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Introduction

Oxygen toxicity was first systematically studied in 
animal species in the late nineteenth century. Paul 
Bert demonstrated oxygen toxicity in the central nerv-
ous system (CNS), manifesting as loss of conscious-
ness, seizures, and even death in animals exposed 
to hyperbaric hyperoxia (100%  O2 at total pressures 
above 1  atm) (Bert 1878). James Lorrain Smith 
described pulmonary toxicity in animals exposed to 
normobaric hyperoxia (above 21% or 160  mm Hg, 
at 1 atm). Although mice, rats, and birds could toler-
ate moderately elevated  O2 levels (~ 40%) for over a 
week, higher levels (~ 80%) were shown to be lethal 
within several days. Inspection of deceased animals 
revealed injury and inflammation in lungs and other 
tissues (Smith 1899).

In humans, exposure to hyperoxic conditions is 
routinely encountered in supplemental oxygen ther-
apy administered to patients to address blood hypox-
emia and tissue hypoxia in a variety of pathological 
conditions. In the 1950s, for example, oxygen ther-
apy became a common practice to treat underde-
veloped and underweight premature newborns (Tin 
and Gupta 2007). Many neonates who received oxy-
gen therapy in the following decades suffered seri-
ous complications as a result of chronic hyperoxia 
exposure, including blindness and abnormal brain 
and lung development (Tin and Gupta 2007). More 
recently, oxygen therapy has been widely employed 
to treat patients with severe COVID-19 who have 
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sustained significant lung injury that compromises 
gas exchange (Ospina-Tascón et al. 2021). Although 
this is acutely necessary and successfully addresses 
hypoxemia and tissue hypoxia, the detrimen-
tal effects of oxygen toxicity necessitate that it be 
administered with caution (Perrone et al. 2017). In 
non-clinical settings, examples of operational expo-
sure to hyperoxia include military and recreational 
divers (van Ooij et al. 2016; Wingelaar et al. 2017) 
and astronauts (Thirsk et  al. 2009). In these situa-
tions as well, the inherent toxicity of oxygen neces-
sitates that exposure to hyperoxia be limited.

A very different and broad context in which 
hyperoxia is routinely  encountered is mammalian 
cell culture (Abbas et al. 2021; Al-Ani et al. 2018). 
In mammals breathing atmosphere of 20–21%  O2, 
the  O2 levels in the alveolar airspace are only ~ 14% 
due to the dynamics of incomplete lung volume 
exchange and constant diffusion of  O2 into the pul-
monary circulation. In mammalian tissues where 
cells are utilizing  O2 diffusing into the cell from 
extracellular fluid to support oxidative phospho-
rylation and other oxygen-requiring reactions,  O2 
levels are even lower, ranging from 2 to 6% (Kee-
ley and Mann 2019). Despite this, routine cell cul-
ture is performed in incubators that regulate  CO2 
but not  O2, conditions in which  O2 equilibrates to 
18–19%. Thus, cells cultured under standard condi-
tions are in fact experiencing hyperoxia. Many cel-
lular processes measured in “physioxia” (2–6%  O2) 
are different compared to 18–19%  O2, such as ROS 
production (Maddalena et  al. 2017), proliferation 
and senescence (Packer and Fuehr 1977; Busuttil 
et  al. 2003; Parrinello et  al. 2003), mitochondrial 
function (Moradi et  al. 2021b), and response to 
drugs (Yan et  al. 2010; Fonseca et  al. 2018; Otto-
Ślusarczyk et al. 2021) and hormones (Moradi et al. 
2021a). It is thus imperative to implement physi-
ological  O2 conditions in cell culture, in order to 
improve the quality and validity of in vitro studies 
and avoid artificial outcomes.

In this review, we examine the cellular pathways 
and mechanisms of cellular damage and physi-
ological dysregulation associated with normobaric 
oxygen toxicity. The effects of hyperbaric oxy-
gen therapy and its associated toxicity have been 
reviewed elsewhere (Ciarlone et  al. 2019; Doolette 
and Mitchell 2010).

Hyperoxia drives reactive oxygen species 
formation

The acute toxicity associated with hyperoxia arises 
due to increased rates of production of ROS from 
molecular oxygen, which results in macromolecular 
damage and dysregulated signaling pathways. The 
production and roles of ROS in biology have been 
extensively reviewed elsewhere (Brand 2010; Alfadda 
and Sallam 2012; Zorov et  al. 2014); thus here, we 
provide only a brief summary and then focus on the 
sources of excess ROS production in hyperoxia spe-
cifically. Superoxide anion  (O2

•–) and hydrogen per-
oxide  (H2O2) are produced in mitochondria, endo-
plasmic reticulum (ER), peroxisomes, and the cytosol 
by enzymes including respiratory complexes (Turrens 
2003), NADPH oxidases (NOX) (Bedard and Krause 
2007), uncoupled nitric oxide synthase (Montezano 
and Touyz 2012), monoamine oxidase (Pizzinat et al. 
1999), and xanthine oxidase (Battelli et  al. 2016). 
In most instances,  O2

• – is the progenitor ROS, pro-
duced by the single electron reduction of molecular 
 O2. However, it is rapidly dismuted into  H2O2, either 
spontaneously or via enzymatic catalysis by super-
oxide dismutases (SOD) (McCord and Fridovich 
1969). Three isoforms have been described: SOD1 
in the cytosol (Crapo et al. 1992), SOD2 in the mito-
chondria (Weisiger and Fridovich 1973), and SOD3 
in the extracellular space (Marklund 1984).  H2O2 is 
relatively long-lived in cells and is also electrically 
neutral so it can diffuse across membranes. It has 
well-characterized roles as a signaling molecule (Sies 
2017) and in pathological processes (Gough and Cot-
ter 2011). In the presence of iron ions,  H2O2 is further 
reduced through the Haber–Weiss and Fenton reac-
tions to form the highly reactive and toxic hydroxyl 
radical  (HO•) (Lipinski 2011). While  O2

•– and  H2O2 
preferentially react with Fe-S clusters and cysteine 
residues in proteins,  (HO•) indiscriminately oxidizes 
lipids, proteins, and DNA (D’Autréaux and Toledano 
2007). These chemical modifications can alter the 
composition, structure, and function of the affected 
molecules.  H2O2 is neutralized to water by catalase, 
glutathione peroxidases (GPX), and thioredoxin 
(Kurutas 2016). Moreover, ROS can also react with 
nitric oxide to form reactive nitrogen species (RNS) 
like peroxynitrite, which further contribute to oxida-
tive stress and disrupt nitric oxide-mediated signaling 
(Brown and Borutaite 2006).
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Several decades ago, hyperoxia was shown to 
increase cyanide-resistant respiration—a proxy of 
ROS production—in lung slices from rats (Free-
man and Crapo 1981). This has been reproduced in 
an isolated perfused rat lung preparation exposed to 
95%  O2, using an Amplex Red-based assay to detect 
 H2O2 (Audi et  al. 2018). Yusa et al. observed a simi-
lar increase in  H2O2 production in brain tissue of rats 
exposed to 99%  O2 (Yusa et  al. 1987). Increased for-
mation of ROS  (O2

• –,  HO•, and alkyl radicals) was 
also observed in sheep microvascular endothelial cell 
suspensions exposed to 100%  O2 (Sanders et al. 1993). 
In MCF-7 cells exposed to 95%  O2 for 44 h, mitochon-
drial  O2

• – levels, reported by the mitochondrial matrix-
targeted fluorescent probe MitoSOX™, were elevated 
relative to 20%  O2 (Pinterić et al. 2018). In isolated por-
cine lung mitochondria, higher rates of ROS production 
(measured as  H2O2) were observed with increasing  O2 
levels above 20% (Turrens et al. 1982). Thus, there is 
evidence from multiple orthologous approaches that 
hyperoxia increases rates of ROS production.

