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Abstract: In the present study, metallophthalocyanines were modified with NIT nitroxide radicals
through chemical bonds to prepare a series of metallophthalocyanines–NIT catalysts (MPcTcCl8-NIT,
M=Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) applied for oxidative desulfurization of thiophene
(T) in model fuel. The MPcTcCl8-NIT catalysts were characterized by FTIR, UV-Vis, ESR, and
XPS spectra. The oxidative desulfurization activity of MPcTcCl8-NIT catalysts was studied in a
biomimetic catalytic system using molecular O2 as the oxidant. The MPcTcCl8-NIT catalysts exhibited
high catalytic activities for the oxidation of thiophene in model fuel. The desulfurization rate
of ZnPcTcCl8-NIT for thiophene reached to 99.61%, which was 20.53% higher than that of pure
ZnPcTcCl8 (79.08%) under room temperature and natural light. The results demonstrated that
MPcTcCl8-NIT catalysts could achieve more effective desulfurization rate under milder conditions
than that of the metallophthalocyanines. The NIT nitroxide radicals also could improve the catalytic
activity of metallophthalocyanine based on the synergistic oxidation effect. The stability experiments
for ZnPcTcCl8-NIT showed that the catalyst still had a high desulfurization rate of 92.37% after five
times recycling. All these findings indicate that the application of MPcTcCl8-NIT catalysts provides a
potential new way for the desulfurization performance of thiophene in fuel.

Keywords: NIT nitroxide radical; metallophthalocyanine; synergistic oxidation effect; desulfurization

1. Introduction

With people’s demand for cars increasing, the increasing types and numbers of vehicles
have driven the massive using of gasoline and diesel. In recent years, vehicle exhaust
has led to severe air pollution in many cities, and the air pollution index has skyrocketed.
Bad weather phenomena such as dense fog, smog, and acid rain have frequently occurred.
Meanwhile, the number of people with allergies and respiratory diseases has increased
rapidly. All these factors have made people realize that the large consumption of gasoline
and diesel has led to an irreversible impact on the atmospheric environment and human
health [1–6]. This is mainly because the high sulfur content of fuel will seriously damage
the catalytic converter in the exhaust pipe of an automobile, resulting in poisoning of the
catalyst inside and emitting much harmful substances from the automobile exhaust. The
emissions that exceed the standard limits directly endangered the atmospheric environment.
With the continuous improvement and strict regulations of environmental protection laws
and regulations in various countries, the sulfur content limit of vehicle fuel is becoming
increasingly stringent. In view of this, it is necessary to reduce the sulfur content in gasoline
and diesel. Therefore, the production of ultra-low sulfur content fuel is an inevitable
choice for the national economy and people’s livelihood, as well as for environmental
protection and ecology. In recent years, oxidation desulfurization technology has gradually
become the research focus, and it is a promising deep desulfurization technology of fuel
oil [7–9]. Oxidative desulfurization mainly uses oxidants to gradually oxidize sulfides into
smaller substances, such as sulfones and sulfoxides, under the action of catalysts. The

Molecules 2022, 27, 5964. https://doi.org/10.3390/molecules27185964 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27185964
https://doi.org/10.3390/molecules27185964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27185964
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27185964?type=check_update&version=1


Molecules 2022, 27, 5964 2 of 14

focus of oxidative desulfurization research is the selection and development of oxidants
and catalysts.

The most commonly used oxidant for oxidative desulfurization is hydrogen peroxide,
which is a strong oxidant and can be used with some homogeneous or heterogeneous cata-
lysts to achieve deep desulfurization [10]. However, the homogeneous catalysts are difficult
to be recovered which reduces the reusability of this type of catalysts [11]. The application
of oxygen in the air as an oxidant for desulfurization has also become an effective method
to reduce the operation cost of desulfurization [12]. However, the oxidizability of oxygen
is lower than that of hydrogen oxide. It is more important to develop some new effective,
economic, and pollution-free desulfurization catalysts.

