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Genetic and dietary forms of iron overload have distinctive clinical and pathophysiological

features. HFE-associated hereditary hemochromatosis is characterized by overwhelming

intestinal iron absorption, parenchymal iron deposition, and macrophage iron depletion.

In contrast, excessive dietary iron intake results in iron deposition in macrophages.

However, the functional consequences of genetic and dietary iron overload for the control

of microbes are incompletely understood. Using Hfe+/+ and Hfe−/− mice in combination

with oral iron overload in a model of Salmonella enterica serovar Typhimurium infection,

we found animals of either genotype to induce hepcidin antimicrobial peptide expression

and hypoferremia following systemic infection in an Hfe-independent manner. As

predicted, Hfe−/− mice, a model of hereditary hemochromatosis, displayed reduced

spleen iron content, which translated into improved control of Salmonella replication.

Salmonella adapted to the iron-poor microenvironment in the spleens of Hfe−/− mice

by inducing the expression of its siderophore iron-uptake machinery. Dietary iron loading

resulted in higher bacterial numbers in bothWT andHfe−/− mice, although Hfe deficiency

still resulted in better pathogen control and improved survival. This suggests that Hfe

deficiency may exert protective effects in addition to the control of iron availability for

intracellular bacteria. Our data show that a dynamic adaptation of iron metabolism in

both immune cells and microbes shapes the host-pathogen interaction in the setting of

systemic Salmonella infection. Moreover, Hfe-associated iron overload and dietary iron

excess result in different outcomes in infection, indicating that tissue and cellular iron

distribution determines the susceptibility to infection with specific pathogens.
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INTRODUCTION

HFE encodes an atypical MHC class I molecule which plays a major role in the regulation
of iron homeostasis under basal conditions (Feder et al., 1996; Ludwiczek et al., 2004). HFE
mutations, especially the homozygous C282Y substitution, result in type I (AKA classical)
hereditary hemochromatosis (HH) (Camaschella et al., 2002; Pietrangelo, 2004; Weiss, 2010), the
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most frequent form of HH mainly found in people of
Northern or Western European ancestry. HH is characterized
by reduced serum levels of the antimicrobial peptide Hamp
(hepcidin) and increased duodenal absorption of iron via divalent
metal transporter 1 (Dmt1) and ferroportin 1 (Fpn1) despite
progressive iron overload in parenchymal organs including the
liver, pancreas, and heart (Zoller et al., 1999, 2001; Bridle
et al., 2003; Pietrangelo, 2004; Bardou-Jacquet et al., 2013). The
precise role of the HFE protein, however, remains incompletely
understood. HFE binds to transferrin receptor 1 (TfR1) thus
lowering its affinity for iron-laden transferrin (Feder et al., 1998;
Lebrón et al., 1998; Bennett et al., 2000). This interaction controls
cellular iron acquisition while also modifying the expression of
the key iron-regulatory hormone Hamp (Ahmad et al., 2002;
Nicolas et al., 2003; Ludwiczek et al., 2005; Vujic Spasic et al.,
2008). The latter mechanism involves the sensing of circulating
iron levels by TfR1 and TfR2, which reciprocally complex with
HFE expressed on hepatocytes (Schmidt et al., 2008; Wallace
et al., 2009).Mutations inHFE (orTFR2) impair this iron-sensing
mechanism, resulting in the insufficient generation of Hamp
and increased iron absorption (Goswami and Andrews, 2006;
D’Alessio et al., 2012). Of note, macrophages lacking HFE display
an iron-poor phenotype which has been attributed to enhanced
iron export (Cairo et al., 1997; Drakesmith et al., 2002; Wang
et al., 2003).

Systemic iron availability, erythropoietic iron demand,
hypoxia, hormones, and inflammatory signals are key factors
that modulate the production of the iron homeostatic regulator
Hamp (Nemeth et al., 2004a; Bozzini et al., 2008; Theurl et al.,
2010; Armitage et al., 2011; Kautz et al., 2014; Nairz et al.,
2014; Canali et al., 2017). Hamp controls iron homeostasis upon
binding Fpn1, which triggers Fpn1 internalization, degradation
(Nemeth et al., 2004b) and blockade of iron efflux from duodenal
enterocytes and macrophages, which recycle iron from senescent
erythrocytes. Inflammation-driven Hamp induction thus causes
iron sequestration within the mononuclear phagocyte system
(MPS), which limits iron availability for extracellular pathogens
(Bridle et al., 2003; Ludwiczek et al., 2003; Ganz, 2005; Theurl
et al., 2008a).