NOX enzymes are also important sources of cel-
lular ROS in hyperoxia. Genetic ablation/silencing or 
pharmacological inhibition of NOX1, NOX2, or NOX4 
significantly decreases ROS production and prevents 
injury in a wide range of hyperoxia exposure mod-
els (Parinandi et al. 2003; Zhang et al. 2003; Brueckl 
et al. 2006; Usatyuk et al. 2007; Pendyala et al. 2009; 
Carnesecchi et al. 2009; Auten et al. 2009; Chan et al. 
2013; Audi et  al. 2018). Maddalena et  al. showed a 
similar effect in cell culture, where increased  H2O2 pro-
duction at 18%  O2 versus 5%  O2 could be largely abol-
ished by pharmacological inhibition of NOX activities 
(Maddalena et al. 2017). Thus, there is strong evidence 
for the participation of NOX enzymes in ROS produc-
tion and oxidative damage in hyperoxia. The relative 
importance of mitochondrial versus NOX-derived ROS 
production may depend on cell type and associated dif-
ferences in mitochondrial abundance and NOX expres-
sion. In addition, other ROS-producing enzymes likely 
also contribute, but have been less extensively studied 
and may be quantitatively less important.

Hyperoxia‑induced ROS oxidize lipids, DNA, 
and proteins

Polyunsaturated fatty acids, such as arachidonic 
acid and linoleic acid, are particularly vulnerable to 

peroxidation by ROS, which can lead to the alteration 
of membrane structure and function (Catalá 2009). 
Lipid peroxidation involves a free radical mechanism 
that ends in the formation of lipid hydroperoxides 
and smaller end-products such as 4-hydroxynoneal 
(4-HNE), malonyldialdehyde (MDA), and 8-isopros-
tane, among others (Niki 2008). Some of these sub-
products damage biomolecules and harm organelle 
function. For example, 4-HNE and MDA can form 
adducts with DNA and proteins (Guéraud et al. 2010). 
In  vivo and in  vitro studies have reported increased 
lipid peroxidation caused by hyperoxia, as measured 
by the formation of MDA, 4-HNE, and 8-isopros-
tane (Wispe et al. 1986; Block 1988; Vacchiano and 
Tempel 1994; Bandali et  al. 2004; D’Agostino et  al. 
2009). Some of these have observed morphological 
and structural alterations to the plasma membrane, 
such as blebbing, and altered fluidity (Vacchiano and 
Tempel 1994; Wispe et al. 1986). More comprehen-
sive lipidomic approaches reveal extensive phospho-
lipid species changes associated with hyperoxia. For 
example, in lung tissue from mice exposed to 100% 
 O2 for 72  h and then allowed to recover for 4  days, 
extensive remodeling was observed in virtually all 
phospholipid species (Peterson et  al. 2020). The 
enzyme peroxiredoxin 6 (Prdx6) seems to have an 
important role in the detoxification of lipid hydrop-
eroxides and repair of phospholipid membranes in 
hyperoxia. Overexpression of Prdx6 decreased MDA 
production and prolonged survival of mice exposed to 
hyperoxia (Wang et al. 2004). In turn, Prdx6-deficient 
mice show a delayed recovery from lipid peroxida-
tion following hyperoxia (Li et al. 2015a). Moreover, 
lungs from mice with a mutation that renders Prdx6 
unable to bind phospholipids show no recovery post-
hyperoxic exposure, unlike control animals (Fisher 
et al. 2018). Phospholipid peroxidation is a cause of 
cell death, mainly via ferroptosis (Sharma and Flora 
2021) and apoptosis (Nakagawa 2004).

Oxidative DNA damage can occur as direct 
base modifications or as strand breaks. One of 
the main products of the former type is 8-oxo-2′-
deoxyguanosine (8-oxo-dG). Elevated levels of DNA 
strand breaks were observed in mouse HyHEL-10 
cells exposed to hyperbaric hyperoxia (Cacciuttolo 
et  al. 1993). Agarwal and Sohal observed increased 
8-oxo-dG levels in houseflies exposed to 100%  O2 for 
3 days (Agarwal, and Sohal 1994). Exposure of mice 
to 60%  O2 for longer than 2 h results in a significant 
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increase of 8-oxo-dG in lung tissue and urine samples 
(Kundumani-Sridharan et  al. 2019). Fluorescence 
microscopy of lung tissue revealed that both nuclear 
and mitochondrial DNAs were affected by hyperoxia.

Proteins are also important targets of oxidation, 
with important repercussions in both physiologi-
cal signaling and pathological processes. Due to its 
chemical reactivity and the ability of sulfur to adopt 
a variety of oxidation states, cysteine residues are a 
primary target of oxidation in hyperoxia (Paulsen and 
Carroll 2013).  H2O2-mediated oxidation of cysteine 
results in the formation of distinct chemotypes such 
as sulfenic acids and disulfides, both of which are 
reversible (Poole and Nelson 2008). Reversible oxi-
dation of cysteine residues of proteins can act as a 
molecular switch to upregulate or downregulate a 
variety of signaling pathways (Finkel 2011). How-
ever, further oxidation of sulfenic acid by ROS leads 
to the largely irreversible formation of sulfinic and 
sulfonic acids, which is associated with loss of func-
tion and degradation (Tomin et al. 2019). A thorough 
discussion of the mechanisms involved in redox sign-
aling can be found elsewhere (Sies and Jones 2020; 
Go and Jones 2013).

Protein carbonylation is another irreversible form 
of oxidation that occurs mainly at aliphatic amino 
acid residues and has been associated with a variety 
of diseases (Davies 2005; Suzuki et  al. 2010). Pro-
tein carbonyls are measured by their reaction with 
2,4-dinitrophenylhydrazine (DNPH), producing the 
colored compounds hydrazones (Suzuki et al. 2010). 
A study by Sohal et al. was one of the first to observe 
protein carbonylation caused by hyperoxia (Sohal 
et  al. 1993). They found that houseflies exposed 
to 100%  O2 for 3 days have an increased content of 
protein carbonyls that persists even after recovery at 
room air. Mori et al. detected increased levels of pro-
tein carbonyls in astrocytes treated with hyperbaric 
hyperoxia (Mori et al. 2007). Interestingly, they also 
showed that treating healthy astrocytes with either 
the supernatant of astrocytes cultured on hyperbaric 
hyperoxia or with the protein extract from this super-
natant induces neuronal cell death. Another report 
showed that hyperoxia increases oxidation of thiol 
groups, formation of lipid peroxidation products 
and protein adducts, and formation of bityrosines, 
another marker of protein oxidation (Tatarkova et al. 
2011). In summary, through the redox modification of 

biomolecules, hyperoxia induces a variety of adaptive 
and pathological changes in cellular macromolecules.

Hyperoxia injury in tissues and organs

Acute toxicity of hyperoxia was observed in the ear-
liest recorded experiments (Bert 1878; Smith 1899). 
 O2 levels above 80% were fatal to mice within 3 days. 
Lung inflammation and edema were evident post-
mortem. Hyperoxic acute lung injury (HALI) has 
now been well characterized, and pathological char-
acteristics include damaged pulmonary capillary 
endothelium, alveolar type I epithelial cell death, type 
II epithelial cell hypertrophy, interstitial edema, neu-
trophil accumulation, altered surfactant production, 
and decreased lung compliance (Kallet and Matthay 
2013; Amarelle et al. 2021).

