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Molecular mechanisms involved in the side effects of fatty acid
amide hydrolase inhibitors: a structural phenomics approach
to proteome-wide cellular off-target deconvolution and disease
association
Shihab Dider1, Jiadong Ji2,3, Zheng Zhao4 and Lei Xie3,5

Fatty acid amide hydrolase (FAAH) is a promising therapeutic target for the treatment of pain and CNS disorders. However, the
development of potent and safe FAAH inhibitors is hindered by their off-target mediated side effect that leads to brain cell death.
Its physiological off-targets and their associations with phenotypes may not be characterized using existing experimental and
computational techniques as these methods fail to have sufficient proteome coverage and/or ignore native biological assemblies
(BAs; i.e., protein quaternary structures). To understand the mechanisms of the side effects from FAAH inhibitors and other drugs,
we develop a novel structural phenomics approach to identifying the physiological off-targets binding profile in the cellular context
and on a structural proteome scale, and investigate the roles of these off-targets in impacting human physiology and pathology
using text mining-based phenomics analysis. Using this integrative approach, we discover that FAAH inhibitors may bind to the
dimerization interface of NMDA receptor (NMDAR) and several other BAs, and thus disrupt their cellular functions. Specifically, the
malfunction of the NMDAR is associated with a wide spectrum of brain disorders that are directly related to the observed side
effects of FAAH inhibitors. This finding is consistent with the existing literature, and provides testable hypotheses for investigating
the molecular origin of the side effects of FAAH inhibitors. Thus, the in silico method proposed here, which can for the first time
predict proteome-wide drug interactions with cellular BAs and link BA–ligand interaction with clinical outcomes, can be valuable in
off-target screening. The development and application of such methods will accelerate the development of more safe and effective
therapeutics.
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INTRODUCTION
Fatty acid amide hydrolase (FAAH) is an enzyme involved in
the hydrolysis of bioactive lipids such as anandamide,
2-arachidonoylglycerol (2-AG) and oleamide.1 It is distributed in
several of the major organs of the human body, but is also
regionally distributed in the brain where it is believed to correlate
with cannibinoid receptors.2 In particular, it is believed that the
overexpression of FAAH reduces the production of known
endogenous cannabinoids, specifically, anandamide (AEA) and
2-arachidonoylglycerol (2-AG).3 This makes FAAH an attractive
drug target, as inhibition of FAAH would, through the upregula-
tion of AEA and 2-AG, elicit the effects of cannabinoid activation.
Thus, FAAH inhibitors may serve as analgesic, anti-inflammatory,
anxiolytic and antidepressant therapeutics.4

However, the development of potent and safe FAAH inhibitors
is hindered by their possible serious side effects.5 In a recent
clinical trial, the FAAH inhibitor BIA 10-2474, caused cerebral
hemorrhage and necrosis, leading to the death of a patient.6 It has
been suggested that the deadly side effect of this FAAH inhibitor
may come from its binding to unidentified off-targets.5,6 In vitro

off-target screening is available against a panel of hundreds of
proteins including enzymes, receptors, transporters, ion channels
and second messages. However, the target space of existing
assays is too small to cover the whole human proteome, where
many uncharacterized proteins may be responsible for the side
effect or the therapeutic effect.7 A large number of computational
methods have been developed to predict off-target intera-
ctions,8–10 and associate genes with diseases.11 Most of these
methods, however, only screen protein monomers or single
genes. They are not the functional form of proteins in the cell.
Instead, the protein cellular function is dependent on the
conformational state of biological assemblies (BAs), i.e., protein
quaternary structures. A drug may not only interact with a protein
monomer, but interfere with its oligomerization state, leading to
the disruption of its normal function. Furthermore, the drug may
not bind to the endogenous ligand-binding site in the BA. It
hinders the development of reliable experimental and computa-
tional methods for the proteome-wide BA screening and disease
association. Consequently, few methods exist to predict cellular
off-target effects resulting from the drug binding to BAs, and their
associations with diseases. Owing to these limitations, it is still
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unclear what the off-targets of FAAH inhibitors are, and how the
off-target affects the system level response.
To address the aforementioned challenges, for the first time, we