In infections with the intracellular bacterium Salmonella
enterica serovar Typhimurium, macrophages constitute an
important habitat for pathogen replication and persistence
(Malik-Kale et al., 2011). Because many bacteria are highly
dependent on a sufficient supply of iron for their growth and
pathogenicity, macrophage iron homeostasis is an important
determinant of disease outcome (Nairz et al., 2014). On one hand,
macrophage iron overload is associated with the inhibition of
IFN-γ-driven antimicrobial immune effector pathways such as
nitric oxide synthase 2 (Nos2) expression, resulting in impaired
control of intracellular microbes (Weiss et al., 1994; Mencacci
et al., 1997; Oexle et al., 2003). On the other hand, severe
iron depletion of the host may result in reduced generation
of ROS, which also impairs host defenses. In parallel, iron
withholding from pathogens constitutes an efficient host defense
strategy (Soares and Weiss, 2015). However, macrophages also
contribute to host defense by the production of T-cell stimulatory
cytokines and antimicrobial peptides (Graziadei et al., 1997).

One of the latter, lipocalin 2 (Lcn2; also known as neutrophil
gelatinase-associated lipocalin, siderocalin or 24p3), is secreted
by neutrophils and macrophages in response to LPS, IL-
1ß, IL-17, and IL-22 (Flo et al., 2004; Shen et al., 2006).
In its best characterized function, Lcn2 captures iron-laden
bacterial siderophores, small molecules that are enzymatically
synthesized and actively secreted bymanymicrobes to bind ferric
iron with extraordinarily high affinity (Bachman et al., 2009).
Lcn2-sensitive siderophores include enterobactin, carboxy-
mycobactins, and bacillibactin. Upon neutralization of these
siderophores, Lcn2 contributes to innate resistance against
a range of pathogenic bacteria including enterobacteriaceae,
mycobacteria and Bacillus anthracis by limiting their access to
iron (Flo et al., 2004; Berger et al., 2006).

Salmonella Typhimurium, a facultative intracellular microbe,
needs to gain sufficient access to host iron resources as a
prerequisite for replication and virulence (Leung and Finlay,
1991; Vazquez-Torres et al., 1999). To acquire the metal
from the host and within infected macrophages, Salmonella
has evolved both siderophore-dependent and -independent
strategies. Salmonella synthesizes catecholate-type siderophores
such as enterochelin and salmochelins to capture and internalize
ferric iron via siderophore receptors (Bäumler et al., 1998; Rabsch
et al., 2003; Fischbach et al., 2005). Alternatively, Salmonella
can incorporate non-siderophore-bound ionic iron using the
Feo transport system. In addition, the SitABCD system, whose
primary function is bacterial manganese import, may contribute
through low-affinity uptake of iron (Zaharik et al., 2004). All
three pathways of bacterial iron uptake are linked to Salmonella
virulence (Tsolis et al., 1996; Janakiraman and Slauch, 2000; Boyer
et al., 2002; Crouch et al., 2008; Kim et al., 2013).

Given the central importance of iron for the growth and
proliferation of intracellular pathogens such as Salmonella and
the important role of Hfe in the regulation of systemic iron
balance, we performed experiments to assess the influence of
Hfe and/or dietary iron overload on host iron homeostasis and
immunity in response to S. Typhimurium infection. This is of
specific interest because Hfe results inmacrophage iron depletion
whereas dietary iron overload leads to iron accumulation within
the MPS.

MATERIALS AND METHODS

Salmonella Infection In vivo
All animal experiments described were performed in accordance
with Austrian legal requirements. Design of the animal
experiments was approved by the Austrian Federal Ministry
of Science and Research (approvals BMWF-66.011/0074-
C/GT/2007 and /0154-II/3b/2010). Mice were maintained
at the central animal facilities of the Medical University of
Innsbruck and given free access to water and food. Hfe−/− mice
were generated as described (Bahram et al., 1999; Flo et al.,
2004), crossed back on a C57BL/6 background for at least 10
generations and transferred to the SPF unit of the local Animal
Facility by means of embryonic transfer. Hfe+/− mice were
intercrossed and offspring were genotyped using the following
primers (obtained from Microsynth): Hfe fw: 5′-GAATTAACA
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GGCCGTTTCTAAAG-3′, Hfe rev: 5′-CTTGGAGTAGTGGCT
CACACT-3′, Hfe neo: 5′-GAGATCAGCAGCCTCTGTTCC-3′.