In addition to acute injury, long-term exposure to 
supplemental oxygen has been well characterized. 
In neonates, hyperoxia interferes with lung develop-
ment, leading to developmental abnormalities that 
persist into adulthood. Animal models, particularly 
murine models, have been widely used to investi-
gate the effects of hyperoxia in the lungs of new-
borns. This is due to the fact that lung development in 
rodents during postnatal days 1–5 is similar to that of 
preterm newborn infants (born before the 37th week) 
(Berger and Bhandari 2014; O’Reilly and Thébaud 
2014). During the final 6  weeks of pregnancy, anti-
oxidant enzymes are upregulated within the develop-
ing lung in order to prepare the fetus for respiration at 
extrauterine  O2 levels (Frank and Groseclose 1984). 
As such, preterm neonates lack sufficient antioxidant 
capacity and are more vulnerable to oxygen toxicity; 
this acute damage leads to long-term pathologies like 
bronchopulmonary dysplasia (BPD), which is char-
acterized by inflammation, fibrosis, decreased alveo-
larization, disruption of the alveolar-capillary mem-
brane, impaired surfactant production, and pulmonary 
microvascular dysplasia (Bhandari 2010; Wang and 
Dong 2018). Indeed, exposure of preterm newborn 
animals to hyperoxia impairs type II alveolar epithe-
lial cell proliferation and differentiation, causes inter-
stitial thickening, delays alveolar development, and 
increases immune cell reactivity (Bucher and Roberts 
1981; Yee et  al. 2006; Bouch et  al. 2015). Many of 
these pathological changes persist even in adulthood.



Cell Biol Toxicol 

1 3
Vol.: (0123456789)

More recent findings have revealed an important 
link between hyperoxia and COVID-19. The expres-
sion of the SARS-CoV-2 co-receptor TMPRSS11D, 
a transmembrane protease required for efficient viral 
entry into host cells, was found to be higher in lung 
tissue from experimental mice BPD models, human 
BPD patients, and human and mouse epithelial cells 
exposed to hyperoxia (Myti et  al. 2020). Another 
study found that neonatal hyperoxia upregulates 
the expression of angiotensin converting enzyme 2 
(ACE2) and TMPRSS2—the receptor and co-recep-
tor of the virus, respectively—in type II alveolar epi-
thelial cells from mice by 2 months of age and that 
these protein levels remained higher than in control 
animals even at 12  months (Yee et  al. 2020). These 
results suggest that, although necessary to treat res-
piratory failure and hypoxemia, treatment with sup-
plemental oxygen may facilitate and accelerate the 
SARS-CoV-2 infection cycle by upregulating the 
receptor and co-receptors of the virus. In addition, 
patients who were born preterm may be at greater risk 
for COVID-19.

Elevated  pO2 in the alveoli drive an  increase 
in dissolved  O2 concentrations in blood, and this is 
rapidly communicated to all internal organs where 
it can cause oxidative damage and disrupt cell sign-
aling processes. From the earliest studies of hyper-
oxia in animals (Bert 1878), it has been clear that 
the brain is highly susceptible to hyperoxia injury. 
This is particularly true in neonates progressing 
through critical developmental milestones. Dur-
ing embryonic brain development, neuronal migra-
tion is near complete by the 24th week of gesta-
tion; however, glial maturation continues to occur 
postnatally (Reich et  al. 2017). In preterm animal 
models, hyperoxia causes neuronal cell death and 
disturbs glial maturation and neural connectivity in 
the cortex, basal ganglia, hypothalamus, striatum, 
hippocampus, and white matter (Felderhoff-Mueser 
et  al. 2004, 2005; Dean et  al. 2014). A proteomic 
study by Kaindl et  al. revealed that treatment of 
newborn mice with hyperoxia alters the expres-
sion of proteins involved in vesicle trafficking, cell 
growth and differentiation, neuronal migration, and 
axonal arborization (Kaindl et al. 2008). Behavioral 
tests have revealed that postnatal exposure to hyper-
oxia leads to impaired motor coordination, spati-
otemporal learning, and memory in rodents in their 
adolescence and young adulthood (Schmitz et  al. 

2012; Ramani et  al. 2013; Serdar et  al. 2016). In 
humans, clinical studies have reported detrimental 
effects of hyperoxia in patients with stroke and trau-
matic brain injury (Davis et al. 2009; Rincon et al. 
2014).

Hyperoxia injury of the retina has been widely 
studied. Treatment of premature infants with sup-
plemental oxygen leads to visual impairment and 
even blindness in adulthood (Saugstad 2006), a 
pathology termed retinopathy of prematurity (ROP). 
As such, experimental oxygen-induced retinopathy 
models have been used to investigate the mecha-
nisms of oxygen toxicity in the retina. ROP is char-
acterized by hyperoxia-mediated arrest of retinal 
vascularization, followed by hypoxia due to poor 
vascularization, which in turn induces vasoprolifer-
ation and subsequent retinal detachment (Hellström 
et al. 2013).

Heart function is also impaired in hyperoxia. In 
neonatal mice, sustained hyperoxia causes left ven-
tricular dysfunction (Ramani et al. 2015). Similarly, 
right ventricular dysfunction has been observed in 
adult mice that were exposed to neonatal hyperoxia 
(Menon et al. 2018). Hyperoxia has been shown to 
alter the redox and metabolic state of mouse car-
diomyocytes, impairing action potential generation, 
dysregulating the expression of several potassium 
and sodium channels, and ultimately leading to left-
ventricular hypertrophy and decreased cardiac out-
put (Panguluri et  al. 2013; Chapalamadugu et  al. 
2015; Vysotskaya et  al. 2018). In human cardio-
myocytes, hyperoxia induces cell death, upregulates 
proinflammatory cytokines, and alters the expres-
sion of genes involved in cell-cycle regulation, 
metabolism, and signaling ex  vivo (Hafner et  al. 
2017). Further, a meta-analysis revealed that heart 
failure patients are more susceptible to the hemody-
namic effects of hyperoxia, such as cardiac output 
decline (Smit et al. 2018).

Virtually all organs and tissues have been shown 
to be targets of oxygen toxicity, though some are 
less well studied. Endocrine glands (Bean and John-
son 1954), the liver (Wong et al. 2001; Rogers et al. 
2010; Zangl et al. 2014), the kidney (Hess and Men-
zel 1970), the gastrointestinal tract (Chen and Chou 
2016; Liu et al. 2020; Li and Liu 2022), and adipose 
tissue (Soares et al. 2016) are all adversely affected 
by hyperoxia.
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Hyperoxia directly and indirectly modulates 
diverse signaling pathways

Hyperoxia compromises cellular functions via mac-
romolecular oxidative damage and by dysregulating 
cellular signaling processes. A wide range of signal-
ing pathways is altered by ROS in hyperoxia (Fig. 1). 
In many instances, these are regulated by the oxida-
tion of specific cysteine residues in key proteins, 
which can either activate or inhibit protein activi-
ties, in either case modulating signaling (Zhang et al. 
2016). A central pathway that is regulated in this way 
involves the nuclear factor erythroid 2-related fac-
tor 2 (Nrf2) (Bellezza et  al. 2018). When activated, 
Nrf2 modulates the intracellular oxidative stress 
response by binding the antioxidant response element 
(5′-TGACXXXGC-3′) of genes encoding antioxidant 
enzymes, enzymes involved in glutathione metabo-
lism, and enzymes involved in the generation of 
reducing equivalents (Tonelli et  al. 2018). The tran-
scriptional activity of Nrf2 is regulated by its physi-
cal interaction with the cytosolic Kelch-like ECH-
associated protein 1 (Keap1), which facilitates Nrf2’s 

proteasomal degradation under normal oxidative 
conditions. Keap1 binding of Nrf2 is inhibited when 
excessive cytosolic ROS modify key sensor cysteines 
in Keap1 (Baird and Yamamoto 2020), leading to 
Nrf2’s escape of degradation, translocation to the 
nucleus, and promotion of transcriptional activity on 
target genes.