develop a structural phenomics approach, which integrates
heterogeneous data from structural genomics, chemical genomics
and the biomedical literature, to reveal the cellular and
physiological mechanism of drug–target interactions. First, we
screen potential cellular off-targets of FAAH inhibitors on a
structural proteome using BAs that represent the functional form
of proteins in the cell. Few computational methods that can
screen a compound against the structural proteome-wide BAs,
including uncharacterized binding sites, are available. To our
knowledge, the method in this paper is the first one used for this
purpose. Then we use chemical genomics analysis, protein–ligand
docking, surface electrostatic potential characterization and
molecular dynamics simulation to verify the putative off-targets.
Finally, we link the effect of drug off-target binding to its clinical
outcome using a deep learning technique to mine the biomedical
literature. By applying this integrative approach, we discover that
FAAH inhibitors may bind to the dimerization interface of NMDA
receptor (NMDAR) and several other BAs, thus disrupting their
physiological functions. Our prediction is consistent with the
existing experimental evidence. The malfunction of the NMDAR is
associated with brain disorders that are directly related to the
observed side effects of FAAH inhibitors. This finding suggests
that the drug off-target effect is more complicated than our
current understanding—which mainly focuses on the study of
ligand interactions with protein monomers but not their
functionally relevant BAs. Due to the limitation of existing
in vitro off-target screening, an in silico method that can predict
drug interactions with BAs and link protein–ligand interaction with
clinical outcomes, as exampled by the proposed structural
phenomics approach in this paper, will be a valuable tool to

facilitate drug discovery. Specifically, it may shed new light on the
development of safe and effective FAAH inhibitors.

RESULTS
Overview of structural phenomics method
The proposed structural phenomics method aims to screen drug
off-targets in the cell. To this end, it is necessary to use protein BAs
that represent the cellular functional state of proteins for the study
of protein–ligand interactions. Furthermore, it is needed to
correlate in vivo molecular interactions with drug response
phenotypes. The method used in this study mainly consists of
the following steps, as shown in Figure 1.

1. Given a drug D and its primary target T (in this case, FAAH), all
BAs in the Protein Data Bank (PDB;12 both monomer and
oligomer), are compared with the ligand-binding site of T using
software SMAP.13–15 If a BA has statistically significantly similar
binding site to that of T, it may be the putative off-target of D.
In addition, the electrostatic potentials of the binding sites of
primary target and off-target are compared to further verify the
putative binding promiscuity.

2. Known inhibitors of T and their decoys are extracted from
ChEMBL,16 and docked into T, and its putative off-targets,
respectively, using protein–ligand docking software Autodock
Vina.17 The distributions of docking scores of inhibitors and
decoys are analyzed to verify the prediction from step 1. Then,
molecular dynamics simulation is performed to characterize the
conformational dynamics of the putative off-target–ligand
interactions.

3. The concepts of genes/proteins and diseases in from PubMed
abstracts (up to July 2014) are mapped to a vector space using
a deep learning technique, Word2Vec.18 Semantic relations

Figure 1. Overview of structural phenomics methodology. (a) The principle of methodology is to build a consistent model of drug–phenotype
association, drug–biological assembly (quaternary structure) interaction and biological assembly–phenotype association. (b) An automated
pipeline to build the model, which combines tools derived from bioinformatics, systems biology, protein–ligand docking, MD (molecular
dynamics) simulation and text mining, and integrates data from structural genomics, chemical genomics and literature.
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between the putative off-target and diseases are determined
using the cosine similarity between vectors.

Structural proteome-wide ligand-binding site similarity of protein
BAs
An increasing body of evidence supports the concept that protein
fold and binding site spaces are continuous.14,19,20 Thus, ligand-
binding cross-reactivity is better characterized by analyzing
ligand-binding sites rather than protein sequences or global
structures, as shown in many studies.7,21–23 We have developed
and proven the success of the ligand-binding site comparison
software SMAP.13–15 SMAP has several unique features. First, we
represent protein surfaces as a graph, and characterize its
geometric and topological properties using Geometric Potential
that is robust to conformational variations of protein structure.15

Second, we align two surfaces using a sequence order indepen-
dent profile–profile alignment (SOIPPA) algorithm.14 The sequence
order independent profile–profile alignment can detect the most
similar binding surface patch, without requiring predefinition of
location/boundary of the binding sites. Thus, we can apply SMAP
to uncharacterized binding sites from apo structures, predicted
structures and BAs.24,25 Finally, we measure the similarity between
aligned binding sites using a scoring function that combines
evolutionary, geometric and physico-chemical information. Thus,
SMAP is less sensitive to local conformational variances and
inaccuracies in predicted structure. Moreover, we have developed
an extreme value distribution statistical model that can rapidly
estimate the statistical significance of the match between two
ligand sites.13 SMAP has been successfully applied to the arena of
drug repurposing,26–29 side effects prediction,30,31 polypharma-
cology24,32 and precision medicine.33