For in vivo infection experiments (Supplementary Figure 1),
male mice were used at 20–26 week of age and fed either an
iron-enriched diet (C1038 from Altromin) supplemented with
25 g/kg carbonyl iron (Sigma) or a standard diet (180mg Fe/kg,
C1000 from Altromin) 3 week before and during infection.
Mice were infected i.p. with 500 CFU S. Typhimurium strain
ATCC14028 suspended in 200 µl PBS. Animals were monitored
3 times daily for 10 days for signs of illness, and moribund mice
were euthanized. Forty-eight and ninety-six hours post-infection,
mice were randomly selected for the determination of colony
counts. Bacterial load in livers and spleens was determined
by plating serial dilutions of organ homogenates on LB agar
under sterile conditions. Mice selected for the determination of
colony counts were not considered for the recording of survival
times.

Blood Counts
Blood samples were drawn under anesthesia by retroorbital
puncture and collected in heparinized tubes. An aliquot of
heparinized blood was used for complete blood count analysis
on a Vet-ABC Animal blood counter (Scil animal care company
GmbH).

Measurement of Iron Parameters
Serum iron was measured using the QuantiChrom Iron Assay kit
(BioAssay Systems) according to the manufacturer’s instructions.
Serum FT was measured by a specific ELISA kit (LifeSpan
BioSciences) according to the manufacturer’s protocol (Theurl
et al., 2016). Total tissue iron content was measured as described
(Sonnweber et al., 2012).

Histology
Histological examinations of tissues were performed on
formalin-fixed tissue sections stained with hematoxylin and
eosin (HE) according to a standard protocol (Nairz et al., 2011).
Images with HE staining were acquired using a Nikon-Eclipse 80i
microscope equipped with a 4x objective with a 0.10 numerical
aperture. Image acquisition was performed using NIS-Elements
BR3 software.

Cell Culture, Salmonella Infection In vitro

and Determination of Bacterial Iron
Acquisition
Thioglycolate-elicited primary peritoneal macrophages were
harvested as described (Schleicher et al., 2005) from C57BL/6
mice of indicated genotypes (detailed below), matched for sex
and age, and cultured in RPMI (purchased from Biochrom
AG) containing 5% heat-inactivated fetal calf serum (FCS;
from PAA), 100 U/mL penicillin, 0.1 mg/mL streptomycin and
10 mM HEPES (all from Sigma). After a 24 h incubation
period, macrophages were extensively washed with phosphate-
buffered saline (PBS purchased from Invitrogen) and incubated
in complete RPMI without antibiotics. Only cell preparations of
at least 90–95% purity, as determined by F4/80 surface expression
in FACS analysis, were used for subsequent experiments.

Macrophages were infected with S. Typhimurium ATCC14028 at
a multiplicity of infection (MOI) of 10.

Measurement of bacterial iron acquisition was performed
as described elsewhere (Nairz et al., 2008). Briefly, Salmonella-
infected macrophages were washed three times and resuspended
in serum-free HEPES-buffered RPMI. After the addition of
5µM 59Fe as citrate (NTBI) or loaded onto human apo-
transferrin (TBI; Sigma), cells were incubated for an additional
8 h. Intracellular bacilli were harvested according to a modified
protocol as described (Olakanmi et al., 2002; Nairz et al., 2008).
An aliquot of the bacterial suspension was plated in serial
dilutions onto agar plates to quantify released bacteria, while
the remaining volume was filtered through centrifugal filter
devices with a PDVFmembrane of 0.22µmpore size (Millipore).
Filters containing the trapped bacteria were used to measure
Salmonella-associated 59Fe with a γ-counter. No association of
59Fe to S. Typhimurium that had been heat-inactivated at 70◦C
for 20 min could be detected.

RNA Extraction and Quantitative
Real-Time PCR
Preparation of total RNA and quantification of mRNA expression
by Taqman R© or SYBR Green R© RT-PCR following reverse
transcription was performed exactly as described (Crawford
et al., 2016). Murine primers and probes (Microsynth), the latter
carrying 5′-FAM and 3′-BHQ1 labels, were used as described
elsewhere (Ludwiczek et al., 2005; Theurl et al., 2008b). Bacterial
primers and probes have been described (Bearson et al., 2008;
Crawford et al., 2016).

Statistical Analysis
Statistical analysis was carried out using a SPSS statistical
package. Calculations for statistical differences between various
groups were carried out by ANOVA and Tukey’s correction for
multiple tests. Otherwise, a two-tailed unpaired Student’s t-test
was used. For comparison of survival between subgroups, the
Wilcoxon (Gehan) statistic was used. Non-parametric variables
(CFU and serum FT) were log-transformed prior to testing. P <

0.05 was used to determine statistical significance, 0.05≤ P < 1.0
was considered a statistical trend and depicted.