The Nrf2-Keap1 system appears to play an impor-
tant role in hyperoxia. As early as 2002, genome-wide 
genetic linkage analysis had identified Nrf2 as a criti-
cal gene in the response to hyperoxia in two strains of 
laboratory mice (Cho et al. 2002b). Exposure of mice 
to hyperoxia (95–98%  O2) significantly increased 
Nrf2 mRNA levels and DNA-binding activity, with 
concomitant increases in mRNA levels of target 
genes (Cho et  al. 2002a). Supporting this finding, 
 Nrf2−/− mice were subsequently shown to be suscepti-
ble to lung injury resulting from exposure to 95–98% 
 O2. Similar results have been reported by Reddy et al. 
and Cho et al. (Reddy et al. 2009; Cho et al. 2012). In 
both studies, Nrf2 knockout mice showed increased 
lung injury and inflammation, while failing to recover 
normally upon return to normoxia. In contrast, 

Fig. 1  Signaling pathways affected in hyperoxia. Excessive 
ROS modulate intracellular signaling, including via nuclear 
factor erythroid 2-related factor 2 (Nrf2), nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB), and 
mitogen-activated protein kinase (MAPK) pathways. In par-
allel, oxidative damage to DNA activates p53, which induces 
the transcription of target genes. In turn, damage-associated 

molecular patterns (DAMPs) upregulated by these pathways 
are released into the extracellular space, where they can bind 
receptors such as the toll-like receptor 4 (TLR4) and further 
activate the NF-κB pathway. Signaling events orchestrated by 
these and other pathways determine the outcome of hyperoxia-
mediated oxidative stress and may include cell survival, senes-
cence, death, and inflammation. Created with BioRe nder. com

https://www.BioRender.com
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increasing Nrf2 activity by reducing Keap1 protein 
levels offers protection against the injurious effects 
of hyperoxia (Tamatam et al. 2020). Taken together, 
these studies indicate that the Nrf2-Keap1 pathway 
plays a key role in the response to oxygen toxicity, 
reducing tissue injury and improving recovery.

ROS also promotes the activation of nuclear fac-
tor kappa-light-chain-enhancer of activated B cells 
(NF-κB), a transcription factor broadly involved in 
immune and inflammatory responses, via direct oxi-
dation of regulatory cysteine residues (Lingappan 
2018). However, the relationship between NF-κB and 
ROS is complex and bidirectional. Similar to Nrf2, 
under normal conditions, NF-κB remains bound by 
regulatory IκB proteins in the cytosol, preventing its 
translocation, DNA binding, and transcription regula-
tion. Oxidative modifications to specific amino acids 
in IKB kinase (IKK) and IκBα can lead to NF-κB 
activation. NF-κB can induce the transcription of 
both antioxidant and pro-oxidant genes, suggesting 
a possible role in cell survival under oxidative stress 
(Morgan and Liu 2011); however, there is conflict-
ing evidence regarding whether hyperoxia-mediated 
NF-κB activation is deleterious (Wright et  al. 2010; 
Zara et  al. 2013; Chou and Chen 2020; Li et  al. 
2020) or beneficial (Barazzone-Argiroffo et al. 2003; 
Franek et al. 2004; Yang et al. 2004; McKenna et al. 
2014; Michaelis et al. 2014). This is likely due to the 
numerous genes regulated by NF-κB and to the multi-
plicity of NF-κB protein subunits and regulators that 
can be activated or inactivated through distinct path-
ways depending on the tissue and cell type.

Hyperoxia also appears to impact the Janus kinase-
signal transducer and activator of transcription (Jak-
STAT) pathway. STAT-induced gene expression 
regulates biological processes like proliferation, sur-
vival, and inflammation (Hu et  al. 2021). Some evi-
dence suggests a beneficial role of STAT proteins 
in hyperoxia through the induction of the protective 
enzyme heme oxygenase-1 (HO-1) and the inhibi-
tion of matrix metalloproteinase (MMP) upregu-
lation (Lee et  al. 2000; Lian et  al. 2005). Likewise, 
deletion of STAT3 increased lung injury and alveolar 
capillary leak in mice exposed to hyperoxia (Hokuto 
et al. 2004). However, STAT3 activation in hyperoxic 
rats has also been linked to the pathogenesis of retin-
opathy of prematurity (Byfield et al. 2009; Ren et al. 
2021).

Oxidative DNA damage driven by hyperoxia trig-
gers activation and upregulation of p53, which orches-
trates cell cycle arrest, decreased proliferation, senes-
cence, or cell death (O’Reilly et al. 1998; Shenberger 
and Dixon 1999; Das et  al. 2004; Das and Dashna-
moorthy 2004; Maniscalco et al. 2005; Klimova et al. 
2009; Parikh et al. 2019; You et al. 2019; Scaffa et al. 
2021). Ataxia telangiectasia-mutated (ATM) and 
ATM-and-Rad3 related (ATR) are two kinases that 
are activated by damaged DNA. Both have also been 
shown to activate p53 in hyperoxia (Das and Dashna-
moorthy 2004; Das et  al. 2004; Kulkarni and Das 
2008; Resseguie et al. 2015). Upregulation of p21 in 
hyperoxia and subsequent cell cycle arrest and induc-
tion of senescence has been demonstrated in multiple 
studies (Mcgrath 1998; Shenberger and Dixon 1999; 
Rancourt et al. 2001; Nyunoya et al. 2003; Das et al. 
2004; Das and Dashnamoorthy 2004; Londhe et  al. 
2011; You et al. 2019; Parikh et al. 2019).

Receptors involved in proinflammatory pathways, 
such as toll-like receptor-4 (TLR4), are implicated in 
the inflammatory phase of hyperoxia injury. TLR4 
can be activated by cytokines produced in a parac-
rine or autocrine fashion, and by damage-associated 
molecular patterns (DAMPs) like high mobility group 
box 1 (HMGB1) released by damaged cells. Indeed, 
TLR4 activation in hyperoxia promotes cell death and 
inflammation through the NF-κB-mediated induc-
tion of proinflammatory cytokines IL-6, IL-8, and 
TNF-α (Ogawa et  al. 2007; Liu et  al. 2015; Huang 
et al. 2016a). Contrastingly, TLR4 activation has also 
been associated with survival and protection against 
hyperoxia. Zhang et al. reported that TLR4-deficient 
mice are more susceptible to apoptosis induced by 
hyperoxia (Zhang et al. 2005). In another study with 
TLR4-deficient mice, reconstitution of endothelial 
TLR4 prolonged the survival of TLR4-KO animals 
post-hyperoxia (Takyar et al. 2016).

DAMPs are often upregulated by oxidative stress-
mediated transcription factors (e.g., NF-κB) and are 
subsequently released into the extracellular space 
where they can activate pattern recognition receptors 
in immune cells and in the same cell, resulting in a 
positive feedback loop that further exacerbates dam-
age (Roh and Sohn 2018). Accumulation of extra-
cellular HMGB1 has been observed in hyperoxic 
mice, where treatment with neutralizing HMGB1 
antibodies attenuated pulmonary edema, structural 
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alterations, and inflammation (Entezari et  al. 2014; 
Yu et al. 2016).

