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Abstract
Background: Sickle cell disease (SCD) is among the most
frequent hereditary disorders globally and its prevalence
in Europe is increasing due to migration movements.
Summary: The basic pathophysiological event of SCD is
polymerization of deoxygenated sickle hemoglobin,
resulting in hemolysis, vasoocclusion, and multiorgan
damage. While the pathophysiological cascade offers
numerous targets for treatment, currently only two
disease-modifying drugs have been approved in Europe
and transfusion remains a mainstay of both preventing
and treating severe complications of SCD. Allogeneic
stem cell transplantation and gene therapy offer a cu-
rative option but are restricted to few patients due to
costs and limited availability of donors. Key Message:
Further efforts are needed to grant patients access to
approved treatments, to explore drug combinations and
to establish new treatment options.
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Introduction

Various congenital hemoglobinopathies are grouped
under the term sickle cell disease (SCD), including ho-
mozygous SCD, HbSC disease, and HbS/β-thalassemia
[1]. All these hemoglobinopathies have in common a
variant of the β-globin gene (HBB), which leads to the
exchange of the hydrophilic glutamate residue at position

6 of the β-globin chain for the hydrophobic valine. Two β-
globin chains and two α-globin chains form the tetra-
meric hemoglobin A (HbA) of the adult, whereas the
embryonic and fetal hemoglobins do not contain β-globin
and are not affected by variants in HBB. For this reason,
SCD does not manifest clinically until after neonatal age,
but can nevertheless be diagnosed immediately after
birth.

The product of the sickle cell HBB allele βS is incor-
porated into the hemoglobin tetramer instead of physi-
ological β-globin, resulting in sickle cell hemoglobin,
HbS. In the deoxygenated state, HbS can polymerize
through intermolecular hydrophobic interactions and
impose the sickle shape on the erythrocytes. This poly-
merization of hemoglobin is the first event in a patho-
physiological cascade that affects every organ through
hemolysis, vasoocclusion, and endothelial damage and
causes the systemic disease SCD.

SCD is inherited recessively. Heterozygous carriers
with one βS and one healthyHBB allele do not develop the
disease. Homozygous SCD, on the other hand, is char-
acterized by unpredictable crisis-like episodes of pain,
chronic hemolytic anemia, loss of splenic function, and
chronic damage to other organs. Patients with a com-
pound heterozygous genotype who carry a thalassemic
HBB allele in addition to the βS allele produce no or
almost no HbA in addition to HbS and develop a phe-
notype that cannot be distinguished clinically from ho-
mozygous SCD in individual cases. Patients who carry a
βC allele in addition to the βS allele also develop the
disease, but are more affected by complications of hy-
perviscosity rather than by hemolysis and vasoocclusion.
Clinically, this is particularly evident in hearing and vi-
sion disorders caused by perfusion failures in the inner
ear and retina.
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Even within the same HBB genotype, SCD is char-
acterized by a remarkable inter- and intraindividual
variability in disease progression and life expectancy
compared to other monogenetic diseases [2]. The
mechanism of disease modification that has been studied
most intensively is the expression of fetal hemoglobin,
HbF [3]. HbF can actively interfere with the polymeri-
zation of HbS, which is why higher HbF levels are as-
sociated with a more favorable disease course. The in-
duction of HbF has become a target of drug and cellular
therapies for SCD. In addition to genetic characteristics,
SCD is also decisively influenced by environmental fac-
tors including medical treatment in particular, but also
infections.

One of the infections that modify the course of SCD is
malaria [4], which is often severe and fatal in young
children with SCD. On the other hand, heterozygous
carriers are protected against severe malaria in com-
parison to people who do not carry the βS allele. In the
past, this protection against severe malaria in heterozy-
gous carriers has led to selection in favor of the βS and
similarly βC alleles in malaria regions and thus indirectly
determined the geographical distribution of the βS trait
and SCD. The migratory movements of the last centuries,
decades, and years have partially broken the geographical
link of SCD to malaria prevalence areas and have in-
creasingly established SCD, originally limited to Africa,
India, and the western Mediterranean region, in the
Americas and Europe. This review aims to present the
epidemiology, pathophysiology, complications, and
treatment options of SCD and thus equip hematologists
and transfusionists with the tools to treat this complex
disorder.

Epidemiology

Prevalence and Incidence
It is estimated that around 312,000 children worldwide

were born with SCD in 2010 [5]. Many of these children
will not reach reproductive age [6, 7]. However, around
5,476,000 asymptomatic carriers were also born each year
and general population growth, reduced childhood
mortality with better medical care, and the continued
selection advantage of heterozygous carriers in malaria-
endemic areas [8] result in a continuous rise of these
numbers. While newborn screening programs provide
solid figures on birth prevalence, reliable estimates of
prevalence in older age groups are not available due to a
lack of mortality data [9].