Metallophthalocyanine is a chemically stable porphyrin-like compound, that has the
catalytic properties of biological enzymes and the function of activating molecular oxy-
gen. Compared with metal porphyrins with similar structures, metallophthalocyanines
have more obvious structural advantages, and the metallophthalocyanine conjugated ring
structure with different substituents can be used to modify the electron cloud distribution,
which is closely related to the catalytic oxidation performance, and improve the reaction
activity [13]. It is expected that metallophthalocyanines can be effective desulfurization
catalysts using oxygen in air as oxidant, which has attracted much attention in the field of
the biomimetic catalytic oxidative desulfurization [14]. Reactive metallophthalocyanines
generate highly reactive free radicals ·OH and ·O2− by light to degrade sulfur-containing
organic molecules [15]. At present, many factories at home and abroad have adopted
desulfurization technology with metallophthalocyanine as a catalyst, because of its simple
desulfurization technology, low cost, and high overall desulfurization efficiency [16]. How-
ever, as a catalyst, metallophthalocyanine has low catalytic activity at room temperature.
Researchers found that the modification of phthalocyanine can improve its desulfurization
activity [17,18].

In recent years, nitroxide radicals as oxidants have received extensive attention [19].
Nitroxide radical is an organic compound containing C, N, O, and a single spin electron.
The nitroxide radicals have been successfully used in many fields such as biology, mag-
netism, and polymerization inhibitors due to their unique molecular space structure, single-
electron delocalization, and other unique properties [20–22]. The stable nitroxide radical
compounds are mainly divided into two classes, TEMPO (2,2,6,6-tetramethylpiperidine-
1-oxyl radical) and NIT (4,4,5,5-tetramethyl-2-imidazole) oxoline-1-alkoxy-3-oxide) [23]
(Figure 1a). Studies have shown that the nitroxide radicals exist in three forms: nitroxide
radical, hydroxylamine and oxoammonium cations both in TEMPO and NIT, and that the
redox conversion can be achieved between the three forms by gaining and losing elec-
trons [24,25] (Figure 1b). In 1965, Golvbev found that TEMPO could be used to selectively
oxidize primary alcohols to aldehydes [26], which indicated TEMPO had strong selectivity
and catalytic oxidation, leading to its wide use in the field of catalytic oxidation [27,28].
For instance, TEMPO has been applied in desulfonylative α-oxyamination reactions of
α-sulfonylketones [29] and fast-response electroactive actuators based on TEMPO-oxidized
cellulose nanofibers [30]. However, there are few reports on the application of NIT nitroxide
radicals for catalytic oxidation. Compared with TEMPO, the unpaired electrons in NIT
radicals are delocalized on two equal N-O groups, resulting in a wider electron distribution
and higher activity [31]. The randomness of the substituents for aldehyde group used in
raw materials makes the NIT radicals a good modifying group [32,33].
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nine (MPc(COOH)4Cl8) -NIT catalysts in the present study. Using oxygen molecules in the 
air as the oxidant, the sulfur-containing compound thiophene was catalytically oxidized 
under visible light, and the cyclic regeneration performance and the stability of these new 
catalyst were explored by the single-variable method. The desulfurization results showed 
that the catalyst exhibits excellent oxidative activity for the desulfurization of fuels due to 
the introduction of NIT nitroxide radicals. 

2. Results and Discussion 
2.1. Synthesis of MPcTcCl8-NIT Catalysts 

The synthesis process of MPcTcCl8-NIT catalysts was shown in Figure 2, and the spe-
cific synthesis process was illustrated by taking ZnPcTcCl8-NIT as an example.  
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Figure 2. The synthesis route of MPcTcCl8-NIT catalysts. 
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Due to the sensitivity and accuracy, ESR spectroscopy is the best tool for the study of 

free radicals. As shown in Figure 3, the ESR spectra showed that the g value range of 
MPcTcCl8-NITs was from 2.0062 to 2.0071, and the ESR spectra displayed a strong signal 

Figure 1. (a) Structure of TEMPO and NIT. (b) Different TEMPO oxidation states/protonation states.

In order to solve the problems that metallophthalocyanines has low catalytic activity
at room temperature, the NIT nitroxide radical was bonded to the support metallophthalo-
cyanine (MPc(COOH)4Cl8) through chemical bonds to prepare the metallophthalocyanine
(MPc(COOH)4Cl8) -NIT catalysts in the present study. Using oxygen molecules in the air as
the oxidant, the sulfur-containing compound thiophene was catalytically oxidized under
visible light, and the cyclic regeneration performance and the stability of these new catalyst
were explored by the single-variable method. The desulfurization results showed that
the catalyst exhibits excellent oxidative activity for the desulfurization of fuels due to the
introduction of NIT nitroxide radicals.