RESULTS

Influence of Hfe, Dietary Iron Challenge
and Salmonella Infection on Iron
Parameters
To better understand the influence of Hfe and dietary iron
loading on iron homeostasis and the outcome of infection, we
used a well-established model of systemic Salmonella infection.
Wildtype (WT) C57BL/6 (Hfe+/+) and congenic Hfe−/− mice
were fed either a standard rodent diet with adequate iron content
(IA) or an iron-enriched (IE) diet for 3 weeks prior to and during
infection. CongenicWT andHfe−/− mice were then systemically
infected with 500 colony-forming units (CFU) of Salmonella
enterica serovar Typhimurium ATCC14028 (S. Typhimurium;
S. Tm.) via intraperitoneal (i.p.) injection (as delineated in
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Supplementary Figure 1). Mock-infected controls received a
single i.p. injection of PBS as a control (Ctrl.). Animals were
monitored for up to 10 days. On days 2 and 4 post-infection,
randomly selected animals were sacrificed and bacterial loads
(days 2 and 4), erythroid (Supplementary Figures 2B,C) and iron
indices as well as the expression of iron metabolic genes (day 2)
were evaluated.

As predicted, under control conditions Hfe−/− mice fed an
iron-adequate (IA) diet showed elevated serum iron and serum
ferritin (FT) levels as compared toHfe+/+ controls. BothHfe+/+

and Hfe−/− responded to systemic infection with a reduction
of serum iron concentrations (hypoferremia) (Figure 1A). Of

interest, serum iron levels increased upon dietary iron challenge
independent of the Hfe genotype, as Hfe−/− and congenic
Hfe+/+ mice displayed comparable serum iron levels on an IE
diet. Intriguingly, Hfe+/+ and Hfe−/− mice maintained on an IE
diet prior to and during Salmonella infection had even higher
serum iron levels as compared to uninfected animals on an IE
diet and did not mount a hypoferremic response. Serum FT
levels were dramatically increased during dietary iron overload,
whereas the stimulatory effect of Salmonella infection on serum
FT levels was minimal (Figure 1B).

While Hfe−/− mice tended to have lower hepatic Hamp
mRNA expression as compared to congenic WT mice, the

FIGURE 1 | Influence of Hfe, dietary iron challenge and Salmonella infection on systemic iron parameters. Hfe−/− and congenic C57BL/6 WT animals

(Hfe+/+) were fed either a standard iron-adequate diet (IA) or an iron-enriched diet (IE) and infected i.p. with 500 CFU of S. Typhimurium (S. Tm.). Mock-infected

controls (Ctrl.) received diluent. Serum iron (A) and ferritin (FT) levels (B) were measured after 48 h. In parallel, the expression of Hamp mRNA (C) in the liver was

determined relative to the house-keeping gene Hprt by quantitative RT-PCR. Total liver iron content 48 post-infection was measured colorimetrically and normalized

for wet tissue weight (D). Data were compared by means of ANOVA with Tukey’s post hoc test. Values are depicted as lower quartile, median and upper quartile

(boxes), and minimum/maximum ranges. Statistical significant differences within each diet group are indicated. Additional letters represent statistically significant

differences (P < 0.05) as follows: (a) Hfe+/+ Ctrl. IA vs. Hfe+/+ Ctrl. IE; (b) Hfe−/− Ctrl. IA vs. Hfe−/− Ctrl. IE; (c) Hfe+/+ S. Tm. IA vs. Hfe+/+ S. Tm. IE; Hfe−/− S.

Tm. IA vs. Hfe−/− S. Tm. IE. n = 7–10 per group.
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induced Hamp expression in response to infection or dietary
iron overload remained intact in Hfe−/− mice compared to
WT littermates (Figure 1C). As expected, Hfe−/− mice had
an elevated total iron content in the liver, and the IE diet
resulted in hepatic iron accumulation (Figure 1D). Serum
IL-6 concentrations were unaffected by the Hfe genotype
(Supplementary Figure 2A).