Geographic Distribution
SCD likely originates from a founder mutation that

happened 7,300 years ago [10]. Its geographical distri-
bution has historically been determined primarily by the

coevolution of the species Homo sapiens with Plasmo-
dium falciparum. The βS allele, like the βC allele, is a
textbook example of a balanced polymorphism. Het-
erozygous individuals have a selection advantage over
both homozygous individuals with SCD and individuals
who do not carry the βS or βC allele, in that they are less
likely to develop a severe course of malaria [4] and at the
same time experience no impairment of reproductive
fitness by SCD. This situation has led to the highest
prevalence of both the βS allele and SCD in the malaria-
endemic areas of sub-Saharan Africa and India. A
prevalence of around 800 per 100,000 is estimated for
Africa and around 200 per 100,000 for India and the
Middle East [9]. However, these numbers vary greatly
from region to region and are still subject to selection by
malaria [8] and shaped by population movements [11].

As a result of the slave trade between West Africa and
the Americas, the βS and βC alleles were brought to Brazil,
the Caribbean, and North America from the 17th century
onward. In Europe, too, SCD is predominantly a disease
of immigrants and their descendants. In Central Europe
in particular, the prevalence of SCD has risen sharply in
recent years. Health insurance data estimate that the
number of patients with SCD in Germany has increased
by 50% over the past 10 years and reached around 3,200
in 2019 [12]. Despite this increase, SCD is much rarer in
Germany compared to its Western European neighbors
such as France, the UK, or Belgium. Due to their colonial
history, the number of patients with SCD in the UK is
around 5 times higher [13] and in France 10 times higher
[14] than in Germany.

A national registry for patients with SCD initiated by
the Society of Pediatric Oncology/Haematology (GPOH)
registered a third of all patients treated in Germany [15].
Two-thirds of them come from sub-Saharan Africa, a
good fifth from the Middle East. The most common
genotype is homozygous SCD in 75% of patients, fol-
lowed by HbSC disease in 11% of patients. Approximately
6% of patients each have HbS/β0 or HbS/β+-
thalassemia [15].

Natural History
The course of SCD depends not only on genetic

modifiers but also on environmental influences such as
medical measures, exposure to infections, and climatic
and social factors. The description of patients diagnosed
with SCD by newborn screening in Jamaica between 1973
and 1981 and followed up until the age of 19 years comes
closest to the natural course [16]. In this cohort, just over
25% of patients with homozygous SCD and 4% of patients
with HbSC disease died, compared with less than 2% of
healthy controls. Most of these children died in early
childhood from acute chest syndrome, splenic seques-
tration crisis, and bacterial infections. At school age, the
most common causes of death were infections with
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encapsulated pathogens and strokes. The implementation
of a parent education program for the early detection of
splenic sequestration and the introduction of penicillin
prophylaxis against pneumococcal infections resulted in a
reduction of deaths already during the observation of the
cohort [17, 18].

The consistent implementation of these measures in
countries where newborn screening diagnoses SCD be-
fore the first symptoms appear has led to a significant
reduction in mortality from SCD in childhood and ad-
olescence in industrialized countries. Following the in-
troduction of ultrasound screening for patients at risk of
stroke and vaccination against encapsulated pathogens,
particularly pneumococci, almost all patients with SCD
now reach adulthood [19]. Unfortunately, this success
does not continue into later life. Even under conditions of
optimal medical care, the median survival of patients with
homozygous SCD is around 48 years, more than 2 de-
cades less than that of controls not affected by SCD [20].

The success in reducing the mortality rate of SCD has
also been largely limited to western industrialized
countries. In African countries, where most patients with
SCD are born, the mortality rate for SCD is 15% in the
first year of life and 36% up to the age of 5 years [6].

It would be too short-sighted to describe the course of
SCD solely in terms of its influence on mortality. For the
patient, recurring pain crises and the symptoms of
chronic anemia dominate daily life [21]. The control
group of a carefully monitored study of infants treated for
SCD in the USA provides quantifiable data for the fre-
quency of complications in SCD. Already in the 2nd and
3rd year of life, 175 hospitalizations were observed per
100 patient-years. During the 2 years of study partici-
pation, 41% of the children had four or more hospital-
izations [22]. In Germany, too, slightly more than a third
of patients are hospitalized at least once a year for a severe
pain crisis, and one in ten suffers from at least one acute
chest syndrome per year [12, 15]. The figures for pain
events requiring hospitalization significantly underesti-
mate the actual burden of disease caused by SCD, which is
also determined by outpatient pain treated independently
by the patient, in addition to the consequences of chronic
anemia such as fatigue and lack of resilience [21]. As a
result, patients with SCD have a significantly reduced
quality of life [23, 24], which is on a par with that of
patients with other chronic diseases such as cystic fibrosis
or cancer [25].

Pathophysiology

Polymerization of HbS
The formation of hemoglobin polymers via the hy-

drophobic contact sites of HbS is the pathophysiological
phenomenon underlying all aspects of SCD [1]. The HbS

polymers impose the sickle cell shape on the erythrocytes
and change their physical properties. As a result, they
disrupt blood flow, particularly in small but also in large
vessels, causing damage potentially to any organ. At the
same time, they reduce the lifespan of the erythrocytes
and lead to chronic hemolysis (Fig. 1). The different
genotypes in SCD differ in detail in their pathophysiol-
ogy, but they all have HbS polymer formation in
common.