An FAAH structure that is co-crystallized with a drug-like
inhibitor PF-750 (PDB id: 2VYA) is compared with 40,491
non-redundant BAs in the PDB using SMAP.13–15 After removing
BAs that do not have human homologous proteins, five BA
structures have SMAP P value less than 1.0e− 3, as shown in
Table 1. Most of them are related to neurological functions. The
alignment score distribution of all BAs is shown in Supplementary
Figure S1. In this study, we will focus on the top-ranked NMDAR.
As PDB 4PE5 is not from humans, but rats, the homology model of
the human NMDAR is built using I-TASSER,34 mainly to include the
missing loops. The sequence alignment generated from
ClustalW35 is shown in Supplementary Figures S2 and S3. The
sequence identity of the GluN1A and GluN2B subunits between
humans and rats is 99.3 and 98.5%, respectively. In addition, all
residues in the potential binding pocket of dimerization interface
are conserved.
Figure 2 shows the SMAP sequence order independent

alignment of the FAAH ligand-binding site with the putative
binding pocket of NMDAR, which is located in the dimerization
interface of the GluN1A and GluN2B subunits of the NMDAR. The

sequence order independent alignment shows the majority of
aligned amino acid residues to be conserved or similar, although
the sequence order is not conserved. As a similar binding site may
bind a similar ligand,21 the NMDAR is a potential off-target of
FAAH inhibitors. A full list of amino acid residues involved in the
dimerization is shown in Supplementary Table S1.
To verify the similarity between the FAAH ligand-binding site

and the putative binding pocket of NMDAR, we calculate and
compare the surface electrostatic potentials of both binding
pockets using Delphi.36 As shown in Figure 3, in both the pockets,
the ligand lies above a relatively negatively charged surface with
the more hydrophobic surface on the other side. This result further
supports that the dimerization interface of NMDAR is a putative
off-target binding pocket of FAAH inhibitors.

Statistical analysis of protein–ligand docking score ensembles and
molecular dynamics simulation of BIA 10-2474 bound NMDAR
To verify that NMDAR is the off-target of FAAH inhibitors, we
extract active FAAH inhibitors (IC50o10 μmol/l) and inactive
compounds (decoys) with IC5041,000 μmol/l from ChEMBL,16

and dock them into the binding pockets of FAAH and the NMDAR,
respectively. In each group, the decoy ligand data set acts as a
control against the experimental data set of the FAAH inhibitors.
The binding score represents the strength of the interaction of the
ligand to the binding pocket, in kcal/mol. Therefore, a more
negative score indicates a more favorable and stronger
interaction.
It is well known that the docking score is not reliable enough to

predict whether a molecule is a true or false binder. The
correlation analysis of docking scores of a set of molecules
between the primary target and the off-target may provide more
reliable information on the binding cross-reactivity.30 Although
the absolute docking scores themselves are not accurate, they will
be relatively similar to each other in similar binding sites. Thus, the
docking scores will be linearly correlated if two binding sites are
similar. As shown in Figure 4, the docking scores of 624 FAAH
inhibitors in the endogenous binding pocket of primary target
FAAH (PDB: 2VYA) are indeed linearly correlated with those in the
predicted dimer interface of NMDAR. R2 of Pearson’s correlation
coefficient is 0.75232. Around 10 molecules within the red circle of
Figure 4 are outliers. If these molecules are not included, the R2 of
Pearson’s correlation coefficient is 0.83895.
Furthermore, the docking score distribution of active

compounds of FAAH is significantly different from that of decoys
when docked to the binding site of FAAH (Supplementary
Figure S4). An unpaired, two-tailed t-test gave a P value less than
1.0e− 5. However, the docking score of BIA 10-2474 is − 7.7 when
docked to its primary target FAAH. At this score, there is no
significant distinction between true and false binders. The score
distribution of FAAH inhibitors and their decoys has the same
trend when docked to the dimer interface of NMDAR
(Supplementary Figure S5). Although the docking score of BIA

Table 1. Top five biological units ranked by SMAP, which have similar binding pockets to that of FAAH