As previously shown (Cairo et al., 1997; Nairz et al., 2009),
Hfe−/− mice had reduced total iron content in the spleen is
comparison to Hfe+/+ mice (Figure 2A). Whereas, dietary iron
challenge resulted in an increase in spleen iron levels, Salmonella
infection caused a small yet significant reduction. Splenic Hamp
mRNA expression was not significantly affected by either dietary
iron content or infection (Figure 2B). In contrast, Fpn1 mRNA
expression increased in response to Salmonella infection but
was not affected by dietary iron overload or Hfe genotype
(Figure 2C). Dmt1 and TfR1 mRNA levels were negatively
affected by oral iron challenge (Figures 2D,E). Concurrent
Salmonella infection reverted Dmt1 expression to basal levels,
while TfR1 expression remained suppressed. However, there
was no substantial influence of Hfe genotype on expression of
these iron acquisition molecules. Splenic Lcn2 receptor (LcnR)
expression was significantly reduced following Salmonella
infection (Figure 2F), and Lcn2 mRNA expression in the spleen
was higher in Hfe−/− as compared to congenic WT mice
(Figure 2G).

Influence of Dietary Iron Content on the
Course of Salmonella Typhimurium
Infection in WT and Hfe−/− Mice
We next studied the influence of dietary iron overload on
disease progression in systemic Salmonella infection in Hfe−/−

and congenic C57BL/6 WT animals. All WT mice died by day
8 of infection independent of their dietary iron content, but
animals on an iron-enriched (IE) diet succumbed 1–2 days
earlier (Figure 3A). Of note, 33% of Hfe−/− mice on an iron-
adequate (IA) or iron-enriched (IE) diet (3 of 9 mice in each
group) survived the infection beyond day 10 of the observation
period. Hepatic and splenic microbial loads of randomly selected
animals were quantified on days 2 and 4 of infection. Dietary
iron overload significantly increased the bacterial load in both
organs in WT mice as well as in Hfe−/− animals 2 days post-
infection (Figures 3B,C). By day 4 of infection, Hfe−/− mice
fed an IE diet controlled microbial replication as efficiently as
their WT littermates maintained on an IA diet (Supplementary
Figures 3A,B). Moreover, tissue sections obtained on day 4
post-infection revealed that WT mice on an IA diet had
microabscesses in the liver, which were partly confluent. WT
mice on an IE diet also exhibited hepatic macroabscesses. In
contrast, hardly any microabscesses were observed in the livers of
Hfe−/− mice on an IA diet, and only solitary lesions were visible
in Hfe−/− mice on an IE diet (Figure 4A). Similar observations
were made in the spleens of Salmonella-infected mice on day 4
post-infection. Only Hfe−/− mice on an IA diet had a relatively
normal spleen size (Figure 4B). These histopathologic findings
were accompanied by corresponding alterations in spleen weight
(Supplementary Figures 4A,B).

FIGURE 2 | Influence of Hfe, dietary iron challenge and Salmonella

infection on splenic iron parameters. Total spleen iron content (A) and

mRNA levels of iron metabolic genes (B–G) in the spleen as determined by

quantitative RT-PCR were measured after 48 h. Hamp (B), Fpn1 (C), Dmt1

(D), TfR1 (E), LcnR (F), and Lcn2 (G) mRNA levels were determined relative to

the house-keeping gene Hprt at baseline and 48 h post-infection. Data were

compared by means of ANOVA with Tukey’s post hoc test. Values are

depicted as lower quartile, median and upper quartile (boxes), and

minimum/maximum ranges and only statistically significant differences are

indicated exactly as described for Figure 1. Additional letters represent

(Continued)
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FIGURE 2 | Continued

statistically significant differences (P < 0.05) as follows: (a) Hfe+/+ Ctrl. IA vs.

Hfe+/+ Ctrl. IE; (b) Hfe−/− Ctrl. IA vs. Hfe−/− Ctrl. IE; (c) Hfe+/+ S. Tm. IA

vs. Hfe+/+ S. Tm. IE; Hfe−/− S. Tm. IA vs. Hfe−/− S. Tm. IE. n = 7–10 per

group.

FIGURE 3 | Influence of dietary iron content on the course of

Salmonella Typhimurium infection in Hfe WT and Hfe−/− mice. Survival

during systemic infection with Salmonella Typhimurium was monitored over an

observation period of 10 days (A). Data are depicted as Kaplan-Meier curves

and were compared by log rank test. n = 9–11 per group. Statistically

signficant differences are as follows: P = 0.031 for Hfe+/+ IA vs. Hfe−/− IA.

P = 0.028 for Hfe+/+ IA vs. Hfe+/+ IE. P = 0.954 for Hfe−/− IA vs. Hfe−/−

IE. P = 0.002 for Hfe+/+ IE vs. Hfe−/− IE. P = 0.041 for Hfe+/+ IA vs.

