imbalance 

between Bax and Bcl2. Under physiological conditions, 

Bcl2 interacts with Bax to block Bax-mediated 

mitochondrial damage [19, 20]. Once inactivated by 

LATS2, Bax is separated from Bcl2 and inserted into 

the outer mitochondrial membrane  [21], leading to 

mitochondrial damage. In addition, LATS2 acts as an 

agonist of the JNK pathway by promoting post-

transcriptional modification of JNK [22, 23]. Once 

phosphorylated, JNK translocates into the nucleus, 

where it induces the transcription of pro-apoptotic 

proteins such as Bad and Bax and ultimately leads to 

apoptosis. The causal relationship between ROCK1 

upregulation and LATS2 inhibition was first described 

in the context of type-2 diabetes [24, 25]. Whether 

ROCK1 promotes cancer cell viability by inhibiting 

LATS2 and subsequently blocking Bax- or JNK-

induced mitochondrial apoptosis in NSCLC remains to 

be determined. The aim of this study was to characterize 

the role of ROCK1 in lung cancer survival with a focus 

on the LATS2-JNK signaling pathway. To that end, 

A549 cells were transfected with siRNA against 

ROCK1 in a loss-of-function assay, and LATS2 

expression and JNK transcription were measured. To 

determine whether LATS2 and JNK acted as 

downstream effectors of ROCK1, ROCK1-knockdown 

A549 cells were then treated with LATS2 siRNA and a 

JNK inhibitor.  

 

RESULTS 
 

ROCK1 knockdown reduces A549 cell viability and 

induces cell apoptosis 
 

A549 cells were transfected with siRNA against ROCK1 

(si/ROCK1) to observe the effects of ROCK1 in NSCLC 

development and progression. Compared to the control, 

si/ROCK1 transfection reduced cell viability in an MTT 

assay (Figure 1A), indicating that ROCK1 was necessary 

for cancer survival. An LDH release assay was then 

performed to confirm this result. Under normal 

conditions, LDH is contained in the cytoplasm [26, 27]; 

during cellular membrane breakdown indicative of 

decreased cell viability, LDH is released into the culture 

medium [28, 29]. Compared to the control group, 

si/ROCK1 transfection increased LDH levels in the 

culture medium (Figure 1B), suggesting that ROCK1 

deficiency is associated with cell membrane breakdown. 

Next, we examined the effects of ROCK1 knockdown on 

cell apoptosis by measuring the activity and transcription 

of caspase-3 protein, a key apoptosis promoter that 

triggers cell membrane breakdown [30, 31]. As shown in 

Figure 1C, 1D, compared to the control group, caspase-3 

activity and transcription were dysregulated in response 

to si/ROCK1 transfection. Finally, TUNEL staining was 

used to quantify numbers of apoptotic A549 cells. As 

shown in Figure 1E, 1F, compared to the control group, 

the number of TUNEL-positive cells increased after 

exposure to si/ROCK1, confirming that inhibition of 

ROCK1 upregulated apoptosis in A549 cells. Together, 

these results indicate that ROCK1 knockdown activates 

apoptosis and thus reduces NSCLC cell viability in  

in vitro.  

 

ROCK1 knockdown reduces NSCLC migration and 

proliferation 
 

Cancer cell invasion and proliferation are crucial to 

cancer progression; we therefore examined whether 

ROCK1 also regulated A549 cell proliferation and 

mobilization [32]. As shown in Figure 2A, a CCK-8 

assay demonstrated that cell proliferation was impaired 

by si/ROCK1. Accordingly, cyclin-D and cyclin-E 

transcription were also downregulated in A549 cells 

after transfection of si/ROCK1 (Figure 2B, 2C). These 

results indicate that ROCK1 knockdown inhibits 

NSCLC proliferation. 

 

Next, we examined the effects of ROCK1 on A549 cell 

migration and invasion in vitro. In a transwell assay, 

A549 cell migration was drastically reduced after 

si/ROCK1 transfection (Figure 2D). At the molecular 

level, CXCR-4 and CXCR-7 have been identified as 

key promoters of cancer adhesion and migration. 

Interestingly, transfection of si/ROCK1 decreased their 

transcription in A549 cells (Figure 2E, 2F). These 

results confirmed that inhibition of ROCK1 impairs 

NSCLC proliferation and migration.  