2. Results and Discussion
2.1. Synthesis of MPcTcCl8-NIT Catalysts

The synthesis process of MPcTcCl8-NIT catalysts was shown in Figure 2, and the
specific synthesis process was illustrated by taking ZnPcTcCl8-NIT as an example.
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2.1.1. ESR Spectra

Due to the sensitivity and accuracy, ESR spectroscopy is the best tool for the study
of free radicals. As shown in Figure 3, the ESR spectra showed that the g value range of
MPcTcCl8-NITs was from 2.0062 to 2.0071, and the ESR spectra displayed a strong signal
intensity, which indicated the presence of free radicals at a high density in MPcTcCl8-NITs.
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Figure 3. The ESR spectrum of MPcTcCl8-NITs.

2.1.2. IR Spectra

The FT-IR spectra measured for the MPcTcCl8-NIT catalysts was shown in Figure 4. The
intermediate TcPcL-1 exhibited the O-H stretching vibration absorption peak at 3390 cm−1.
The C=O stretching vibration at 1617 cm−1 comes from the carbonyl group formed by the
connection of metallophthalocyanine complex acyl chloride and L-proline. The peaks at
2996 cm−1 and 2927 cm−1 were attributed to the C-H stretching vibration peak on the
aldehyde group of the oxidized intermediate TcPcL-2, the C=O stretching vibration peak
appears at 1619 cm−1 attributed to the carbonyl group on amide bond, and the peak at 1764
cm−1 was attributed to the C=O stretching vibration on the aldehyde group. It could be
observed from the IR spectrum analysis that the infrared spectra for the six different central
metal ions of MPcTcCl8-NIT compounds showed little differences from each other. The
characteristic peak at 3400 cm−1 was obviously broadened, which was due to the stretching
vibration of C-H bond caused by bonding of NIT radicals to the synthesized complex. The
wavenumber of peaks ranged between 1710–1450 cm−1 were due to the C=C bond and
C=N stretching vibration bond on the aromatic ring of metallophthalocyanine, as well as
the C=O bond for acyl chlorination linking the metallophthalocyanine complex and the
NIT radical moiety. The C-N single bond of the radical moiety was reflected the peak in
the wavenumber range of approximately 1400–1200 cm−1. The C-H bending vibration
peak on the phthalocyanine ring was located at 1200–1000 cm−1. The absorption vibration
peaks at 1050–1020 cm−1 were attributed to the central metal ion and the M-N of the
nitrogen atom on the metallophthalocyanine ring. More importantly, the characteristic
peaks at approximately 790–710 cm−1 were attributed to the stretching vibration of the
phthalocyanine ring, indicating that the phthalocyanine ring was not destroyed by the
introduction of free radicals.
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2.1.3. UV-Vis Spectra

The UV-Vis spectra of the intermediates and MPcTcCl8-NIT catalysts were shown in
Figure 5. From the spectrum of TcPcL-2, the peak at 278 nm indicated that the hydroxyl
in TcPcL-1 was oxidized to an aldehyde group. In general, phthalocyanines showed two
characteristic absorption bands in the UV-Vis spectrum. The Q absorption band between
600 and 750 nm was assigned to the transition of electrons from the highest occupied
molecular orbital 6, e.g., (HOMO) to the lowest unoccupied molecular orbital 2a 1u (LUMO).
The “B-band” was located at a higher p-level LUMO between 220 and 380 nm. The intensity
of the Q-band of the FePcTcCl8-NIT and MnPcTcCl8-NIT catalysts decreased significantly
due to the easy aggregation of the two catalysts. In addition, the aggregation effect led to
the broadening of the corresponding UV absorption spectrum, and the UV absorption peak
of the FePcTcCl8-NIT and MnPcTcCl8-NIT catalysts blue-shifted to 667 nm and 640 nm. The
Q absorption band of ZnPcTcCl8-NIT underwent a redshift, first from 678 nm to 700 nm;
and finally to 720 nm, due to the introduction of amino and free radical auxochromic
groups onto the phthalocyanine. The intensity of the B absorption band of ZnPcTcCl8-NIT
was enhanced. All the results indicated that the radicals were successfully immobilized
onto phthalocyanine.
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2.1.4. XPS Spectra forMPcTcCl8-NIT