Hfe−/− IE. P = 0.003 for Hfe+/+ IE vs. Hfe−/− IA. Bacterial loads of at least

6 animals per group were determined in livers (B) and spleens (C) of randomly

selected animals on d 2 post-infection. CFU data were log-transformed and

compared by means of ANOVA with Tukey’s post hoc test. All statistically

significant differences are indicated as lines. Values are depicted as lower

quartile, median, and upper quartile (boxes), and minimum/maximum ranges

and statistical significances are indicated.

Classical Innate Immune Functions Are
Hfe-Independent
To better define the role of Hfe and dietary iron overload in
innate immune function, cytokine and antimicrobial effector
system expression was measured on day 2 post-infection. Splenic
mRNA levels of TNF, IL-1ß, IL-6, Nos2, and the p47 subunit
of the NADPH oxidase (phox) were not affected by the Hfe-
genotype (Figures 5A–E). Increased expression of NOS2 and IL-
1ß in mice receiving an IE diet relative to those receiving an IA
diet paralleled the increased number of bacteria isolated from the
spleens of these groups.

FIGURE 4 | Influence of dietary iron content on tissue damage during

Salmonella Typhimurium infection in Hfe WT and Hfe−/− mice.

HE-stained sections of livers (A) and spleens (B) of WT and Hfe−/− mice on

day 4 of infection show macro-abscesses (arrow heads) in both organs of WT

mice on an iron-excessive diet (IE) and scarce inflammatory foci (arrows) in

Hfe−/− mice fed an iron-adequate diet (IA) with intermediate pathology in the

other two treatment/genotype groups. Scale bars: 400µm.

Salmonella Adapts to the Iron-Restricted
Myeloid Compartment of Hfe−/− Mice
The expression of bacterial iron uptake genes was measured in
the spleens of Salmonella-infected mice on day 2 post-infection.
We found that multiple genes involved in iron uptake were
expressed at higher levels in the spleens of Hfe−/− mice on an
IA diet as compared to the spleens of WT mice receiving the
same diet. These genes encoded outer membrane siderophore
receptors IroN, FepA, and CirA, as well as the siderophore
exporter IroC (Figures 6A–D). In contrast, expression of FeoB
(Figure 6E) and SitB (Figure 6F) were not substantially affected

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 April 2017 | Volume 7 | Article 110

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Nairz et al. Iron Overload and Salmonella Infection

FIGURE 5 | Classical innate immune functions are Hfe-independent. The expression of TNF-α (A), IL-1ß (B), IL-6 (C), Nos2 (D), and the p47 phox subunit (E)

in the spleen was determined relative to the housekeeping gene Hprt by quantitative RT-PCR. Data were analyzed and presented exactly as described in the legend to

Figure 1. All statistically significant differences are indicated. Additional letters represent statistically significant differences (P < 0.05) as follows: (c) Hfe+/+ S. Tm. IA

vs. Hfe+/+ S. Tm. IE. n = 7–10 per group.

by the Hfe status of the host. Notably, no differential induction
of bacterial iron genes was observed when WT and Hfe−/−

mice were on an IE diet, which resulted in splenic iron
overload.

In keeping with the induction of siderophore-mediated iron
uptake pathways in Salmonella residing in the spleens of IA
diet-fed Hfe−/− mice in vivo, we observed that the uptake of
host derived 59Fe by intracellular Salmonella, provided as NTBI
or TBI, was reduced in Hfe−/− peritoneal macrophages
infected in vitro relative to congenic WT macrophages
(Figures 7A,B).

DISCUSSION

Salmonella Typhimurium causes a systemic disease in mice
characterized by a tropism for and replication within professional
phagocytes (Richter-Dahlfors et al., 1997; Coburn et al., 2007).
S. Typhimurium invades its preferred host cell type both
by phagocytic uptake and active invasion (Pfeifer et al.,
1999). Virulence factors such as those encoded by Salmonella
Pathogenicity Island-2 are essential for both intracelullar survival
and virulence (Hensel et al., 1995, 1998), suggesting that the

ability to infect and replicate within macrophages provides
a major benefit for the pathogen (Leung and Finlay, 1991).
Nutrient availability within this host cell niche is therefore
an important factor in Salmonella pathogenesis (Carver,
2014).

Iron is one of the essential nutrients that hold a central
position in the interplay of host and pathogen (Weinberg, 1974;
Schaible and Kaufmann, 2005; Skaar, 2009; Nairz et al., 2010;
Drakesmith and Prentice, 2012; Ganz and Nemeth, 2015; Soares
and Weiss, 2015). Sufficient access to this trace element is
therefore a major determinant of the outcome of Salmonella
infection. In general, the host response to any bacterial infection
involves the restriction of serum iron levels (hypoferremia)
through a combined limitation of intestinal iron absorption and
macrophage iron recycling. Hamp and its receptor Fpn1 are
primary mediators of the hypoferremia, and thereby influence
Salmonella-host interactions (Nairz et al., 2013; Kim et al., 2014;
Armitage et al., 2016). However, a range of additional genetic and
environmental factors also influence bacterial iron availability
during Salmonella infections.