 

ROCK1 knockdown activates LATS2-JNK 

pathways  
 

Previous studies have demonstrated that ROCK1 

activation is associated with LAST2 suppression [33]. 

Interestingly, recent experiments have identified LATS2 

as a novel regulator of cancer survival and invasion [34, 

35]. We therefore explored whether ROCK1 knockdown-

mediated A549 cell apoptosis was attributable to LATS2 

activation. Compared to the control group, si/ROCK1 

treatment increased LATS2 RNA (Figure 3A) and protein 

levels (Figure 3B), suggesting that ROCK1 knockdown 
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promotes LATS2 transcription and translation. Notably, 

the pro-apoptotic mitochondrial protein JNK functions 

downstream of LATS2 [36, 37]. Given that JNK 

activation promotes mitochondrial apoptosis [7, 38], we 

examined whether ROCK1 knockdown-induced apoptosis 

was mediated by JNK activation in A549 cells. In an 

ELISA, si/ROCK1 transfection increased JNK kinase 

activity (Figure 3C); this increase was accompanied by an 

upregulation of JNK transcription (Figure 3D). Together, 

these data indicate that ROCK1 knockdown is associated 

with an activation of LATS2 and JNK in NSCLC in vitro.  

 

Loss of LATS2 or JNK abolishes the tumor-

suppressing effects of ROCK1 knockdown 
 

To further explore potential causal relationships 

between ROCK1 expression and the LATS2-JNK 

pathway in A549 cells [39], siRNA against LATS2 

(si/LATS2) was transfected before si/ROCK1 

transfection to interrupt ROCK1 deficiency-induced 

LATS2 activation. An MTT assay demonstrated that 

si/ROCK1 treatment reduced cell viability in A549 cells 

compared to the control group, while co-transfection of 

si/LATS2 restored cell viability almost to control levels 

(Figure 4A). A similar effect was observed in the LDH 

release assay; although si/ROCK1 transfection 

increased LDH levels in the medium, si/LATS2 co-

transfection reversed this increase (Figure 4B). In 

agreement with these results, si/ROCK1 transfection 

increased, while co-transfection of si/LATS2 reduced, 

the number of TUNEL-stained A549 cells  (Figure 4C, 

4D). These data indicate that ROCK1 knockdown-

induced A549 cell apoptosis could be abolished by 

LATS2 inhibition.  

 

 
 

Figure 1. ROCK1 regulates A549 cell viability. (A) MTT assay for A549 cells. A549 cells were transfected with siRNA against ROCK1 
(si/ROCK1) or control siRNA (si/Ctrl). (B) An LDH release assay was used to measure LDH levels in the medium of A549 cells transfected with 
siRNA against ROCK1 (si/ROCK1) or control siRNA (si/Ctrl). (C) ELISA was used to analyze Caspase-3 activity in response to si/ROCK1 or si/Ctrl 
transfection. (D) A qPCR assay was used to measure Caspase-3 transcription. (E, F) TUNEL staining was used to measure numbers of apoptotic 
cells in response to si/ROCK1 or si/Ctrl transfection. *p<0.05.  
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Figure 2. ROCK1 knockdown decreases cell migration and proliferation. (A) A CCK-8 assay was used to quantify proliferation in A549 
cells transfected with siRNA against ROCK1 (si/ROCK1) or control siRNA (si/Ctrl). (B, C) A qPCR assay was used to analyze Cyclin-D and Cyclin-E 
transcription. (D) Transwell assay for A549 cells. Numbers of migrated cells were quantified after si/ROCK1 or si/Ctrl transfection. (E, F) A 
qPCR assay was used to analyze CXCR-4 and CXCCR-7 transcription. *p<0.05. 

 

 

 

Figure 3. The LATS2-JNK pathway is activated after ROCK1 knockdown. (A) A qPCR assay was used to analyze LATS2 transcription. 
(B) Western blots were used to detect LATS2 protein levels in response to si/ROCK1 transfection. (C) An ELISA was used to measure JNK 
activity in response to siRNA-mediated ROCK1 knockdown. (D) A qPCR assay was used to analyze JNK transcription after si/ROCK1 
transfection. *p<0.05. 
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To determine whether JNK inactivation also blunted 

ROCK1 knockdown-induced damage, A549 cells were 

incubated with the JNK pathway inhibitor SP600125 

before si/ROCK1 transfection. As was observed after 

transfection of si/LATS2, SP600125-induced 

inactivation of the JNK pathway also restored A549 cell 

viability in the MTT assay (Figure 4A). Moreover, 

inhibition of JNK also attenuated ROCK1 knockdown-

induced increases in medium LDH levels (Figure 4B). 