The mitogen-activated protein kinase (MAPK) 
pathway leading to the transcriptional response medi-
ated by activator protein-1 (AP-1) has also been 
implicated in hyperoxia-induced signaling. It has 
been demonstrated that apoptosis signal-regulating 
kinase 1 (ASK1), upstream activator of Jun N-termi-
nal kinase (JNK) and p38, is activated upon oxida-
tion of specific cysteine residues (Nadeau et al. 2009, 
2007). In hyperoxia, extracellular signal-regulated 
kinase 1/2 (ERK1/2) has been mostly associated with 
survival and protective effects, while p38 and JNK 
activation has been mainly linked to cell death and 
injury (reviewed by Porzionato et al. 2015).

In conclusion, hyperoxia affects cellular signal-
ing via a wide range of pathways resulting in numer-
ous changes in cell behavior. This arises due to the 
preponderance of individual interactions of ROS 
with these signaling pathways and their intercon-
nectedness. These wide-ranging effects likely under-
lie the observed impacts of hyperoxia on growth and 
development.

Hyperoxia drives cellular senescence

Replicative senescence is caused by DNA damage 
and/or telomere shortening leading to the induction 
of cell cycle arrest pathways and permanent exit from 
the cell cycle. Its initiation is regulated by the tran-
scription factors p53, p21, and retinoblastoma protein 
(pRb) (Kumari and Jat 2021). Hyperoxia has been 
characterized as an initiator of cell cycle arrest and 
cellular senescence in mammalian cell lines. Early 
studies performed by Balin et al. showed that elevated 
 O2 levels shortened the replicative lifespan of WI-38 
human fibroblasts (Balin et  al. 1977). It was later 
observed that cell culture in 40%  O2 causes telomere 
shortening in these cells, halting their proliferation 
at the  G1 phase (von Zglinicki et  al. 1995). Saretzki 
et  al. demonstrated the elevation of gene expression 
markers of senescence in BJ human neonatal fore-
skin fibroblasts exposed to 40%  O2 for 4–6  weeks 
(Saretzki et al. 1998).

The activity of senescence associated (SA)-β-
galactosidase, a well-recognized downstream senes-
cence marker (Lee et  al. 2006), is elevated in reti-
nal pigment epithelial (RPE) cells cultured at 40% 

 O2 (Honda et  al. 2002). Parikh et  al. also observed 
elevated SA-β-galactosidase activity, accompanied 
by increased p21, pRb, phosphorylated p53 levels, 
and DNA damage markers, in human fetal airway 
smooth muscle cells exposed to 40%  O2 for 7  days 
(Parikh et  al. 2019). Similarly, primary human fetal 
lung fibroblasts cultured at 40%  O2 for 7 days showed 
increased SA-β-galactosidase activity, DNA damage 
markers, and  G2/M phase arrest, along with upregu-
lation of p21 and p53. Additionally, hyperoxic fibro-
blasts had elevated expression of proinflammatory 
and profibrotic factors, as measured by RT-PCR (You 
et  al. 2019). As mentioned above, standard cell cul-
ture conditions of 18–19%  O2 are hyperoxic relative 
to in vivo physioxia (2–6%). Parrinello et al. demon-
strated that the onset of premature replicative senes-
cence in mouse embryo fibroblasts cultured at 18% 
 O2  occurred much earlier than in 3%  O2 (Parrinello 
et  al. 2003). This was associated with accelerated 
accumulation of DNA damage and mutations (Busut-
til et al. 2003) and further exacerbated by knockout of 
DNA repair genes. Thus, hyperoxia drives replicative 
senescence in various cell types, apparently via the 
accumulation of DNA damage and mutations.

Mitochondria are key targets of oxygen toxicity

Mitochondrial respiration is both an important source 
of ROS in hyperoxia and a main target. Consistently, 
cells exposed to elevated  O2 levels exhibit reduced 
rates of respiration (Das 2013; Hals et  al. 2017; 
Pinterić et  al. 2018; Schoonen et  al. 1990). Respi-
ration-deficient (ρ°) HeLa cells tolerate hyperoxic 
conditions that are otherwise toxic to their wild-type 
counterparts. Moreover, the toxicity of hyperoxia is 
restored when these cells are repopulated with respir-
atory-competent mitochondria (Li et al. 2004). Simi-
larly, uncoupling HeLa cell respiration with carbonyl 
cyanide m-chlorophenyl hydrazone (CCCP), thus 
lowering membrane potential, reduces mitochondrial 
ROS production rates in hyperoxia and confers toler-
ance to such conditions (Li et al. 2004).

Inhibition of oxidative phosphorylation in hyper-
oxia is associated with inhibition of several key 
enzymes at high  O2 levels. For example, pyruvate 
dehydrogenase (PDH) complex activity is reduced 
in lungs of mice and rats exposed to 95–100%  O2 
(Kimura et al. 1983; Tanaka et al. 2020). Inactivation 
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of PDH complex limits pyruvate oxidation in the tri-
carboxylic acid (TCA) cycle and is in many cases par-
tially compensated for by increased glycolytic rates 
(Tanaka et  al. 2020). α-Ketoglutarate dehydrogenase 
(α-KGDH) is similarly inhibited by hyperoxia. In 
HeLa cells exposed to 98%  O2 for 4  days, α-KGDH 
activity was almost completely abolished, and this was 
accompanied by a fall in glutamine/glutamate utiliza-
tion (Schoonen et  al. 1990). The TCA cycle enzyme 
aconitase, which catalyzes the isomerization of cit-
rate to isocitrate, is particularly sensitive to inhibition 
by  O2

• –. Inactivation of mitochondrial aconitase in 
hyperoxia has been reported both in vivo and in vitro 
(Gardner et  al. 1994; Morton et  al. 1998). Addition-
ally, hyperoxia inhibits the activities of mitochondrial 
respiratory complexes I and II (Das 2013; Schoonen 
et  al. 1990). Proteomic analysis of hippocampal tis-
sue of neonatal mice that were exposed to 85%  O2 
until postnatal day 12 showed altered expression of 
subunits of several respiratory complexes, along with 
decreased ATP-linked oxygen consumption, even at 
14 weeks of age—approximately 12 weeks after mice 
were returned to normoxia (Ramani et al. 2019). Thus, 
short-term exposure to hyperoxia both acutely and 
chronically inhibits mitochondrial bioenergetic func-
tion. The inhibition of mitochondrial bioenergetic 
function by hyperoxia results in mitochondrial dys-
function, evidenced by a reduced membrane potential 
(Audi et al. 2022) and increased fission of mitochon-
drial networks (Ma et al. 2018).