The XPS spectra of ZnPcTcCl8-NIT was shown in Figure 6a, indicating that the main
elements contained in the MPcTcCl8-NIT catalysts were C1 s, N1 s, O1 s, and various metal
elements. Since the content of the central metal ions was relatively low relative to other
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elements, the peaks displayed in the total element diagram also showed a low intensity.
Figure 6b–e showed the high-resolution XPS spectra for each element in the ZnPcTcCl8-NIT
radical. Figure 6b showed that the Zn 2p signals were located at approximately 1022.3 eV
and 1045.6 eV, respectively, indicating that the metallophthalocyanine host was not affected
by the synthesis of the catalyst. From the C1s spectrum in Figure 6c, there were three signal
peaks at 284.1 eV, 286.5 eV, and 290.1 eV, and it could be observed that the carbon element
in the ZnPcTcCl8-NIT catalyst has three bond shapes: C=N, C-N and C=O. It could be
observed from Figure 6d that the signal peaks for N 1s were located at 399.8 eV and 404.9 eV,
indicating that there were C-N and C=N bonds in the bonding state in the synthesized
substance. As shown in Figure 6e, the O 1s peak state was the basic oxidation state of the O
atom, which was displayed at approximately 532.9 eV and 537.3 eV, respectively, indicating
that two forms existed: one was the C=O double bond, and the other was the N-O bond.
It could be concluded that the ZnPcTcCl8-NIT catalyst was successfully synthesized in
combination with the infrared test.
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2.2. Desulfurization Effect of MPcTcCl8-NIT

The desulfurization rates of the MPcTcCl8-NIT catalysts with different central metal
ions on thiophene model fuel were shown in Figure 7. Compared with the blank experi-
ment (the same desulfurization conditions without catalysts) under natural illumination,
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the content of sulfur in model fuel was significantly decreased because of the catalytic
oxidation reaction of MPcTcCl8-NIT catalysts. The desulfurization rates of MPcTcCl8-NIT
catalysts with different metal centers showed some differences. The desulfurization rates
of MnPcTcCl8-NIT, FePcTcCl8-NIT, CoPcTcCl8-NIT, NiPcTcCl8-NIT, CuPcTcCl8-NIT, and
ZnPcTcCl8-NIT were 92.32%, 94.75%, 92.54%, 98.09%, 95.91%, and 99.61%, respectively.
ZnPcTcCl8-NIT showed the highest desulfurization rate, reaching 99.61%. The desulfu-
rization rates of the other MPcTcCl8-NIT catalysts all reached more than 90%, and all
MPcTcCl8-NIT catalysts achieved deep desulfurization. These results indicated that the
synthesized MPcTcCl8-NIT catalysts had a good desulfurization effect on thiophene.
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As shown in Figure 8, the desulfurization reaction of pure metallophthalocyanines
needed to be performed at 60 ◦C using a xenon lamp as a simulated light source, while for
the MPcTcCl8-NIT catalysts, the desulfurization reactions were carried out under natural
light and room temperature. The results showed that the MPcTcCl8-NIT catalysts could lead
to a significant improvement of the catalytic degradation for the thiophene compared to
the unmodified metallophthalocyanine compounds, the degree of improvement was 1.2%,
1.3%, 1.73%, 2.23%, 2.94%, and 5.53%, respectively. It was demonstrated that MPcTcCl8-
NIT catalysts could achieve more effective desulfurization rate under milder conditions
than that of the metallophthalocyanines. In order to further confirm the conclusion, the
ZnPcTcCl8-NIT catalyst and pure ZnPcTcCl8 were applied to desulfurization experiments
under the same conditions. The desulfurization rate of ZnPcTcCl8-NIT and pure ZnPcTcCl8
for thiophene reached 99.61% and 79.08% under the room temperature and natural light
(Figure 9). Meanwhile, this result also further indicated that the influence of the NIT groups
on the catalytic activity of metallophthalocyanines was obvious. The desulfurization rate
of the ZnPcTcCl8-NIT catalyst could be increased by 20.53% due to the chemical bonding
of the NIT radicals to ZnPcTcCl8 (Figure 9). The combination of NIT nitroxide radicals on
metallophthalocyanine compounds could significantly improve the desulfurization activity
for the catalyst materials.
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In practical applications, the stability of these catalysts in cyclic use is an important
indicator for characterizing the catalyst performance. To evaluate the cyclic stability of
ZnPcTcCl8-NIT, a cyclic test reaction was designed. Under the optimal reaction conditions,
the reusability of the catalysts with the best effect was determined. After each cyclic test
of ZnPcTcCl8-NIT for desulfurization was complete„ ether was added to the reaction
system, ZnPcTcCl8-NIT was precipitated, filtered, and dried under vacuum, and then the
catalyst was recovered for recycling. The above operation was repeated for each loop, and
the test conditions remained the same each time. The results of the recycling test of the
ZnPcTcCl8-NIT catalyst of desulfurization for thiophene showed that under the optimal
reaction conditions, the desulfurization rate of ZnPcTcCl8-NIT still could reach 92.37% after
five times recycling, which indicated that the MPcTcCl8-NIT catalysts had a good recycling
stability and could be reused (Figure 10).
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2.3. Photo-Catalytic Degradation Mechanism of the MPcTcCl8-NIT