The data presented herein suggest that both the local and
systemic availability of iron within the mammalian host affect
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FIGURE 6 | Salmonella adapts to the iron-restricted myeloid compartment of Hfe−/− mice. The expression of bacterial iron metabolic genes in the spleen

was measured by qPCR. Expression of iroN (A), fepA (B), cirA (C), iroC (D), feoB (E), and sitB (F) was determined relative to the housekeeping gene gyrB. Data were

compared by means of ANOVA with Tukey’s post hoc test. Values are depicted as lower quartile, median and upper quartile (boxes), and minimum/maximum ranges

and statistical significances are indicated. n = 14–17 per group.

infection outcome (Nairz et al., 2015a). Hfe deficiency results
in reduced Hamp production and increased serum iron levels
(Pietrangelo, 2004). Enhanced bacterial replication might be
anticipated in an Hfe-deficient host as a result of increased iron
availability, and this has been experimentally demonstrated for
pathogens such as Vibrio vulnificus, Yersinia enterocolitica, and
Yersinia pestis in the setting of HH (Quenee et al., 2012; Arezes
et al., 2015; Miller et al., 2016). However, the opposite is true
in the context of infection with an intracellular bacterium such
as S. Typhimurium because Hfe-deficient macrophages are iron-
poor and thus provide an inferior niche for bacterial replication
(Nairz et al., 2009). We find that Hfe-deficient macrophages
restrict the availability of both non-transferrin-bound (NTBI)
and transferrin-bound (TBI) iron to intracellular Salmonella
more efficiently than WT macrophages. This suggests that the
underlying mechanism is independent of Dmt1 and TfR1 and
may be attributable to differential iron turnover or efflux. While
Fpn1 constitutes the primary pathway for the cellular release of
ferrous iron, iron may also be exported via alternative pathways
(Devireddy et al., 2005; Keel et al., 2008; Du and Galán, 2009;
Nairz et al., 2015b; Lok et al., 2016).

Slc11a1 (also known as Nramp1) has long been known
to influence the course of infection with S. Typhimurium
and certain species of Mycobacterium and Leishmania (Vidal
et al., 1993; Atkinson et al., 1997; Blackwell et al., 2003).
Although these pathogens are taxonomically unrelated,
they share the features of infecting macrophages, persisting
in phagolysosomes and depending on iron. Slc11a1 is
incorporated into the phagolysosomal membrane and shifts
iron and other divalent ions out of this compartment, thus
withdrawing it from phagocytosed microbes (Vidal et al.,
1995; Jabado et al., 2000; Wyllie et al., 2002; Fritsche et al.,
2007; Valdez et al., 2008). We used C57BL/6 mice for
our studies, which carry two dysfunctional Slc11a1 alleles.
Therefore, the phenotypes observed in our studies cannot
be attributed to this transporter. Moreover, our findings are
unlikely to be specific for infections with S. Typhimurium
but are also relevant to other iron-dependent intracellular
pathogens such as Chlamydia, Legionella and Listeria (Paradkar
et al., 2008; Bellmann-Weiler et al., 2010, 2013; Haschka
et al., 2015), as well as Mycobacterium and Leishmania.
Accordingly, we note that Hfe deficiency impairs the growth of
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FIGURE 7 | Hfe−/− macrophages more efficiently restrict iron from

bacteria. WT and Hfe−/− macrophages were infected with S. Typhimurium

and exposed to 59Fe for 24 h. Intracellular bacterial uptake of NTBI (A) and

TBI (B), respectively, was determined in 59Fe-transport studies. The data were

compared by a two-tailed unpaired Student’s t-test and are shown as mean ±

S.E.M of at least 3 independent experiments.

Mycobacterium tuberculosis in human macrophages (Olakanmi
et al., 2007).