In addition, SP600125 also inhibited ROCK1 

knockdown-induced increases in A549 cell apoptosis as 

indicated by TUNEL staining (Figure 4C, 4D). These 

results suggest that inhibition of either LATS2 or JNK 

impairs the tumor-suppressive effects of ROCK1 

knockdown and promotes A549 cell survival. 

LATS2 knockdown or JNK inactivation attenuate 

ROCK1 knockdown-induced mitochondrial 

apoptosis 
 

To investigate the molecular mechanisms underlying 

LATS2-mediated A549 cell death, we next examined 

mitochondrial apoptosis, as mitochondria are a potential 

target of the LATS2-JNK pathway [40, 41]. First, we 

evaluated mitochondrial function by analyzing 

cytoplasm ATP levels. Compared to the control group, 

ATP production was reduced in A549 cells transfected 

with si/ROCK1 (Figure 5A). Interestingly, this effect 

was reversed by si/LATS2 or SP60125, suggesting that 

ROCK1 may sustain mitochondrial metabolism by 

inhibiting the LATS2-JNK pathway. To further confirm 

 

 
 

Figure 4. Inactivation of the LATS2-JNK pathway abolishes the tumor-suppressive effects of ROCK1 knockdown. (A) MTT assay 
of cell viability. siRNA against LATS2 (si/LATS2) and SP600125 were used inhibit LATS2 upregulation and JNK activation, respectively. (B) An 
LDH release assay was used to measure LDH levels in the medium. (C, D) TUNEL staining was used to quantify numbers of apoptotic cells 
after si/LATS2 transfection and SP600125 administration. *p<0.05. 
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this finding, levels of the mitochondrial respiration-

related proteins cyclooxygenase-1/2 (COX-1/2) were 

measured. As shown in Figure 5B, 5C, compared to the 

control group, COX-1 and COX-2 levels were 

significantly downregulated in response to si/ROCK1 

transfection. However, LATS2 knockdown or 

JNKinhibition reversed this effect, confirming that 

ROCK1 knockdown-induced disruption of 

mitochondrial metabolism is a result of LATS2/JNK 

pathway activation.  

 

In addition to decreased ATP production, we found that 

generation of ROS increased after si/ROCK1 

transfection (Figure 5D, 5E), suggesting that ROCK1 

deficiency increases oxidative stress injuries in A549 

cells. However, inhibition of the LATS2/JNK pathway 

attenuated this accumulation of ROS in A549 cells 

(Figure 5D, 5E). Transcription of mitochondrial pro-

apoptotic proteins Bax and Bad was similarly affected 

by si/ROCK1 transfection and LATS2/JNK pathway 

inhibition. Compared to the control group, Bax and Bad 

transcription were upregulated by si/ROCK1 

transfection and restored by inactivation of the 

LATS2/JNK pathway in A549 cells (Figure 5F, 5G). 

Taken together, our results indicate that ROCK1 

knockdown triggers mitochondrial apoptosis, and that 

blockade of the LATS2-JNK pathway inhibited this 

effect. 

 

 
 

Figure 5. ROCK1 deficiency promotes mitochondrial apoptosis by activating the LATS2-JNK pathway. (A) ATP production was 
measured in A549 cells after transfection of siRNA against LATS2 (si/LATS2) and SP600125 administration that inhibited LATS2 upregulation 
and JNK activation, respectively. (B, C) qPCR was used to analyze COX-1 and COX-2 transcription. (D, E) Immunofluorescence was used to 
measure generation of ROS in A549 cells. (F–G) A qPCR assay was used to detect changes in Bax and Bad levels in A549 cells. *p<0.05. 
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Mitochondrial dynamics and mitochondrial 

biogenesis are controlled by the ROCK1-LATS2-

JNK pathway 
 

Recent studies indicate that changes in mitochondrial 

dynamics and inhibition of mitochondrial biogenesis 

occur early in the mitochondrial apoptosis induction 

process [29, 42]. To further understand the regulatory 

mechanism by which the ROCK1-LATS2-JNK 

pathway induced mitochondrial apoptosis, 

mitochondrial dynamics and biogenesis were analyzed. 