Mitochondrial DNA (mtDNA) is localized to the 
matrix (Richter 1995), which makes it proximal to 
several sources of excess ROS production during 
hyperoxia. Perhaps not surprisingly, increased lev-
els of mtDNA oxidative damage are observed with 
hyperoxia exposure. Roper et  al. reported elevated 
mtDNA oxidative damage in lung epithelial cells of 
mice breathing a 100%  O2 atmosphere for up to 72 h 
(Roper et  al. 2004). In experiments with isolated 
mouse lung epithelial cells in culture, exposure to 
60%  O2 for 24 h increased 8-oxo-dG by over fivefold 
(Kundumani-Sridharan et  al. 2019). Treatment of 
rat lungs with a mitochondria-targeted DNA repair 
enzyme, endonuclease III, protects against hyper-
oxia-induced mtDNA damage ex  vivo (Gebb et  al. 
2013). Similarly, Kim et al. reported that overexpres-
sion of another DNA repair enzyme, mitochondrial 
8-oxoguanine DNA glycosylase (mt-OGG1), reduces 
oxidant-induced mtDNA lesions and apoptosis in 

alveolar epithelial cells exposed to hyperoxia in vitro 
(Kim et  al. 2014). Effects on non-lung tissues have 
also been reported. For example, rats housed in 60% 
 O2 for 21  days developed cataracts coincidentally 
with elevated mtDNA damage in lens tissue (Zhang 
et al. 2010). It is unclear the extent to which mtDNA 
damage and mutations can explain the phenotypic 
response to hyperoxia observed in  vivo, since cells 
have a relatively high tolerance to mtDNA damage 
(Chomyn et al. 1992; Miyabayashi et al. 1992; Carelli 
and Chan 2014).

Cardiolipin (CL) is another mitochondrial target 
of hyperoxia. CL is a unique phospholipid with two 
phosphate groups and four acyl chains that in eukary-
otic organisms is exclusively located in the mitochon-
dria, mainly in the inner mitochondrial membrane 
(IMM). CL has an essential role in the stability of res-
piratory chain supercomplexes (often termed as respi-
rosomes) (Pfeiffer et  al. 2003) and dimerization of 
ATP synthase (Acehan et al. 2011). CL also interacts 
with cytochrome c (cyt c) on the outer surface of the 
IMM. ROS-mediated oxidation of CL causes its dis-
sociation from cyt c, which then leads to the release 
of cyt c into the cytosol (Kagan et al. 2005; Shidoji 
et  al. 1999; Polyak et  al. 1997; Ott et  al. 2002), a 
hallmark of apoptosis. Treatment of human lens epi-
thelial B-3 (HLE B-3) cells with 80%  O2 for 48  h 
causes a reduction in CL content (Huang et al. 2006). 
An oxidative lipidomics study by mass spectrometry 
revealed CL peroxidation in mouse endothelial lung 
cells subjected to 72-h hyperoxia (95–100%  O2) both 
in  vivo and in vitro. Lipid peroxidation was accom-
panied by apoptosis, measured by caspases 3 and 7 
activity and TUNEL assay (Tyurina et  al. 2010). It 
is evident that hyperoxia-mediated CL oxidation is a 
major trigger of mitochondrial toxicity and cell death. 
Further mechanistic details will be explored in the 
next section.

The uncoupling proteins UCP2 and UCP3 have 
been studied in the context of hyperoxia. These IMM 
proteins produce a relatively minor loss of membrane 
potential associated with decreased rates of ROS pro-
duction in some experimental models. UCP3 overex-
pression in mouse C2C12 myotubes exposed to hyper-
oxia ameliorates protein carbonylation levels (Barreiro 
et  al. 2009). Similarly, reduced UCP2 expression 
in MLE-12 cells and lungs from mice exposed to 
hyperoxia is accompanied by enhanced  O2

• – produc-
tion and alveolar epithelial apoptosis. These effects 
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were abrogated by thioredoxin overexpression, which 
upregulated UCP2 via PGC-1α. This latter study also 
showed increased hyperoxic lung injury in UCP2-
deficient mice (Raghavan et  al. 2022). Together, 
these findings support the notion that UCP2/3 might 
decrease mROS production rates, providing additional 
targets for possible therapeutic intervention.

In summary, hyperoxia targets mitochondrial bio-
energetics and function, mediates CL and mtDNA 

damage, and ultimately promotes the mitochondrial 
pathway of apoptotic cell death (Fig. 2).

Hyperoxia causes cell death via multiple pathways

Cell death is associated with oxygen toxicity. It occurs 
via multiple pathways, including apoptosis, necrosis, 
necroptosis, pyroptosis, and ferroptosis. Due to the 

Fig. 2  Mitochondrial targets of hyperoxia-mediated injury. 
Hyperoxia drives the over production of mitochondrial reac-
tive oxygen species (ROS), which inhibit metabolic enzymes 
such as aconitase, α-ketoglutarate dehydrogenase (α-KGDH), 
and pyruvate dehydrogenase (PDH), and respiratory complexes 
I and II, leading to bioenergetic failure. mROS oxidize mito-

chondrial DNA (mtDNA) and cardiolipin (CL), further pro-
moting dysfunction and leading to the release of cytochrome 
c (cyt c) into the cytosol through Bcl-2-associated X protein/
Bcl-2 homologous antagonist killer (Bax/Bak) oligomers to 
instigate apoptosis. Created with BioRe nder. com

https://www.BioRender.com
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complexity of cell injury caused by hyperoxia, there 
is no consensus regarding the relative contributions 
of each in hyperoxia, and they likely vary according 
to the experimental model used. A key event in the 
intrinsic pathway of apoptosis is the release of cyt c 
and other proapoptotic factors from the mitochondrial 
inter-membrane space into the cytosol, which occurs 
through two main mechanisms (reviewed by Garrido 
et al. 2006).

One mechanism is the permeabilization of the 
outer mitochondrial membrane (OMM) through the 
oligomerization of the proteins Bax and Bak. Apop-
totic stimuli cause the cytosolic protein Bax to local-
ize to the OMM, where it forms oligomers with itself 
and with the constitutively present Bak. Bax and Bak 
oligomers are then responsible for the release of proa-
poptotic factors into the cytosol. Activation and oli-
gomerization of Bax/Bak is influenced by oxidative 
stress, seemingly via Cys-62 oxidation of Bax pro-
moting its translocation to mitochondria (D’Alessio 
et  al. 2005; Nie et  al. 2008). Oxidation of Bax/Bak 
has not yet been demonstrated in a hyperoxic model, 
but the relationship between these proteins and 
excessive ROS production is clear. Treatment of rat 
alveolar epithelial cells with SOD/catalase mimetic 
EUK-134 prevented Bax activation, cyt c release, and 
apoptosis after hyperoxic exposure, indicating that 
ROS production occurs upstream of Bax activation 
in this model (Buccellato et al. 2004). Budinger et al. 
demonstrated that deficiency of Bax and Bak can pro-
tect against hyperoxia-induced apoptosis. There is 
thus a clear role of Bax/Bak in hyperoxia-mediated 
apoptotic cell death (Budinger et al. 2011).

A second mechanism underlying the intrinsic 
apoptosis pathway is the opening of the mitochon-
drial permeability transition pore (mPTP), which 
leads to mitochondrial swelling and rupture to release 
pro-apoptotic factors including cyt c (reviewed by 
Bernardi and di Lisa 2015; Bernardi et al. 2021). Oxi-
dative stress is a key factor inducing mitochondrial 
permeability transition. mPTP opening is triggered by 
thiol oxidants and can be prevented by thiol reduct-
ants (Fagian et  al. 1990; Lenartowicz et  al. 1991; 
Valle et al. 1993; Bernardes et al. 1994; Kowaltowski 
et  al. 1996). Addition of catalase, lipid peroxide 
inhibitors, iron chelators, and dietary and synthetic 
antioxidants similarly protect against mPTP opening 
(Castilho et al. 1995; Kowaltowski et al. 1996; Singh 
et  al. 2013; Daniel et  al. 2018; Teixeira et  al. 2018; 

Baburina et  al. 2019). Moreover, oxidative modifi-
cations to specific cysteine residues of the adenine 
nucleotide translocator (ANT) (Costantini et al. 2000; 
McStay et al. 2002), cyclophilin D (CypD) (Nguyen 
et al. 2011), and the oligomycin sensitivity conferral 
protein (OSCP, a subunit of ATP synthase complex) 
(Carraro et  al. 2020) seem to play a crucial role in 
mPTP assembly and opening. mPTP-mediated cell 
death has been linked to hyperoxic injury (Pagano 
et al. 2004). Cyt c release and mitochondrial swelling 
were observed in epithelial alveolar cells from mice 
exposed to 100%  O2 for 72 h in vivo. These changes 
were prevented by treatment with cyclosporine A 
(CsA), an inhibitor of mPTP opening. Thus, there is 
strong evidence hyperoxia causes cell death via the 
intrinsic apoptotic pathway, involving a variety of 
mechanisms.