By summarizing the experimental results obtained for the photocatalytic performance
of MPcTcCl8-NIT catalysts for the degradation of thiophene in n-octane, a mechanism for
the oxidative catalytic desulfurization was proposed (Figure 11): metallophthalocyanine
and NIT nitrogen oxygen radicals could achieve the simultaneous degradation of thio-
phene based on the two parts of the host. First, the thiophene molecules to be degraded
were dissolved in DMF solution, so that the MPcTcCl8-NIT catalysts could be completely
contacted with thiophene. MPcTcCl8-NIT was then added to the system. On one hand,
the active radical components were used to catalyze the oxidation and degradation of
thiophene and converted it into sulfate ions and sulfones. The oxygen in the air con-
tinued to promote the conversion of NIT nitroxide radicals from hydroxylamine to the
original free radicals [34–36]. Meanwhile, in the presence of visible light, the main part of
metallophthalocyanine absorbed photoelectrons to change its own energy and generated
photoelectrons combined with oxygen [37–40]. Under the action of electron–hole pairs,
O2-MPcTcCl8-NIT catalysts were immediately converted into the activated state of *O2-
MPcTcCl8-NIT catalysts, and *O2-MPcTcCl8-NIT catalysts converted thiophene to sulfate
ions and sulfones by oxidation. The synergistic catalytic oxidation of metallophthalocya-
nines and free radicals achieved the effect of deep desulfurization.

To study the role of oxygen in desulfurization, two groups of Experiments A and B
were set up. For group B, air was injected into the flask with an air pump, which led to
the achievement of a desulphurization rate of 99.61% after 4 h, while for group A, without
oxygen, showed a desulfurization rate that remained at approximately 42% (Figure 12).
From this, it could be concluded that the radical supported by the target compound was
converted into hydroxylamine, which had no oxidative ability after consuming its own
single electron. However, when air was continuously injected into the flask, the oxygen in
the air could convert hydroxylamine into the original active free radical. As a result, the
NIT nitroxide radical achieved single-electron activity recovery, continued to catalyze the
oxidation of thiophene in the system, and achieved continuous desulfurization. Meanwhile,
O2 also reacted with the phthalocyanine host under light conditions to provide holes and
peroxide radicals. Therefore, in the process of phthalocyanine host and NIT nitroxide
radicals catalyzing the oxidation of thiophene, the two-part synergistic catalytic oxidation
of thiophene was realized (Figure 9). Finally, thiophene was converted into sulfate ions
and sulfones by superoxide radicals to complete the catalytic oxidation process.
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3. Materials and Methods
3.1. Characterization

In this paper, a TENSOR II infrared spectrometer (Bruker Optical Instrument Co., Ltd.,
Berlin, Germany) was used for testing, and the wavenumber scanning range was 400–4000 cm−1.
The samples were prepared by pressing potassium bromide to remove moisture. The UV-
Vis spectrum was tested with a UV-2550 produced by Japan’s Shimadzu Corporation.
The substance to be tested was configured into a dilute solution for testing, and the
ultraviolet light wavelength range was set to 200–800 nm. An Elementar Vario EL III,
PE elemental analyzer was used. The EPR spectral test was used to test the ADANl
SPlNSCOULD X compact electron spin resonance (ESR) spectrometer produced by ADANI
company for characterization, and solid powder samples were used because of their poor
solubility. X-ray photoelectron spectroscopy (XPS) was performed using an axwas ultra-
spectrometer with an Al (Mono) Kα source (1486.6 eV). The thiophene concentration was
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determined using an Agilent 6890 gas chromatograph equipped with a flame photometric
detector (FPD).

3.2. Synthesis Methods

All reagents were of analytical grade and used without further purification.