Only deoxygenated HbS can form polymers. Thus,
both a low oxygen partial pressure and a reduced he-
moglobin oxygen affinity favor the polymer formation of
HbS and of sickle cells. This takes place almost exclusively
in postcapillary venules harboring deoxygenated red
blood cells. Tissues that retain erythrocytes at low oxygen
partial pressure, for example, the red splenic pulp or the
renal medulla, are particularly prone to sickle cell for-
mation and subsequent vasoocclusion. In patients with
SCD, these organs lose their functional reserve already in
infancy and early childhood [26]. The oxygen affinity of
hemoglobin is reduced by acidic pH values, elevated CO2

partial pressure [27], elevated temperature, and elevated
2,3-diphosphoglycerate levels [28]. Accordingly, polymer
formation of HbS is favored by hypoxia, acidosis, hy-
percapnia, and fever. In addition, the intraerythrocytic
HbS concentration determines both the rate of nucleation
and the growth of HbS polymers [29]. Even a slight
increase in the intracellular HbS concentration, for ex-
ample, due to exsiccosis, can trigger a vasoocclusive crisis.
Conversely, the presence of α-thalassemia reduces the
intraerythrocytic HbS concentration and mitigates the
course of SCD [30].

The polymerization of HbS disrupts several ion
channels of the erythrocyte membrane, causing the
erythrocytes to lose cations and water [31]. This results
in a relative dehydration of the erythrocytes, which can
perpetuate a vicious circle promoting the polymeri-
zation of HbS. In addition, repeated polymerization
and depolymerization of HbS can expose phosphati-
dylserine, which is physiologically limited to the inner
layer of the lipid double membrane, on the surface of
the erythrocytes. Erythrocytes with phosphatidylserine
on their surface interact with other erythrocytes,
leukocytes, platelets, and endothelial cells and con-
tribute to the activation of the coagulation cascade,
mediating both endothelial activation and vaso-
occlusion [32]. Partial loss of the membrane skeleton
of sickle cells releases erythrocytic microparticles that
also contribute to the activation of endothelium and
coagulation [33].

Hemolysis
As a result of the mechanisms mentioned, the poly-

merization of HbS shortens the median lifespan of
erythrocytes by 75% compared to healthy individuals to
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approximately 30 days [34], leading to anemia. Chronic
hemolysis occurs both extravascularly, especially in the
spleen, and intravascularly. The relevance of intravascular
hemolysis is illustrated by the fact that splenectomy in
patients with SCD, in contrast to spherocytosis, does not
increase hemoglobin [35]. In addition, hemolytic activity
is correlated with a number of complications of SCD.
These include leg ulcers, priapism, proteinuria, stroke,
pulmonary hypertension, and ultimately mortality
(Fig. 1) [36].

Erythrocytes in patients with SCD are exposed to
oxidative stress, resulting in auto-oxidation of HbS, de-
pletion of antioxidants such as glutathione, and damage
to the cytoskeleton and cell membrane. Intravascular
hemolysis releases hemoglobin and heme into the plasma
where they undergo auto-oxidation and form superoxide
and ultimately peroxide. At the same time, free hemo-
globin in the plasma very effectively scavenges NO, an-
tagonizes its vasodilatory effect, and activates endothelial
cells and thrombocytes to express adhesion molecules
[37]. The release of arginase 1 from hemolyzing eryth-
rocytes has a similar effect, competing with NO synthase
for arginine and thus reducing the bioavailability of
NO [38].

Free plasma heme and hemoglobin can activate the
innate immune system as a danger-associated molecular
pattern. As a result, they increase the expression of ad-

hesion molecules on blood and endothelial cells, activate
neutrophils to release thrombogenic DNA, and release
vasoconstrictors such as endothelin-1 [39]. Through this
mechanism, hemolysis is linked to the second clinically
visible pathophysiological component of SCD,
vasoocclusion.

Vasoocclusion
SCD is characterized not only by immediate,

painful vasoocclusive crises but also by gradual loss of
organ function resulting from chronic vasoocclusion
(Fig. 1). Both are caused by an interaction of eryth-
rocytes, leukocytes, platelets, and endothelium [40].
Sickle cell erythrocytes are more rigid than normal
erythrocytes and express a number of adhesion
molecules that mediate interaction with endothelium,
but also neutrophils and platelets. The chronic in-
flammation present in SCD increases the number of
leukocytes and their readiness to adhere. Granulocytes
interact with the endothelial cells via selectins, re-
ducing the flow velocity in capillaries and post-
capillary venules and increasing the passage time of
erythrocytes in a relatively hypoxic environment. This
effect partly explains why infections can trigger vas-
oocclusive crises. Platelets also participate in vaso-
occlusion through cell-cell interactions and the release
of cytokines [41].