Hyperoxia can also cause cell death through the 
extrinsic apoptosis pathway mediated through inter-
action of extracellular signaling molecules with cell 
death receptors such as Fas and CD40. Increased 
lung tissue Fas expression is seen in murine models 
of oxygen toxicity in  vivo and in  vitro (Barazzone 
et  al. 1998; de Paepe et  al. 2005). Similarly, protein 
and mRNA levels of Fas, FasL, and Fas-associated 
death domain (FADD) are increased in brain tissues 
from rats exposed to 80%  O2. In this study, traffick-
ing of the Fas receptor to the plasma membrane was 
found to be increased in hyperoxia in  vitro. In turn, 
lack of functional Fas receptors in mice provided neu-
roprotection against hyperoxic injury (Dzietko et  al. 
2008). Conversely, there is also evidence indicating 
that the extrinsic pathway is not required for hyper-
oxia-induced cell death, as genetic ablation of Fas and 
CD40 do not confer protection against lung injury in 
murine models (Barazzone et  al. 1998; Barazzone 
Argiroffo et al. 2002).

A recent study by Tong et al. found that hyperoxia 
induces a non-canonical type of apoptotic cell death 
via ER stress (Tong et al. 2021). ER stress induces the 
unfolded protein response (UPR). Inositol-requiring 
enzyme 1α (IRE1α), one of the most conserved UPR 
signaling proteins, induces activation of the transcrip-
tion factor X-box binding protein 1 (XBP1), which 
in turn induces the expression of ER chaperones and 
protein degradation components (Chen and Brandizzi 
2013; Gong et  al. 2017). However, overactivation 
of the UPR results in IRE1α-mediated JNK activa-
tion, which can promote both intrinsic and extrinsic 
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apoptotic pathways (Verma and Datta 2012). Tong 
et al. showed that prolonged exposure (7–14 days) of 
newborn rats to hyperoxia caused phosphorylation of 
IRE1α and JNK in lung tissues, indicating an involve-
ment of the ER stress-associated apoptosis. There 
is also evidence of the activation of the ER stress-
related caspase-12 (Lamkanfi et  al. 2004) in murine 
hyperoxic models (Zhang et  al. 2013; Huang et  al. 
2016b). Furthermore, treatment with ER-stress inhib-
itor 4-phenyl butyric acid protects against hyperoxic-
cell death both in vivo and in vitro (Pao et al. 2021). 
Recent evidence showed role of the mitochondrial 
protein A-kinase anchoring protein 1 (Akap1) and 
ER stress in protection against hyperoxia; deletion of 
Akap1 resulted in increased ER stress-associated cell 
death (Sidramagowda Patil et al. 2022).

In many studies of hyperoxia, cell death resem-
bles necrosis. Kazzaz et  al. did not observe markers 
of apoptosis in A549 human lung adenocarcinoma 
cells cultured at 95%  O2 for 7  days (Kazzaz et  al. 
1996). Rather, morphological features of these cells 
were typical of necrotic cell death, including swell-
ing and enlarged nuclei and mitochondria. However, 
this study did show apoptotic cell death in lungs 
from mice exposed to 100%  O2 for 48  h in  vivo. 
Although contrasting, these results are not necessar-
ily surprising. A direct exposure of cultured cells to 
95%  O2 represents a more severe hyperoxia (perhaps 
20 × physioxia) than would be experienced by alveo-
lar cells of mice breathing 100%  O2 (approximately 
5 × greater than in normoxia). Further, in this study, 
A549 cells were exposed to hyperoxia for 7  days, 
while animals were exposed for only 48 h.

Necroptosis is a form of programmed cell death 
that shares characteristics of both apoptosis and 
necrosis. In hyperoxia, the expression of  receptor-
interacting proteins (RIP) 1 and 3—key proteins in 
this pathway—was increased in the bronchoalveo-
lar lavage fluid of rats exposed to hyperbaric hyper-
oxia (100%  O2 at 1875 mmHg) for 6 h. Inhibition of 
necroptosis by the RIP1 inhibitor necrostatin-1 and 
the ROS scavenger edaravone protected the animals 
against lung pathology (Han et al. 2018). Pyroptosis is 
a form of programmed necrotic and inflammatory cell 
death that appears to participate in hyperoxic injury. 
There is an increasing amount of recent evidence 
showing that inhibition of the pyroptosis pathway, 
either by pharmacologically or genetically targeting 
the inflammasome formation, or other elements of the 

pathway, protects against hyperoxic injury (Fukumoto 
et  al. 2013; Galam et  al. 2016; Zhang et  al. 2017b; 
Dapaah-Siakwan et  al. 2019; Mendha et  al. 2021; 
Wang et al. 2022a). A more recently described form 
of cell death is ferroptosis which, like pyroptosis and 
necroptosis, is a regulated cell death with necrotic 
phenotype. It is characterized by, among other things, 
lipid peroxidation (Cao and Dixon 2016), leading to 
loss of membrane integrity and rupture of the cell 
(Jiang et al. 2021). Two murine models have reported 
the involvement of ferroptosis in lung injury induced 
by hyperoxia (Jia et al. 2021; Chou and Chen 2022).

Taken together, the data indicate that multiple 
modes of cell death are involved in hyperoxic injury. 
The relative importance of any single pathway is 
likely dependent, in part, on the severity and duration 
of hyperoxia exposure. More research is needed to 
better understand these relationships.

Epigenetic responses to hyperoxia

Effects of hyperoxia exposure during the neonatal 
period can last into adulthood, suggesting that long-
lasting epigenetic alterations might be involved. Epi-
genetic regulation of gene expression occurs via DNA 
methylation, covalent histone modifications, and 
the expression of non-coding RNAs (Aguilera et  al. 
2010). All these mechanisms are known to be affected 
by oxidative stress (reviewed by García-Guede et al. 
2020). Unsurprisingly, both aberrant DNA methyla-
tion (Panayiotidis et al. 2004; Zhu et al. 2015; Chen 
et  al. 2017; Bik-Multanowski et  al. 2018) and his-
tone modification have been identified in experiments 
with hyperoxia (Londhe et al. 2011; Zhu et al. 2015; 
Coarfa et al. 2020).