3.2.1. Synthesis of ZnPcTcCl8
Metallophthalocyanine was prepared according to the method of our previous work [16].

In total, 1.0025 g of 3,6-dichloro-1,2,4-benzenetricarboxylic acid anhydride and 0.3654 g of
Zn(CH3COOH)2 · 4H2O were added as raw materials to a 100 mL three-neck flask, and then
6.0000 g of urea and 0.2500 g of NH4Cl were added. A mixture of 0.1200 g (NH4)2Mo2O7
was heated at 140 ◦C for 0.5 h with a magnetic stirrer. The reaction solution was then
maintained at 220 ◦C for 6 h under ambient air conditions. The crude product was washed
with water and 6 mol · L−1 HCl three times, respectively. Then, 150 mL of acetone and
chloroform were used as solvents for reflux for about 12 h to obtain 1.2813 g of green solid
product ZnPcTcCl8.

3.2.2. Synthesis of the TcPcL-1 Intermediate

The metallophthalocyanine catalyst ZnPcTcCl8 (1.200 g) and 50 mL dichlorosulone
were mixed in a 250 mL three-necked flask and then heated to reflux for 5 h. After
the solvent was removed, 100 mL dichloromethane and 6 mL trethylamine were added
into the reaction system after the reaction flask was cooled in an ice water bath. Then,
3.0 g L-proline (30 mmol) and 50 mL dichloromethane mixed solution were slowly dripped
into the three-neck flask, and the ice-water bath was removed after the dripping, which
was stirred at room temperature for 20 h. The solvent was removed by rotary evaporation,
and the intermediate 1.1 g TcPcL-1 was obtained.

3.2.3. Synthesis of the TcPcL-2 Intermediate

A total of 1.0 g TcPcL-1 (4.0 mmol), 0.93 g Trichloroisocyanuric acid (TCCA), and
30 mL dichloromethane were added to a 100 mL single-necked flask in an ice-water bath,
with the temperature kept at 0–5 ◦C. A small amount of TEMPO was added after stirring
for a few minutes. As the color of the TEMPO faded, the solubility of the TCCA increased.
The reaction system was stirred at room temperature for 20 min after the ice-water bath
was removed. The filter cake was washed with acetone after suction filtering to obtain
0.69 g of a brown intermediate TcPcL-2.

3.2.4. Synthesis of ZnPcTcCl8-NIT

First, 0.4 g of TcPcL-2, 0.74 g of dihydroxyamine, and 40 mL of methanol were placed
into a 100 mL single-neck flask. The reactants were rapidly dissolved, and the reaction
was stirred at 70 ◦C under reflux for 24 h. The reaction system was centrifuged at room
temperature at 8000 r for 3 min and then dried in vacuum after the solvent was removed.
The product was dispersed in 60 mL of secondary deionized water in an ice-water bath, and
206 mg of sodium nitrite and 3 drops of glacial acetic acid were added with stirring. The
reaction was maintained at a temperature of 65 ◦C for 1 h. After being naturally cooled to
room temperature, the final product, ZnPcTcCl8-NIT, was centrifuged at a speed of 8000 r
for 3 min, washed twice with deionized water, and dried under vacuum.

Zn(II)PcTcCl8-NIT: 0.36 g, (53.86%) Yield; green solid; m.p. > 300 ◦C; IR (KBr)
ν max/cm−1: 3311 (νC-H); 1642 (νC=N); 1050 (νM-N); 1311, 1167, 797 (νPc); UV-Vis
(DMF) λ max/nm: 241, 296, 644, 721; Anal. Cald. for C80H80N20O8Cl8Zn: C, 53.42; H, 4.48;
N, 15.58; Found: C, 52.85; H, 4.68; N, 15.90.

Mn(II)PcTcCl8-NIT: 0.24 g, (35.16%) Yield; green solid; m.p. > 300 ◦C; IR (KBr)
ν max/cm−1: 3284 (νC-H); 1588 (νC=N); 1025 (νM-N); 1394, 1151, 744 (νPc); UV-Vis
(DMF) λ max/nm: 269, 639, 705; Anal. Cald. for C80H80N20O8Cl8Mn: C, 53.73; H, 4.51; N,
15.67; Found: C, 53.86; H, 4.28; N, 15.88.
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Fe(II)PcTcCl8-NIT: 0.27 g, (40.23%) Yield; blue solid; m.p. > 300 ◦C; IR (KBr) ν max/cm−1:
3564 (νC-H); 1622(νC=N); 1021 (νM-N); 1390, 1127, 740 (νPc); UV-Vis (DMF) λ max/nm:
234, 294, 620, 660; Anal. Cald. for C80H80N20O8Cl8Fe: C, 53.71; H, 4.51; N, 15.67; Found: C,
53.26; H, 4.43; N, 15.75.