Fig. 1. Pathophysiology of SCD and treatment options. Black denotes pathophysiological processes, red clinically
visible complications, and green therapeutic options. Hydroxyurea and red blood cell transfusions act at various
levels of the pathophysiological cascade. The only anti-sickling agent in clinical use is voxelotor, the only selectin
antagonist crizanlizumab.

Sickle Cell Disease Transfus Med Hemother 2024;51:332–344
DOI: 10.1159/000540149

335

https://doi.org/10.1159/000540149


Diagnosis of SCD

Possible indicators of SCD are recurrent episodes of
pain, splenomegaly, jaundice, bacterial infections, and
hemolytic anemia. The origin of the affected person from
a region where malaria is endemic may be indicative, but
is not a sine qua non in view of the fact that some patients
are second- or third-generation European residents. SCD
cannot be detected on the basis of the blood smear alone.
The detection of sickle cells is not sensitive as it depends
on the preanalysis. In addition, sickle cells can also be
detected in heterozygous carriers, resulting in an ex-
tremely poor specificity and positive predictive value of
this test.

Diagnostic Tests
SCD is monogenically inherited and can therefore be

diagnosed genetically at any age, including prenatally, by
detecting the pathogenic variant in codon 6 of the HBB
gene. The reliable detection or exclusion of mixed het-
erozygous HbS/β-thalassemia requires the sequence
analysis of the entireHBB gene in addition to the analysis
of codon 6.

The alternative to detecting the pathogenic variant in
the HBB gene is the biochemical detection of the ex-
pression of HbS. This is possible from neonatal age and is
carried out using protein separation methods such as
high-performance liquid chromatography, capillary
electrophoresis, or isoelectric focusing, alternatively also
tandem mass spectrometry. None of the protein sepa-
ration methods alone can reliably differentiate between
HbS and other, rare hemoglobin variants. For this reason,
a reliable diagnosis of SCD requires the combination of
two biochemical methods [42].

Heterozygous carrier status, which is not itself as-
sociated with a disease, can also be detected both bi-
ochemically and by molecular genetics. In some
healthcare systems, this is exploited to reduce the in-
cidence of SCD through premarital screening and as-
sociated counseling [43]. Some newborn screening
programs pursue the same goal by identifying at-risk
couples through the detection of heterozygous new-
borns and referring them to counseling and precon-
ception or prenatal diagnosis [44]. In German-speaking
countries, the legislator has ruled out this procedure, as
it would require the disclosure of genetic findings of
minors who are unable to give consent.

Newborn Screening
In western industrialized countries, SCD meets the

criteria required by the WHO for general newborn
screening [45, 46]: It represents a relevant health
problem [15, 47], there is an accepted, available
treatment [42], and the diagnosis can be clearly es-
tablished by a simple test before symptoms appear. For

these reasons, SCD has been a target disease for
newborn screening in many countries for decades [14,
48]. If a newborn is diagnosed with SCD, training
parents to perform regular splenic palpation can reduce
mortality from splenic sequestration crises [17] and
daily administration of penicillin V until at least the
fifth birthday can reduce the risk of fatal pneumococcal
infections [49] by around 90% in each case. As a result,
newborn screening has contributed significantly to
reducing the mortality of infants and young children
with SCD [50, 51].

In Germany, SCD has been a target disease of general
newborn screening since October 2021. The test is
carried out on dried blood taken between the 36th and
72nd hour of life. Different laboratories use different
testing methods [52, 53]. Regardless of the method
used, newborn screening for SCD is so reliable that in
the event of a positive result, the newborn is presented
immediately to a center experienced in SCD without
requesting another dried blood sample. The center is
responsible for confirming the diagnosis from an in-
dependent blood sample and informing the family
about the disease and symptoms. Penicillin prophylaxis
starts by the 90th day of life at the latest. For reasons of
quality assurance and to collect epidemiological data,
all newborns diagnosed with SCD should be recorded
in the national SCD registry [15, 54]. A survey of
neonatal screening laboratories revealed that during
the first 17 months of neonatal screening, a total of 178
newborns with SCD were identified in Germany,
corresponding to a birth prevalence of 1:5,336 or 138
newborns per year (S. Lobitz, Koblenz, personal
communication).

Complications of SCD

The two basic pathophysiological mechanisms dis-
cussed above, hemolysis and vasoocclusion, correspond
to the clinical symptoms of anemia and of crisis-like pain.

Anemia
The severity of chronic hemolytic anemia in SCD

varies based on the HBB genotype and other modifying
factors. Additionally, owing to the slightly reduced ox-
ygen affinity of HbS, most patients have adapted to a
lower hemoglobin level in their daily lives. Factors
contributing to severe or worsening anemia may include
iron or folic acid deficiency or hypersplenism.