Protein PDB Id Uniprot Id(s) of biological assembly SMAP alignment
score

SMAP P value Docking score

NMDA receptor 4PE5 P35439, Q00960 61.04 1.24E− 4 − 7.6
Multidrug resistance
protein 1A

4M1M P21447 57.41 4.72E− 4 − 7.5

Glutamate symport protein 2NWL O59010 55.90 8.00E− 4 − 8.0
Acetylcholine receptor 4BOR P02711, Q6S3H8, Q6S3H9, Q6S3I0 55.71 8.56E− 4 − 8.0
Cytochrome C oxidase 1V54 P00396, P00415, P00423, P00426, P00428, P00429, P00430,

P04038, P07470, P07471, P10175, P13183, P68530
55.52 9.15E− 4 − 8.2

Abbreviations: FAAH, fatty acid amide hydrolase; PDB, protein data bank.
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10-2474 (−7.6) is not significantly low, the score distribution of
FAAH inhibitors is significantly lower than that of the decoys, with
a P value less than 1.0e− 5. The docking score statistics analysis
suggests that the dimer interface of NMDAR has similar binding

properties to the binding site of FAAH, thus is possible to bind
FAAH inhibitors to this site, including BIA 10-2474.
A predicted binding pose for BIA 10-2474 in the dimerization

interface of the GluN1A/GluN2B NMDAR is shown in Figure 5. The
ligand is located in a pocket that is mainly formed of three
transmembrane helixes, one from the monomer GluN1A (β1), two
from the monomer GluN2B (β2 and β3). A total 60 ns molecular
dynamics simulation suggests that the complex structure is stable
(Supplementary Figure S6). Compared with the unbound structure
(gray colored in Figure 5), two helices β2 and β3 had significant
shifts. Especially, β3 is positioned in the inner core that acts as an
ion channel. The change of conformation of the inner core may
impact the normal function of NMDAR as the ion channel.
The endogenous binding site of NMDAR is in its extracellular

ligand-binding domain. Docking score of BIA 10-2474 on the
endogenous binding site is − 5.2, far higher than the predicted
binding score on the dimerization interface. Furthermore, the
docking score distribution of FAAH inhibitors on this site is
statistically significantly higher than that of NMDAR ligands on this
site (Supplementary Figure S7). Thus, it is less likely that the FAAH
inhibitor binds to the endogenous site.

Phenomics analysis of NMDAR function
Finally, we investigate which phenotypes are associated with the
putative off-targets using a deep learning technique Word2Vec.
Word2Vec uses a two-layer neural network to reconstruct the
semantic context of gene and disease terms from a collection of

Figure 2. Alignment of the dimerization interface of GluN1A/GluN2B NMDA receptor (NMDA) with the primary fatty acid amide hydrolase
(FAAH) inhibitor binding pocket (FAAH). GluN1A and GluN2B chain is colored green and red, respectively. Conserved and similar residues are
marked by ‘*’ and ‘:’, respectively.

Figure 3. Surface electrostatic potential of fatty acid amide hydrolase (FAAH; a) and NMDA receptor (NMDAR; b). Binding pockets are enlarged
on the left.

Figure 4. The correlation of protein–ligand docking scores of fatty
acid amide hydrolase (FAAH) inhibitors in the primary FAAH-binding
pocket and the dimerization interface of GluN1a/GluN2B NMDA
receptor.
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22,345,439 PubMed abstracts. In this work, it maps each term in
the PubMed abstracts to a 300-dimensional vector, which
represents that term’s relation to other terms. It is noted that
two terms can be semantically related even if they do not appear
in the same document. We extracted 90,645 gene terms and
122,771 terms related to disease phenotypes. Then gene–disease
association is evaluated by the statistical significance of cosine
similarity between the gene term and disease term.
As shown in Figure 6, the probability distribution of cosine

similarity between random paired terms can be fitted into a
generalized extreme value distribution model with μ= 0,0731,
σ= 0.0453 and ξ=− 0.0370, as supported by Bayesian Information
Criterion of − 30,749.92. The Q–Q plot of fitting is shown in
Supplementary Figure S8. Subsequently, we can calculate the
e-value of the observed similarity score by multiplying the P value
derived from the extreme value distribution model with the
number of term clusters (see the 'Materials and Methods' section
for details).
We used ‘ndmars’, the frequently appeared term of the NMDAR

in the literature, as a query. Table 2 shows top-ranked phenotypes
associated with the query gene term. Interestingly, most of these