First, immunofluorescence was used to identify 

alterations in mitochondrial morphology in A549 cells 

after transfection of si/ROCK1 together with either 

si/LATS2 or SP600125 treatment. Compared to the 

control group, si/ROCK1 transfection increased 

numbers of fragmented mitochondria, the length of 

which was reduced to ~2.7 μm (Figure 6A–6C). The 

addition of either si/LATS2 or SP600125 reduced 

numbers of fragmented mitochondria and increased 

average mitochondrial length to ~9.7 μm (Figure 6A–

6C). These results indicate that ROCK1 knockdown 

altered mitochondrial dynamics in a LATS2/JNK 

pathway-dependent manner. To further examine this 

possibility, we examined transcription of the 

mitochondrial dynamics-associated markers Drp1, Fis1, 

and Mid49. Compared to the control group, Drp1, Fis1, 

and Mid49 transcript levels increased after transfection 

with si/ROCK1; this effect was abrogated by si/LATS2 

or SP600125 (Figure 6D–6F).  

 

To understand the influence of the 

ROCK1/LATS2/JNK pathway on mitochondrial 

biogenesis, alterations in PGC1α and Sirt3 expression 

were measured using double-immunofluorescence in 

A549 cells [43]. As shown in Figure 6G, PGC1α and 

Sirt3 expression were downregulated by si/ROCK1 in 

A549 cells, and loss of LATS2 or inactivation of JNK 

reversed this effect; thus, ROCK1 knockdown inhibited 

mitochondrial biogenesis via the LATS2/JNK pathway. 

Together, these results suggest that 

ROCK1/LATS2/JNK pathway activity promotes 

NSCLC apoptosis by inducing dysregulation of 

mitochondrial dynamics and inhibiting mitochondrial 

biogenesis. 

 

DISCUSSION 
 

Methods for detecting, diagnosing, and treating NSCLC 

have improved greatly in recent decades. However, the 

molecular mechanisms underlying the development, 

progression, and metastasis of NSCLC remain largely 

unknown, and additional basic research and clinical 

trials are needed [44]. NSCLC development and 

progression are affected by both genetic and 

environmental factors and are driven by activation of 

multiple oncogenes and inactivation of tumor 

suppressor genes [45, 46]. Furthermore, prognoses are 

generally poor for patients with lung cancer, especially 

those with advanced stage disease at the time of 

diagnosis. Genetic factors, including mutations, proto-

oncogene mismatches, and CpG island methylation 

modifications in anti-oncogene promoter regions, are 

associated with NSCLC pathogenesis [47]. In the 

present study, we identified ROCK1 as a novel 

promoter of NSCLC viability. Mechanistically, ROCK1 

knockdown upregulated LATS2 and thus activated the 

JNK pathway, which promoted mitochondrial damage 

by increasing mitochondrial apoptosis, dysregulating 

mitochondrial dynamics, and inhibiting mitochondrial 

biogenesis. Our findings suggest that inhibition of 

ROCK1 and/or activation of the LATS2/JNK pathway 

might be a promising approach for suppressing NSCLC 

survival via mitochondrial injury.  

 

The tumor-suppressive effects of ROCK1 knockdown 

have been observed in many different types of cancers. 

For example, esophageal squamous cell carcinoma 

invasion and migration are attenuated by ROCK1 

deletion in vitro [48]. In addition, TGFβ-induced 

epithelial-mesenchymal transition in NSCLC is also 

regulated by ROCK1 in a miR-335-5p-dependent 

manner [49]. In addition, increased cytoplasmic 

ROCK1 levels are necessary for maintaining 

proliferation and survival in human myeloma cells [50]. 

In prostate cancer, increased ROCK1 expression has 

been defined as an early biomarker for poor prognosis 

due to its association with genetic instability in tumor 

cells [51]. Similarly, we found here that moderate 

cytoplasmic ROCK1 expression was vital for NSCLC 

survival. RNA interference-mediated ROCK1 

knockdown drastically increased numbers of apoptotic 

cells in vitro. Several compounds have been identified 

that inhibit ROCK1 activity and might therefore prove 

effective for treating NSCLC. For example, histamine 

[52], fibroblast-derived hepatocyte growth factor [53], 

triptolide [54], and melatonin [55, 56] have been used to 

inhibit ROCK1 activation. However, additional clinical 

studies and pre-clinical experiments are needed to 

support the use of these and other compounds as 

clinically useful targeted therapeutic agents in NSCLC 

patients. 