Acute exacerbations can aggravate chronic anemia.
These may result from a formation disorder, as seen in
aplastic crisis triggered by a primary infection with
parvovirus B19 [55–57]. The most common cause of
sudden and profound anemia in young children is splenic
sequestration, wherein the pooling of sickle cell
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erythrocytes leads to acute splenomegaly and profound
anemia. This condition is characterized by reticulocytosis
and thrombocytopenia developing over a period of hours
to days [17, 58]. In both aplastic crisis and splenic se-
questration, a prompt blood transfusion is often life-
saving.

Vasoocclusive Pain Crisis
Most inpatient hospital admissions in SCD are for the

treatment of acute pain, often referred to as a “vaso-
occlusive pain crisis” [22, 59, 60]. In addition to vaso-
occlusive pain, there are numerous other causes of pain in
SCD, such as osteonecrosis, osteomyelitis, and chol-
ecystolithiasis. Recurrent acute pain can progress to
chronic pain, which affects a significant proportion of
adult patients [61].

Acute pain is usually caused by vascular occlusion and
often requires treatment with parenteral opioids. It is
frequently the result of multifocal bone marrow infarcts.
Factors such as environmental conditions (e.g., cold) or
patient-related factors (e.g., fever, dehydration, overex-
ertion, pregnancy, or sleep apnea) can precipitate sudden
pain and identifying such triggers is crucial for counseling
of patients [62]. Vasoocclusive pain crises exhibit an
inflammatory reaction and follow a variable pattern with
prodromal, initial, established, and resolving phases over
several days [59, 60].

Organ-Specific Vasoocclusive Complications
Beyond the twomanifestations immediately noticed by

the patient, anemia and acute pain, SCD as a systemic
disease affects every organ without restriction. The
pathophysiology of SCD and the physiology of the organ
determine how severely and at what age the respective
organ is affected. For example, the slow blood flow under
relatively hypoxic conditions in the red spleen pulp leads
to functional asplenia in infancy, while the heart muscle,
which is continuously well oxygenated, is only affected in
later adulthood. Acute chest syndrome and stroke are two
frequent and serious examples of organ-specific com-
plications of SCD.

Acute Chest Syndrome
Acute chest syndrome is the second most common

complication after vasoocclusive pain crises and is
defined as a new infiltrate on chest X-ray with respi-
ratory symptoms and/or fever [63]. In children, in-
fectious causes dominate, in adults, vascular causes
such as fat embolism released from the bone marrow
during pain crisis are in the foreground [64, 65]. These
causes all result in a pulmonary perfusion defect.
Chronic damage to the pulmonary circulation leads to
pulmonary hypertension in around 30% of all patients,
the presence of which increases mortality up to tenfold
[66–68].

Stroke
Cerebrovascular complications are among the main

causes of morbidity and mortality in patients with SCD
[69]. Their cumulative incidence up to the age of 30 years
is estimated at 15%. Both ischemic and hemorrhagic
infarctions are observed, the latter dominating especially
in the third decade of life. In the remaining age groups,
ischemic events occurmore frequently. The reason for the
infarcts is angiopathy with stenoses, aneurysms, and
collateral vessel formation (Moya-Moya syndrome) [70].
In addition to acute events, silent infarcts and perfusion
changes without clinically detectable symptoms also
occur [71–73].

Measurement of flow velocity in intracranial arteries
by Doppler sonography can identify children and ado-
lescents at risk of ischemic infarction [74]. A regular
transfusion program that permanently lowers the HbS
level below 30% can prevent about 90% of strokes in these
patients [75].

Phenotypic Variability and Genetic Modifiers in SCD

Next to the HBB genotype, the expression of fetal
hemoglobin (HbF) is the modifier of SCD that is best
characterized. Compound heterozygotes for HbS and
alleles that mediate hereditary persistence of HbF
(HPFH) do not produce HbA, but have HbF concen-
trations of about 20% in each erythrocyte. They do not
suffer from symptoms of SCD [76, 77] and provide
proof of principle that pancellular expression of 20%
HbF can efficiently interfere with HbS polymerization
and interrupt the pathophysiological cascade in SCD. It
is important to note that the same fraction of HbF
cannot cure SCD if distributed in a heterocellular
pattern, which is high in some but low in other
erythrocytes [78]. Besides the rare HPFH alleles, a
number of modifiers of HbF expression both in cis and
in trans have been shown to modulate the phenotype of
SCD [3, 79]. The recognition of the beneficial impacts
associated with the expression of HbF in SCD has
ignited numerous efforts aimed at developing treat-
ments, starting with hydroxyurea that has been in use
for 4 decades now [80] and culminating provisionally
in curative gene therapies that induce pancellular ex-
pression of HbF [81].

A second modifier of SCD that has been recognized
early is the coinheritance of α-thalassemia [30]. The
molecular basis of α-thalassemia are deletions that reduce
the expression of α-globin. By lowering the intra-
erythrocytic hemoglobin concentration, α-thalassemia
slows down HbS polymerization and reduces hemoly-
sis. However, while the clinical effect is positive on some
outcomes such as stroke and anemia, it is negative on
others such as pain [82].
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HbF expression and coinheritance of α-thalassemia
modify the very basic event in SCD pathophysiology.
Other polymorphismsmodulate events further downstream
the pathophysiological cascade. A prominent example for
such distal modifiers are polymorphisms in the UGT1A1
promoter that reduce glucuronidation of bilirubin and are
associated with jaundice and gallstones [82].