terms are associated with brain disorders that cause brain cell
death, which are observed as side effects of BIA 10-2427. The full
information of Table 2 is shown in Supplementary Table S2 and
References.
The phenotype associations with NMDAR automatically identi-

fied from word2vec are supported by the manual search of the
literature. As shown in Table 2, the existing experimental evidence
suggests that the alternation of NMDAR causes brain disorders in
the majority of cases. Liu et al.37 have shown that the composition
of the NMDAR is of critical importance to its action as a promoter
of either neuronal cell survival or neuronal cell death. Specifically,
the NR2B subunit is the one responsible for excitotoxic neuronal
death in mature cortical cultures. In addition, NMDARs can
cause neuronal cell death through the indirect production of NO
(nitric oxide).38 Consistent with these observations, the brain cell
death was observed as the side effect of BIA 10-2427. It is noted
that the brain disorder leads to the dysregulation of the NMDAR in
three cases in Table 2. One of the drawbacks of word2vec is that it
cannot determine cause–effect relations but only correlations.

DISCUSSION
As FAAH is localized in the endoplasmic reticulum, the FAAH
inhibitor needs to permeate the cell membrane. It is possible for
FAAH inhibitors to bind the intracellular region of NMDAR. The

Figure 5. NMDAR structure models. Models colored gray and light blue are before and after the predicted FAAH inhibitor binding,
respectively. Predicted binding pose of BIA 10-2474 is represented as a sphere model. Helix β1 is from GlnN1A, and β2 and β3 are from Gln2B.

Figure 6. Histogram of cosine similarity between glutamate receptor
and phenotypes. The histogram can be fitted into a generalized
extreme value distribution (EVD) model.

Table 2. Top 10 ranked phenotype associations of glutamate receptor

Disease phenotype Cosine similarity E-value

Glutamatergic dysfunction 0.5849 4.40E− 03
Ischemic neurodegeneration 0.5157 5.39E− 02
Excitotoxic disorder 0.5082 6.98E− 02
Rasmussen encephalitis 0.4913 1.24E− 01
Stroke ischemia 0.4877 1.40E− 01
GABAergic deficit 0.4875 1.41E− 01
Autoimmune epilepsy 0.4864 1.46E− 01
Glutamatergic deficiency 0.4854 1.51E− 01
Hypoglutamatergic disorder 0.4808 1.76E− 01
Chronic progressive epilepsia 0.4741 2.19E−01

Cellular off-target binding and drug adverse reaction
S Dider et al

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2016) 16023



predicted associations between the malfunction of the NMDAR
and brain disorders are supported by additional evidences from
the literatures. The dimer interface is of particular interest as the
residues participating in the putative binding site of NMDA
(Supplementary Table S1). The dimer interface has been shown by
Mcllhinney et al.39 to be critical to the cell surface expression of
the NMDA subunits NR1 and NR2A; NR2A is not transported to the
cell surface unless already associated with NR1. Furthermore
Meddows et al.40 has shown that there is a progressive loss of
NR2A surface expression as the N terminus of NR1a is successively
shortened ‘…with complete loss when truncated beyond residue
380’. Paoletti and Neyton41 hypothesize that the dimer interface is
involved in the allosteric regulation pathway between the Agonist
Binding Domains (ABD) of NMDA and its pore domain. The
allosteric interaction modulates channel opening (activation).
Sun et al.42 provide evidence for the importance of the dimer
interface in a different ionotropic glutamate receptor: the AMPA
receptor, which is a structural homolog of the NMDAR. They
suggest that the stability of the dimer interface controls the
coupling of agonist binding and channel gating. Furthermore, the
rearrangement of the dimer interface desensitizes the AMPA
receptor.42