 

The effects of ROCK1 inhibition on NSCLC apoptosis 

are dependent on increased LATS2 expression and JNK 

activation that induce mitochondrial damage. In 

addition to controlling cellular energy metabolism, 

mitochondria are also important regulators of redox 

balance, calcium homeostasis, protein oxidation, and 

cell death [57–59]. Indeed, mitochondria are the key 

target of several anti-cancer drugs, such as fluorouracil 

[60], silibinin [61], resveratrol [62], sorafenib [63], and 



 

www.aging-us.com 12167 AGING 

matrine  [64]. Here, we report that mitochondrial 

function and morphology were controlled by the 

LATS2-JNK pathway. Increased LATS2 expression 

may increase transcription of mitochondrial dynamics-

related proteins, such as Drp1, Fis1, and Mid49, leading 

to mitochondrial fragmentation and reduced 

mitochondrial potential. Increased LATS2 levels were 

also associated with decreases in the levels of 

transcription of factors related to mitochondrial 

biogenesis, suggesting that LATS2 activation might 

interrupt mitochondrial self-renewal. Taken together, 

these results suggest that the tumor-suppressive effects 

of the LATS2-JNK pathway are likely due to both the 

induction of mitochondrial fragmentation and disruption 

of mitochondrial turnover. To our knowledge, this is the 

first study to describe this relationship between LATS2-

JNK pathway activation and mitochondrial damage in 

NSCLS. 

 

 
 

Figure 6. The ROCK1-LATS2-JNK pathway affects mitochondrial dynamics and mitochondrial biogenesis in A549 cells. (A–C) 
Immunofluorescence was used to observe mitochondrial morphology in A549 cells. siRNA against LATS2 (si/LATS2) and SP600125 were used 
inhibit LATS2 upregulation and JNK activation, respectively. Mitochondrial length and number of cells with fragmented mitochondria were 
recorded. (D–F) A qPCR assay was used to analyze Drp1, Fis1, and Mid49 transcription in A549 cells in response to ROCK1 knockdown, LATS2 
knockdown, and JNK inhibition. (G) Double immunofluorescence was used to observe alterations in Sirt3 and PGC1α levels; relative 
immunofluorescence intensities were evaluated. *p<0.05. 
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Overall, our results demonstrated that non-small-cell 

lung cancer viability is regulated by ROCK1 and the 

LATS2-JNK pathway. Mechanistically, ROCK1 

knockdown activated the LATS2-JNK pathway, which 

in turn dysregulated mitochondrial dynamics and 

inhibited mitochondrial biogenesis, possibly at the post-

transcriptional level. These finding suggest that ROCK1 

and LATS2-JNK may be potential targets for NSCLC 

treatments.  

 

MATERIALS AND METHODS 
 

Cell culture and siRNA transfection 

 

The A549 lung cancer cell line was purchased from the 

Korean Cell Line Bank. RPMI-1640 medium containing 

10% fetal bovine serum, 1% penicillin/streptomycin, and 

2-mercaptoethanol was used to culture A549 cells in a 

culture flask at 37°C in a 5% CO2 atmosphere [65]. A549 

cells at passage 5-8 were transiently transfected with 

scramble (Scr) siRNA (Invitrogen, #12935110), ROCK1 

siRNA, and LATS2 siRNA as indicated. All siRNAs 

were predesigned and purchased from Thermo Fisher 

Scientific. Two days after transfection, cells were cultured 

in serum-free media for 21 hr and stimulated with Ang II 

(100 nM) for 3 hr. Western blots or qPCR were used to 

verify transfection and knockdown efficiency [66].  

 

Terminal deoxynucleotidyl transferase nick-end-

labeling (TUNEL) 
 

We used a TUNEL kit (11684817910, Roche, 

Indianapolis, IN, USA) as described by the 

manufacturer [67, 68]. A549 cell samples were 

dewaxed and rehydrated. Endogenous peroxidase 

activity was blocked using 3% hydrogen peroxide for 5 

minutes. The samples were then washed with 

phosphate-buffered saline (PBS) at room temperature 

and incubated in TUNEL Reaction Mixture followed by 

converter-POD solution at 37°C. Next, the slides were 

incubated with diaminobenzidine (DAB) and stained 

with hematoxylin [69]. Samples were dehydrated using 

graded ethanol, vitrified with dimethylbenzene, and 

deposited in neutral resins. Finally, the samples were 

observed under a microscope.  