Management of SCD

Preventive Measures
The first measure after diagnosis of SCD is parent

education regarding the risk of bacterial infection, the
need for regular antibiotic prophylaxis [49], the impor-
tance of vaccinations, the clinical signs of anemia, and
regular spleen palpation for early detection of splenic
sequestration [42]. From the second year of age, the risk
of stroke needs to be assessed by Doppler sonography
until the age of 16 years [74]. Patients who are at risk
receive regular red blood cell transfusion to maintain the
HbS levels below 30% [42, 75].

Disease-Modifying Treatment
Disease-modifying treatment aims at ameliorating

symptoms of anemia and at preventing vasooclusive
crises and long-term organ complications. Although SCD
was first described more than one century ago, the de-
velopment of disease-modifying drugs has been slow.
Structural racism has been blamed for this situation,

considering the ethnicity of a large part of affected people
[83]. In Europe, only two drugs, hydroxyurea and vox-
elotor, are currently approved for the treatment of SCD
(Fig. 1). In addition, regular red blood cell transfusions
can modify the course of SCD (Table 1) [84] and cur-
rently remain the only treatment for SCD that can be
applied during pregnancy without major safety concerns.

Hydroxyurea
Hydroxyurea works by increasing the expression of

fetal hemoglobin, which is supposed to slow down the
polymerization of HbS and prevent vasoocclusion [80].
However, in many patients with SCD, clinical im-
provement occurs within days of starting hydroxyurea,
which is not adequately explained by the increase in fetal
hemoglobin. This rapid onset of effect suggests that
hydroxyurea has a positive effect on other aspects of the
SCD pathophysiology in addition to increasing fetal
hemoglobin. These include the release of nitric oxide with
a vasodilatory effect, a reduction in neutrophil and re-
ticulocyte counts, and a change in the surface and
membrane properties of reticulocytes, leukocytes, and
endothelial cells [87].

These effects translate into a reduction of vaso-
occlusive crises by approximately half, which was first
demonstrated in adults with symptomatic SCD [88].
Subsequently, hydroxyurea was also used in infants
from the age of 9 months who had been diagnosed in
neonatal screening. As in adults, these unselected
infants also showed a reduction in vasoocclusive

Table 1. Indications for red blood cell transfusion in SCD [42, 85, 86]

Indication Transfusion method Strength of
recommendation

Level of
evidence

Aplastic crisis Simple Strong Consensus
Acute splenic sequestration Simple (small aliquots of 3–5 mL/kg) Strong Consensus
Recurrent splenic sequestration Simple (bridge to splenectomy) Weak Consensus
Acute hepatic sequestration Simple (or exchange) Strong Consensus
Ischemic stroke Exchange Strong Consensus
Primary stroke prevention Exchange (or simple) Strong RCT
Secondary stroke prevention Exchange (or simple) Strong RCT
Moderate acute chest syndrome Simple Strong Consensus
Severe acute chest syndrome Exchange Strong Consensus
Recurrent acute chest syndrome (simple or exchange)a Weaka Consensusa

Acute multiorgan failure Exchange Strong Consensus
Preoperative (>1 h general anesthesia) Simple or exchangeb Weak/strongb RCT
Prior to allogeneic transplant Simple or exchange Strong Consensus
Complicated pregnancy Simple or exchange Strong Consensus

Transfusions are generally not recommended for
Uncomplicated vasoocclusive crisis
Priapism
Leg ulcers
Avascular necrosis

RCT, randomized controlled trials. aHydroxyurea preferred. bDepends on extent of surgery.

338 Transfus Med Hemother 2024;51:332–344
DOI: 10.1159/000540149

Kunz/Tagliaferri

https://doi.org/10.1159/000540149


complications (acute chest syndrome, pain, dactylitis)
by approximately half [22, 26]. These results led to
hydroxyurea being recommended in the USA from the
age of 9 months, even in asymptomatic infants with
SCD [89]. In Europe, hydroxyurea is approved from
the age of 2 years, but an extension of the label that
allows treating infants from the age of 9 months is
expected for 2024. The most important side effects of
hydroxyurea include dose-dependent myelotoxicity
and azoospermia.

Although the beneficial effects of hydroxyurea are well
established and its use is generally recommended for
patients with SCD, its use is still limited due to costs and
side effects, most importantly the risk of infertility in
young men. Nevertheless, the use of hydroxyurea is
feasible even in low-resource countries [90, 91], reaches
approximately 50% of all patients with SCD in Germany
[12], and is close to 90% of those treated at university
hospitals [15].

Voxelotor
Voxelotor is a hemoglobin modulator that re-

versibly binds as a Schiff base to the N-terminus of the
α-globin chain, stabilizes the conformation of oxy-
genated hemoglobin, and thereby increases the oxygen
affinity of HbS. This reduces the proportion of de-
oxygenated HbS and delays the polymerization of
HbS [92].