One of the observed side effects of BIA 10-2474 is hemorrhage.
The major cause of brain hemorrhage is high blood pressure.
NMDARs have been shown to be associated with the regulation of
blood pressure. Glass et al.43 have shown that NMDARs contribute
to the slow-pressor response in mice that are injected with
Angiotensin II. Furthermore, Glass et al. have shown that the slow-
pressor response requires GluN1 gene expression in PVN neurons
and that ‘...the subcellular distribution of GluN1 is modified in
dendritic profiles of PVN neurons following increases in blood
pressure induced by Ang II’. This suggests that ‘..NMDAR plasticity
in PVN neurons has a role in the elevated blood pressure
mediated by Ang II’. Pyatin et al.44 have suggested that NMDARs in
A5 neurons, mediate blood pressure shifts during hypoxia. They
show that the blood pressure drop in mice from induced hypoxia
is significantly accentuated when NMDARs in A5 neurons are
blocked as compared with mice whose receptors are not blocked.
Ryu et al.45 have shown that blockage of NMDARs using the
selective inhibitor, MK-801, resulted in the blockage of the
induced responses in rats, from Endothelin-1, a potent vasocon-
strictor that increases the arterial blood pressure. This suggests
that the effects of Endothelin-1 are mediated by NMDARs.
Li et al.46 have shown that elevated NMDAR activity can increase
lead to hypertension. They show that protein kinases and
phosphatases are involved in regulating NMDAR activity in
hypertensive rates, and that imbalance of NMDAR phosphoryla-
tion can ‘...augment the excitability of hypothalamic presympa-
thetic neurons and sympathetic nerve discharges in hypertension’.
Their results indicate that reducing NMDAR phosphorylation levels
may be effective in treating neurogenic hypertension. Finally,
Gören et al.47 have suggested that NMDARs located in the
paraventricular nucleus of the hypothalamus in rats may
participate in the regulation of cardiovascular homeostasis,
specifically, arterial blood pressure and heart rate. They show
that the blockade of NMDARs in the paraventricular nucleus,
through a competitive NMDAR antagonist, results in the blunting
of increases in arterial blood pressure induced by intracerebro-
ventricular injections of NMDA.
In summary, the results from our structural phenomics

prediction are consistent with existing experimental and clinical
results, indicating that the dimer interface of the NMDAR may be
critical to its function. Because the residues of our putative
binding sites are those that primarily participate in the dimer
interface of NMDA, we hypothesize that the binding of the FAAH
inhibitors (in particular BIA 10-2427) may alter the conformation of
NMDAR, leading to potentially deadly side effects. In addition to
NMDAR, several other BAs are also potential off-targets of FAAH

inhibitors. Further computational and experimental validations of
this prediction may provide new insights into the design of safe
and potent FAAH inhibitors.

MATERIALS AND METHODS
Structural proteome-wide off-target search
A FAAH structure that is co-crystallized with a drug-like inhibitor PF-750
(PDB id: 2VYA) was compared with 40,491 non-redundant BAs in PDB48

using SMAP v2.1.13–15 Default parameters were used in the computation.
For the top-ranked hits with P value o1.0e− 3, proteins that were not
human homologous were removed. The remaining proteins were selected
for further analysis. In this work, only the highest ranked protein, GluN1A/
GluN2B (PDB id: 4PE5), was studied.

Homology modeling of the GluN1A/GluN2B NMDAR
The PDB structure 4PE5 was not of a human protein, but a rat protein; in
addition, there were missing loops in the structure. The human sequence
of GluN1A and GluN2B was separately sent to the protein structure
prediction server, I-TASSER34 to build a homology model with recon-
structed loops. The resulting two models were combined as a single
complex structure by aligning with corresponding chains in 4PE5 using
FATCAT structural alignment server with the rigid alignment option.49

Docking of FAAH inhibitors, decoys and BIA 10-2474
Next, a list of 663 known FAAH inhibitors was compiled from ChEMBL16 for
docking with the main target, FAAH (PDB id: 2VYA) as well as the off-target
GlnN1A/Gln2B NMDAR homology model. A total 624 FAAH inhibitors were
iteratively docked to each target. Autodock Vina,17 through the PyRx GUI
interface, was used to perform the docking simulations. The centers for the
binding box were approximated by averaging the positions of the
conjugated co-crystal ligand’s (PF7) atoms in the main target; PF7 was also
conjugated to the off-target (as part of the prediction of the protein
structure of the off-target, detailed above) and a similar averaging was
carried out to determine its binding center. The PDB files of the protein
targets were also cleaned; DS Visualizer was used to remove the co-
crystallized ligand and the surrounding water molecules for proper
docking with Autodock Vina. The FAAH inhibitor in question, BIA 10-
2474, was then docked to both targets and the binding scores determined.
As a control, 97 decoy ligands that were extracted from ChEMBL were

also docked to each target. Once the binding scores of inhibitors and
decoys for both targets were obtained, a paired, two-tailed t-test was done
to determine whether the difference in the scores were statistically
significant.