The iron content of macrophages is influenced by
several mechanisms including iron levels in the extracellular
microenvironment, expression of iron importers, and exporters,
and the rates of erythrophagocytosis and heme-iron recycling
(Canonne-Hergaux et al., 1999; Mitterstiller et al., 2016; Theurl
et al., 2016). Our models of genetic (i.e., Hfe-associated) and
dietary iron overload had different effects on macrophage iron
content. Long-term oral iron overload results in increased iron
content in virtually all cell types expressing Dmt1 and/or TfR1.
In contrast, Hfe deficiency spares the myeloid compartment
from iron. We found that oral iron overload results in an
increased bacterial load in the spleens and livers of Salmonella-
infected mice and that Hfe deficiency reduces the bacterial
load. Of note, oral iron overload in the setting of Hfe deficiency
resulted in intermediate pathogen numbers in spleen and
liver on days 2 and 4 of infection. In contrast, the survival of
Hfe−/− mice over a 10 day period was not affected by dietary
iron. Hfe−/− mice with dietary iron overload remain more
resistant to Salmonella infection than WT mice receiving the
same diet, with reduced organ loads and increased survival
(Figure 3) despite the alleviation of bacterial iron-deprivation
by dietary iron supplementation as measured by siderophore
gene expression (Figure 6). Albeit somewhat unexpected,
these findings suggest that in the later stages of Salmonella
infection, Hfe plays an immunoregulatory function that is
independent of its effect on bacterial iron-restriction. However,
the expression of innate immune genes known to mediate host
defense against S. Typhimurium was not different between
Hfe−/− and Hfe+/+ mice (Vazquez-Torres et al., 2000; Vázquez-
Torres et al., 2001), nor were differences in T cell-mediated

pathways associated with immunity against S. Typhimurium
such as IL-12, IFN-γ, IL-17, or IL-22, observed (data not
shown) (Berger et al., 2006; Raffatellu et al., 2008; Saiga et al.,
2008; Schulz et al., 2008; Chan et al., 2009; Godinez et al.,
2009; Srinivasan et al., 2012). Given that Lcn2 was expressed
at higher levels in Hfe−/− mice, it is possible that one of the
siderophore-independent effects of Lcn2 may play a role. Lcn2
is a chemoattractant for neutrophils, but this is unlikely to
account for a survival difference beyond day 3 of infection
(Schroll et al., 2012). Furthermore, Lcn2 promotes macrophage
antibacterial effector mechanisms including TNF, IL-6, and
Nos2, but these were not observed to be differentially expressed
on day 2 or 4 of infection of Hfe−/− and Hfe+/+ mice (Nairz
et al., 2015b). It is conceivable that the survival of mice in
the late stages of systemic Salmonella infection is directly or
indirectly influenced by the intestinal microbiome, which
is modulated by Lcn2 (Raffatellu et al., 2009; Deriu et al.,
2013; Moschen et al., 2016). Alternatively, the comparable
survival of Hfe−/− mice on an IE on IA diet may involve an
Lcn2-independent mechanism beyond innate immunity. For
instance, Hfe deficiency may have beneficial effects on apoptosis,
ferroptosis, autophagy, or the oxidative stress response within
or outside of the myeloid compartment that is independent of
dietary iron. If a vital organ system were to be involved, an effect
on host survival would be a plausible. An unbiased approach
such as RNA-sequencing may be required to identify such a
mechanism.

A central and novel finding of our study is that both the host
and the microbe adapt their iron metabolism during infection.
S. Typhimurium expressed genes required for siderophore-
mediated iron uptake in vivo in the iron-poor spleens of Hfe−/−

mice. This induction was specifically abrogated by dietary iron
overload. This observation raises the question whether virulence
factors other than siderophore genes may have been repressed
in the setting of dietary iron overload to enhance the survival
of Hfe−/− mice. This possibility is supported by the known
cross-regulation of bacterial iron homeostasis and virulence gene
expression (Zaharik et al., 2002). Our data on the upregulation of
bacterial iron uptake genes are further in line with the specific
induction of iron import mechanisms reported for Neisseria
gonorrhoeae residing within human monocytes (Zughaier et al.,
2014). Both studies thus support the concept that both host
myeloid cells and facultatively intracellular bacteria actively
compete for iron as essential nutrient.

In summary, the present study highlights the central role
of macrophage iron homeostasis in the outcome of infections
with iron-dependent intracellular microbes and the differential
effects of genetic and dietary iron overload. We also demonstrate
that Hfe is not required for the induction of hypoferremia
in infected animals on an iron-replete diet. Nevertheless, the
Hfe mutation alters the iron content of macrophages, which
renders the host more resistant to infections with the intracellular
pathogen S. Typhimurium. The selective pressure imposed by
intracellular pathogens may have contributed to the evolutionary
conservation of theHFE C282Y mutation, accounting for its high
allelic frequency in Caucasians (Datz et al., 1998; Moalem et al.,
2004).
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