In preclinical and clinical studies, the use of voxelotor
was shown to reduce hemolysis and increase Hb levels by
around 1 g/dL in a dose-dependent manner [93, 94]. As a
result, voxelotor was approved for the treatment of he-
molytic anemia in patients with SCD from the age of
12 years. Although the use of voxelotor counteracts the
basic pathophysiological process in SCD, namely the
polymerization of HbS molecules, no influence on the
frequency of vasoocclusive crises has been observed to
date [93].

Crizanlizumab
Crizanlizumab is a monoclonal antibody that pre-

vents the binding of P-selectin, which is expressed on
endothelium and platelets, to its ligands on the surface
of leukocytes. This should reduce the adhesion of blood
cells to the endothelium and improve blood flow. In the
SUSTAIN study, the number of vasoocclusive crises
was reduced by 45% in the crizanlizumab group
compared to the placebo group [95]. Crizanlizumab
was conditionally approved for the treatment of adult
and adolescent patients aged 16 years and older with
SCD to reduce the occurrence of vasoocclusive crises.
However, the subsequent STAND trial did not repro-
duce the results that had led to approval and cri-
zanlizumab was withdrawn from the European market
in 2023 [96].

Regular Transfusions
The indication for regular transfusions has long been

established in the primary and secondary prevention of
strokes. Regular transfusions keeping the HbS percentage
of total hemoglobin permanently below 30% prevents the
progression of vascular stenoses [75] and reduces the risk
of recurrence after a stroke has occurred [97]. Regular
transfusions can also bring about an improvement in
patients with recurrent acute chest syndromes and vas-
oocclusive crises who do not respond adequately to drug
treatment [84].

An unavoidable side effect of regular transfusion
therapy is siderosis. The use of partial exchange trans-
fusions, which can be carried out either manually or as
erythrocytapheresis, can minimize transfusion-related
iron overload. Nevertheless, iron chelation therapy is
usually necessary.

A second common consequence of regular transfu-
sions in patients with SCD is alloimmunization [98, 99].
To prevent this, it is recommended that red blood cell
concentrates are not only selected to be AB0, Rhesus, and
Kell compatible, but that the Duffy, Kidd, andMNS blood
groups are also taken into account [42]. This severely
restricts donor selection and requires careful planning of
elective transfusions.

Treatment of Complications
While the disease-modifying treatment of SCD aims to

intervene in the pathophysiology of HbS polymerization,
hemolysis, and vasoocclusion, the treatment of acute
complications of SCD is initially aimed at alleviating
symptoms and preventing secondary damage. Supportive
measures such as respiratory therapy [100], physio-
therapy, infusions, and O2 supplementation contribute to
this [42], but in particular, multimodal pain therapy
tailored to the special features of SCD [60, 61]. The risk of
infection from both encapsulated and Gram-negative
pathogens that is associated with functional asplenia
determines the early use of antibiotics [101]. Pharma-
cological interventions that interrupt the pathophysio-
logic cascade of SCD during the vasoocclusive crisis have
been tested, but have not yet found their way into
guidelines [42, 61, 85, 89] due to the lack [102] of or small
[103] effect or the lack of replication in larger studies
[104–109]. Erythrocyte transfusions, either “on top” or as
exchange transfusion, are the only approximately causal,
rapidly effective therapy for acute complications of SCD.

Transfusions
Blood transfusions in SCD serve a dual purpose: in

acute anemia such as splenic sequestration or aplastic
crisis, they maintain the minimum necessary hemoglobin
level, stabilize the circulating blood volume, and thus
prevent hemodynamic shock. In addition, the transfused
erythrocytes also dilute the sickle cell erythrocytes,
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improve oxygenation in the area of a vasoocclusive event,
and can thus break the vicious circle of polymerization of
HbS, reduced perfusion, hypoxia, and further polymer-
ization. This interruption of the pathophysiology of SCD
is aimed at vasoocclusive events such as acute chest
syndrome or stroke (see Table 1 for a list of indications for
red blood cell transfusion). The primary goal is not an
increase in hemoglobin, but the exchange of HbS for HbA
[110]. As blood viscosity and therefore the risk of vascular
occlusion in SCD increase sharply when Hb values exceed
10 g/dL, an Hb value of 10 g/dL is aimed for in the event
of severe complications. In order not to exceed this and
still achieve an effective reduction in HbS, an exchange
transfusion is used in cases of acute organ failure due to
vasoocclusion, such as severe acute chest syndrome or
stroke. When transfusing for splenic sequestration, it
should be noted that the transfusion of healthy eryth-
rocytes also releases the patient’s own erythrocytes from
the spleen and the hemoglobin level may rise unex-
pectedly. In order not to provoke complications of hy-
perviscosity, red blood cell concentrates are therefore
transfused in small portions [42].