Molecular dynamics simulation
The membrane of POPC was first constructed with 334 POPC molecules.
The membrane was 120 Å in the x direction and 100 Å in the y direction.
The transmembrane region (TMD) of NMDAR complex is positioned in the
membrane manually using VMD with pseudo-four-fold symmetrical axis (z
axis) at TMD perpendicular to the membrane. The system was solvated in
explicit water molecules with the margin of solvent from the solute
molecule 12 Å, which led to an initial simulation box of 148× 125× 155 Å.
The ion concentration (ionic strength 0.2 mol/l), 150 Na+ and 136
Cl− were added. ACEMD software50 was used for all molecular dynamics
simulations with the CGenFF36 force field for small molecules, CHARMM27
force field for protein, CHARMM36 lipid force field for membrane
molecules and TIP3P for water molecules. Langevin thermostat and
Berendsen pressure were used for temperature control at 300 K and
pressure maintenance of 1 atmosphere. Periodic boundary conditions
were applied in the simulation.

Calculation of surface electrostatic potential
DelPhi (v5.1) software36 was used to calculate electrostatic potentials. The
AMBER partial atomic charges and atomic radii were used, and the internal
dielectric constant value was set as 4. External dielectric constant was set
as 2 and 80 for transmembrane and solvent-exposed domain, respectively.
The solvent and ionic probe radius was 1.4 and 2.0 Å, respectively. The
electrostatic potential surface was shown by Pymol.51 The negatively and
positively charged surfaces are shown in red and blue, respectively.
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Text mining of gene–phenotype association
Data preprocessing. A total 22,345,439 PubMed abstracts dated before
July 2014 were downloaded from the National Library of Medicine.
BioLemmatizer v1.2 was used to transform a word to a lemma.52 Part-of-
speech tagger was carried out using RDRPostagger v1.13.53 Disease, gene
and chemical name entities were recognized using DNorm v0.0.6;54 Gimli
v1.0.2;55 and tmChem,56 respectively. A total 90,645 gene terms and
122,771 terms related to disease phenotypes were extracted. In this study,
chemical terms were not involved. Phrases were recognized from words
except those recognized as disease, gene and chemical terms, using the
Word2Vec utility tool.18

Vector representation of terms. Word2Vec18 was used to
map each processed term in the PubMed abstracts to a
300-dimensional vector, which represent that term’s relation to other
terms. Instead of individual sentences, whole abstracts were used as the
training sample. The rationale was that the terms in the different sentences
could be related if they were in the same abstract. A Skip-gram model with
a widow size of 10 was used for the training.

Calculation of term–term relations. Gene–disease associations were then
evaluated by the cosine similarity between the vector representation of
gene term and that of disease term. One of features of the Word2Vec
representation is that it could capture analog relations between terms. For
example, if gene G1 is similar to gene G2, and disease D1 is similar to
disease D2 and G1 is associated with D1, then G2 may be associated
with D2.
Markov Cluster Algorithm MCL57 was used to cluster diseases based on

disease–disease cosine similarity. A total 9,787 disease clusters were
formed when the MCL-I option was set to 4.0.
The cosine similarity score of randomly selected gene–disease pairs

were fitted into a generalized extreme value distribution model. The P
value was calculated for each top-ranked association using the fitted
extreme value distribution model when querying a gene term against the
disease terms. The P value was converted to an e-value by multiplying the
number of disease clusters.

Conclusion
In this paper, we introduce a structural phenomics method to identify the
cellular off-target of drugs and to link them to human physiology and
pathology. We apply this method to identify cellular off-targets of FAAH
inhibitors that are promising therapeutics for the treatment of pain and
CNS disorders, but may cause deadly side effects. We propose that the
FAAH inhibitor may bind to the dimerization interface of the NMDAR, and
thus disrupt its physiological function. Moreover, the elucidated cellular
off-target effects from the NMDAR are strongly correlated to observed
phenotypes. This study demonstrates that a structural phenomics
approach, which systematically explores cellular protein–ligand interac-
tions on a genome-wide scale and then links them to phenotypes, is
complementary to existing methods for the prediction of drug–target
interactions that, not only has limited proteome coverage, but also focuses
on protein monomers that may not represent the functional form of
proteins in the cell. It is expected that the structural phenomics approach
will provide us with valuable clues as to the cellular basis of drug actions.
At the same time, it will help to transform the conventional one-drug-one-
target drug discovery process to a new paradigm of polypharmacology.
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