Co(II)PcTcCl8-NIT: 0.31 g, (45.26%) Yield; blue solid; m.p. > 300 ◦C; IR (KBr) ν max/cm−1:
3457 (νC-H); 1661(νC=N); 1040 (νM-N); 1293, 1146, 750 (νPc); UV-Vis (DMF) λ max/nm:
235, 291, 361, 638, 710; Anal. Cald. for C80H80N20O8Cl8Co: C, 53.61; H, 4.50; N, 15.63;
Found: C, 53.45; H, 4.35; N, 15.78.

Ni(II)PcTcCl8-NIT: 0.28 g, (39.67%) Yield; green solid; m.p. > 300 ◦C; IR (KBr)ν max/cm−1:
3331 (νC-H); 1574 (νC=N); 1031(νM-N); 1390, 1118, 779 (νPc); UV-Vis (DMF) λ max/nm:233,
269, 642, 716; Anal. Cald. for C80H80N20O8Cl8Ni: C, 53.62; H, 4.50; N, 15.63; Found: C,
53.55; H,4.29; N, 15.84.

Cu(II)PcTcCl8-NIT: 0.29 g, (42.38%) Yield; green solid; m.p. > 300 ◦C; IR (KBr)
ν max/cm−1: 3564 (νC-H); 1691(νC=N); 1042 (νM-N); 1418, 1156, 787 (νPc); UV-Vis (DMF)
λ max/nm: 284, 356, 644, 723; Anal. Cald. for C80H80N20O8Cl8Cu: C, 53.48; H,4.49; N,
15.59; Found: C, 52.85; H, 4.66; N, 15.12.

3.3. Evaluation of the Photocatalytic Activity

1 mL thiophene was added to 499 mL cyclohexane to prepare 500 mL 2000 µL/L
model gasoline. MPcTcCl8-NIT catalysts (0.2 g) and model gasoline (50 mL, 2000 µL/L)
were prepared in a 250 mL volumetric flask with an air pump to pass air into the flask. The
reaction was carried out under room temperature, atmospheric pressure, and natural light.
The sample was taken every 40 min and centrifuged at 3000 r/min for 5 min. The upper
clear liquid was absorbed by the chromatograph sampler (1 µL) without the exclusion of air
bubbles. To evaluate the desulfurization efficiency, each sample was measured three times
by gas chromatography (Agilent 6890) to obtain the average value. The desulfurization
rate was calculated by using the following formula: D (%) = (C0 – Ct)/C0 × 100%, where D
was the conversion date, C0 was the initial sulfur content concentration, and Ct was the
sulfur content concentration after a period of desulfurization.

3.4. Evaluation of the Catalyst Recycling

The recycling process of catalysts is as follows: firstly, thiophene sulfide was oxidized
to sulfoxide and sulfone by oxidant such as oxygen. Then, the diethyl ether solution was
added to the reaction system and the reaction was cooled to room temperature to fully
precipitate the desulfurization catalyst. Finally, the precipitated catalyst was filtered, and
then the catalyst was washed with distilled water three times and dried under vacuum
at 100 ◦C.

4. Conclusions

In this paper, a series of MPcTcCl8-NITs catalysts with different central metal ions
were designed and synthesized to improve the desulfurization performance for thiophene
in an n-octane-containing model fuel. Under the natural light and with oxygen in the air
as oxidant, the thiophene desulfurization rate of the MPcTcCl8-NITs catalysts reached to
99.61% after 4 h and deep desulfurization could be achieved. The results indicated that
NIT nitroxide radicals promoted the catalytic activity of metalphthalocyanine based on
the synergistic oxidation effect. The stability experiments for ZnPcTcCl8-NIT showed that
the catalysts have a good recycling stability and the desulfurization rate reached to 92.37%
after five times recycling, NIT nitroxide radical modified metallophthalocyanine provided
an experimental basis for the exploration and synthesis of new metal phthalocyanine
desulfurization catalysts.
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