Hemolytic transfusion reactions are more frequent in
SCD than in any other condition, likely due to differences
between recipient and donor red blood cell antigens. It
can occur up to 3 weeks after red blood cell transfusions
(delayed hemolytic transfusion reaction). These reactions
may be mediated by alloantibodies, but can also occur
without the detection of erythrocyte-specific antibodies
[111]. Hyperhemolysis, marked by the simultaneous
hemolysis of both transfused and the patient’s endoge-
nous red blood cells, is a commonly observed phenom-
enon, often concomitant with intense vasoocclusive pain.
Treatment options for hemolytic transfusion reactions
include the administration of glucocorticoids, immuno-
globulins, erythropoietin analogs, and complement in-
hibitors such as eculizumab [112]. Further erythrocyte
transfusions should be withheld.

Curative Treatment
Despite all the progress made, many patients with SCD

suffer from high morbidity and an immense reduction in
quality of life and are therefore willing to take risks for a
therapy that promises cure. Currently, hematopoietic
stem cell transplantation (SCT) and gene therapy are the
only curative treatment options for SCD. Unfortunately,
the availability of both is restricted to high-income
countries and thus to a tiny proportion of all patients
with SCD.

Allogeneic SCT
Allogeneic SCT is considered the “standard of care” if

an HLA-identical, healthy sibling is available as a donor
[42, 113]. SCT from HLA-identical sibling donor in
young children showed an overall survival rate of almost

100% and a disease-free survival rate of over 90%. These
figures fall with age, reaching only 88% and 81%, re-
spectively, for patients aged 16 years or older [114]. As
HLA-identical unrelated donors are only exceptionally
identified for patients with SCD [115], there are hardly
any data available on the success of this transplant.
Transplantation frommismatched, usually haploidentical
donors is associated with a mortality rate of 10% or more
[116] and is therefore reserved for a small number of
patients with particularly severe disease [42, 113, 117].

In addition to the immediate complications of
transplantation such as infections, GvHD, and recurrence
of SCD, the long-term consequences are relevant for
patients when deciding for or against a transplant. These
include infertility [118] and therapy-associated neoplasia
[119], in particular MDS and AML. The decision for or
against SCT after an individual risk assessment is difficult
to make for patients with SCD. Considering that SCD-
related organ complications reduce the chances of success
already during adolescence, this decision often has to be
made by the patient’s legal guardians and requires the
advice of experienced hematologists and transplant
specialists.

Gene Therapy
As a monogenic disease, SCD is particularly amenable

to gene therapy, partly because a substitute for HbS is
available in the form of fetal hemoglobin, HbF. Its re-
activation in erythropoietic precursor cells is sufficient to
cure SCD. Gene therapy benefits from the methods es-
tablished in blood SCT for obtaining and manipulating
hematopoietic stem cells.

Both the addition of a healthy β-globin gene and the
reactivation of HbF have demonstrated efficacy in
clinical trials [81, 120]. There are a number of different
methods for the latter, most of which ultimately aim to
inactivate the BCL11A transcription factor that sup-
presses HbF expression [121]. All methods used
clinically to date require the collection and manipu-
lation of autologous stem cells. The patient is then
conditioned by myeloablative chemotherapy, typically
with busulfan, before the manipulated blood stem cells
are reinfused. The major advantage over allogeneic
blood SCT is that there is no risk of graft-versus-host
disease and therefore no need for immunosuppression.
With the two methods of gene addition [120] and
inactivation of an erythropoiesis-specific BCL11A
promoter by gene editing [81] tested in larger studies,
over 90% of patients achieved the endpoint of “free-
dom from vasocclusive crises.” The median follow-up
after gene therapy extends over 3 (gene addition) and
2 years (gene editing), respectively [122, 123]. Based on
these results, the two gene-therapy products lovo-cel
(gene addition) and exa-cel (gene editing) were ap-
proved by the FDA in December 2023 and exa-cel was

340 Transfus Med Hemother 2024;51:332–344
DOI: 10.1159/000540149

Kunz/Tagliaferri

https://doi.org/10.1159/000540149


approved by the European Medicines Agency in
February 2024.

Several hurdles are currently preventing the wide-
spread use of gene therapy for SCD and will probably
continue to do so for some time to come. These include
the immense logistical effort and costs, as well as the side
effects of myeloablative conditioning with infertility and
the induction of therapy-related neoplasia. Approaches to
circumvent these problems are chemotherapy-free con-
ditioning protocols [124] and in vivo gene therapy using
lipid nanoparticles targeted to erythropoietic stem
cells [125].

Conclusions

SCD is a devastating multiorgan disorder. Few patients
can be cured by allogeneic SCT or, most recently, gene
therapy. Other patients benefit from disease-modifying
treatment, mostly with hydroxyurea or with red blood cell
transfusions, that needs to be continued indefinitely. Even
with these treatments, acute crises and chronic organ
damage limit quality of life and life expectancy. Novel
treatments and rational combination of available treat-
ments are needed to improve quality of life and extend life
expectancy of affected patients.
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