 

TMRE staining 
 

After transfection with siRNA, A549 cells were 

incubated with 50 pM tetramethylrhodamine ethyl ester 

(TMRE) for 10 min [70], washed twice with PBS 1x, 

harvested, centrifuged (1600×g for 4 min at 4°C), and 

resuspended (about 1×106 cells/mL) in PBS for 

immunofluorescence analysis. Carbonilcyanide p-

triflouromethoxyphenylhydrazone (FCCP), an 

uncoupling agent that completely depolarizes the outer 

mitochondrial membrane [71, 72], was used as a 

positive control. FCCP was added to cell cultures at a 

final concentration of 20 µM for 20 minutes 

immediately preceding incubation with TMRE. At least 

three independent experiments were performed. 

 

ROS assessment 
 

Cells were grown overnight and then diluted in fresh 

media to an OD (λ= 660 nm) of 0.2. Then, samples 

were washed twice in PBS and incubated with 1 mL of 

2.5 µg/mL dihydroethidium (DHE) in phosphate 

buffered saline (PBS) for 15 minutes in the dark [73]. 

Then, cells were washed with 1 mL PBS and analyzed 

by immunofluorescence [74]. At least three independent 

experiments were performed. 

 

RNA isolation, reverse transcription, and qPCR 

 

Total RNA was isolated from cells using the GeneJet 

RNA Purification Kit (Thermo Scientific, K0732), and 

0.5 μg of total RNA was reverse transcribed to generate 

cDNA using the iScript cDNA Synthesis Kit (Bio-Rad, 

1708891) according to manufacturer’s instructions [75, 

76]. qPCR was performed using iTaq Universal SYBR 

Green supermix (Bio-Rad, 1725121) on Bio-Rad CFX-

384 or CFX-96 real-time PCR Systems. Actin was used 

for normalization [77]. 

 

Proliferation and viability assay 
 

A549 cells were transfected with siRNA for 3 days 

followed by starvation for 24 hours [78]. Afterwards, all 

cells were re-plated into 96-well plates at a density of 

1×103 cells per well and maintained in 1% FBS-

containing DMEM/F12 medium for 24 hours. Then, cell 

number was assessed using a cell counting kit (CCK8, 

MedChem Express) according to manufacturer’s 

instructions [79]. 

 

Scratch-wound and transwell assay 

 

A549 cell migration was assessed by scratch-wound and 

transwell assays as described previously. Briefly, 

confluent A549 cells were transfected with siRNAs [80, 

81]. Three days later, cells were subjected to scratch or 

re-plated in transwell chambers, and images were taken 

at indicated time points. Distances  between wound 

edges and numbers of cells that migrated between the 

transwell chambers were measured using ZEN analysis 

software [82]. 

 

Immunostaining 
 

Samples were harvested, immediately fixed with 4% 

paraformaldehyde for 30 min, and blocked in a 5% 
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solution of normal serum (same type in which 

secondary antibody was raised) containing 0.1% Triton-

X for 1 hr at 37°C. Primary antibody incubations were 

performed overnight at 4°C [83]. After washing, highly 

cross-absorbed Alexa 488, Alexa 546, or Alexa 647-

conjugated secondary antibodies (Invitrogen) were 

added at a dilution of 1:200 for 2 hr at 37°C. Control 

experiments were performed by omitting the primary 

antibody. Slides were covered with Vectashield 

containing DAPI (Vector Laboratories) and viewed 

under a LSM 710 (ZEISS) or Axioscan Z1 (ZEISS) 

microscope [84, 85]. 

 

Statistical analysis  
 

We conducted a Shapiro-Wilk normality test for the 

samples. Between-groups independent t-tests, one-

way analysis of variance (ANOVA), and two-way 

ANOVA were used if the variables satisfied the 

normality assumption. Otherwise, Mann-Whitney U 

tests, Kruskal-Wallis one-way ANOVAs, and 

Friedman two-way ANOVAs were used. Bonferroni 

corrections were used for post-hoc multiple 

comparisons in ANOVA. Statistical analyses were 

performed with SAS (version 9.4, SAS Institute, Inc., 

Cary, NC), Prism 6 (GraphPad Software, La Jolla, 

CA), or InStat (GraphPad Software) [86]. 
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