Noncoding RNA molecules, including miRNAs 
(19–25 nucleotides) and long non-coding RNAs 
(lncRNAs; > 200 nucleotides) are also affected by 
hyperoxia. miRNA molecules regulate gene expres-
sion by silencing specific mRNAs. On the other hand, 
lncRNAs are a highly heterogenous class of RNAs 
that act through a wide variety of mechanisms. For 
instance, lncRNA can bind specific miRNAs and 
inhibit their function by “sponging” them (reviewed 
by Panni et  al. 2020). Using miRNA microarray, 
Zhang et al. identified 21 miRNAs that are differen-
tially expressed in lungs from neonatal mice exposed 
to hyperoxia versus control mice (Zhang et al. 2011). 
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Table 1  Evidence of the roles of noncoding RNA molecules in hyperoxia

RNA molecule Type of RNA Hyperoxic model Outcome Reference

miR-150 miRNA Lung injury/newborn mice/95% 
 O2/3–10 days

• Downregulated in hyperoxia
• KO decreased lung injury

(Narasaraju et al. 2015)

Lung injury/primary mouse lung 
epithelial cells, BEAS-2B and 
A549 cells/95%  O2/12–72 h

• Cytoprotective effect (Zhang et al. 2017a)

miR-876-3p miRNA Lung injury/newborn mice/85–
100%  O2/4–14 days

Normal human bronchial epithe-
lial/85%  O2/24 h

• Downregulated in hyperoxia
• Predicted protective effect 

against injury

(Lal et al. 2018)

miR-16 miRNA Lung injury/isolated 
T2AECs/60%  O2 /24 h

• Downregulated in hyperoxia
• miR-16 mimics inhibited apop-

tosis and the TGF‐β/Smad2 and 
Jak/STAT3 pathways

(Li et al. 2018)

miR-34a miRNA Lung injury/newborn mice/100% 
 O2/4 or 7 days

Isolated T2AECs and MLE-12 
cells/40–95%  O2/4–48 h

• Silencing ameliorated apoptosis 
in vitro and in vivo

• Overexpression aggravated 
injury

(Syed et al. 2017)

Lung injury/newborn mice/85% 
 O2/14 days

MLg cells/85%  O2/unspecified 
duration

• Upregulated in hyperoxia
• Deletion protected against 

injury

(Ruiz-Camp et al. 2019)

miR-17 miRNA Lung injury/newborn mice/70% 
 O2/4–14 days

• Downregulated in hyperoxia
• Downregulated STAT3
• Upregulation relieved pulmo-

nary injury

(Zhang et al. 2020)

Lung injury/newborn mice/85% 
 O2/14 days

• Downregulated in hyperoxia
• Downregulation was associated 

with lung injury

(Wang et al. 2020)

miR-185-5p miRNA Lung injury/mice/95% 
 O2/24–72 h

MLE-15 cells/95%  O2/24–48 h

• Upregulated in hyperoxia
• Upregulated RIP1 and RIP3
• Induced necroptosis and 

apoptosis

(Carnino et al. 2020)

miR-96 miRNA OIR/newborn rats/cycling 
10–50%  O2 every 24 h/14 days

Retinal vaso-obliteration/newborn 
rats/80%  O2/5 days

HRMECs/80%  O2/1–48 h

• Downregulated in hyperoxia
• Overexpression promoted 

vascular repair in vivo and 
protected against endothelial 
dysfunction in vitro

(Desjarlais et al. 2020)

miR-101-3p miRNA Lung injury/newborn mice/65% 
 O2/7–14 days

• Overexpression mitigated 
injury

• Downregulated HMGB3 and 
TGF-ß1/Smad3 axis

(Yuan et al. 2020)

miR-18a miRNA Lung injury/mouse/95% 
 O2/7 days

MLE-12 cells/95%  O2/12–48 h

• Downregulated in hyperoxia
• Overexpression prevented 

pyroptosis and relieved lung 
injury

(Zou et al. 2020)

miR-29b miRNA Plasma from preterm infants 
lung injury/newborn mice/85% 
 O2/14 days

• Downregulated in hyperoxia
• Improved alveolarization and 

decreased expression of ECM 
proteins

(Durrani-Kolarik et al. 2017)

miR-29a miRNA Lung injury/newborn mice/ > 90% 
 O2/4 days

• Upregulated in hyperoxia
• Inhibition alleviated injury

(Hu et al. 2020)
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Table 1  (continued)

RNA molecule Type of RNA Hyperoxic model Outcome Reference

miR-199a-5p miRNA Lung injury/newborn mice/100% 
 O2/7 days

Mouse MLE-12 cells and 
RAW264.70 cells/95% 
 O2/4–24 h

• Upregulated in hyperoxia
• Mimic treatment worsened 

injury

(Alam et al. 2019)

miR-20b miRNA Lung injury/rats/95%  O2/48 h • Downregulated in hyperoxia
• Overexpression downregulated 

Mfn1/2 and reduced apoptosis

(Mu et al. 2021)

miR-214 miRNA Lung injury/newborn rats/95% 
 O2/7 days

Alveolar epithelial cells/85% 
 O2/24 h

• Downregulated in hyperoxia
• Overexpression restored alveo-

larization in vivo and decreased 
apoptosis in vitro

(Zhang et al. 2021b)

miR-421 miRNA Lung injury/newborn mice/85% 
 O2/7 days

MLE-12 cells/85%  O2/6 h

• Upregulated in hyperoxia
• Downregulation was associated 

with alleviated injury
• Mimic treatment abrogated 

Rian-mediated protection

(Tao et al. 2021)

miR-194-5p miRNA Lung injury/newborn mice/ > 90% 
 O2/4 days

BEAS-2B cells/95%  O2/48 h

• Mediated hyperoxic injury
• Upregulation blocked CASC2-

mediated protection

(Ji et al. 2021)

miR‐181c‐5p miRNA HLMECs/80%  O2/12–24 h • Upregulated in hyperoxia
• miR‐181c‐5p mimic downregu-

lated NCAPG and enhanced 
apoptosis

(Wu et al. 2021)

miR-342-5p miRNA Lung injury/newborn mice/100% 
 O2/4–7 days

T2AECs and MLE-12 cells/95% 
 O2/2–48 h

• Downregulated in hyperoxia
• Overexpression and mimic 

treatment ameliorated injury

(Wen et al. 2021)

miR-299-3p miRNA OIR/newborn mice/75% 
 O2/5 days

• Downregulated in hyperoxia
• Overexpression reduced 

apoptosis

(Wang et al. 2022b)

FOXD3-AS1 lncRNA Lung injury/primary mouse lung 
epithelial cells, BEAS-2B and 
A549 cells/95%  O2/12–72 h

• Upregulated in hyperoxia 
in vivo and in vitro

• Deletion is cytoprotective 
in vivo and in vitro

(Zhang et al. 2017a)

Xist lncRNA Lung injury/newborn mice/65% 
 O2/7–14 days

• Upregulated in hyperoxia
• Silencing protects against 

injury

(Yuan et al. 2020)

H19 lncRNA Lung injury/newborn mice/70% 
 O2/4–14 days

• Upregulated in hyperoxia
• Silencing upregulated miR-17, 

downregulated STAT3, and 
relieved injury

(Zhang et al. 2020)

MEG3 lncRNA Lung injury/mice/95%  O2/7 days
MLE-12 cells/95%  O2/12–48 h

• Upregulated in hyperoxia
• Knockdown inhibited NLRP3 

inflammasome, caspase-1, and 
pyroptosis

(Zou et al. 2020)

MALAT1 lncRNA BPD patients
A549 cells
92%  O2/48 h

• Upregulated in BPD
• Downregulated in hyperoxia 

in vitro
• Silencing promoted apoptosis

(Zhang et al. 2021a)

Rian lncRNA Lung injury/newborn mice/85% 
 O2/7 days

MLE-12 cells/85%  O2/6 h

• Downregulated in vivo and 
in vitro

• Overexpression downregulated 
miR-421 and alleviated injury

(Tao et al. 2021)
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Similarly, Bao et  al. identified approximately 2000 
differentially expressed lncRNAs in newborn mice 
exposed to hyperoxia compared to wild-type mice 
(Bao et  al. 2016). Many subsequent studies have 
shown the roles of different lncRNA and miRNA 
molecules in hyperoxia (Table 1).

Therapeutic approaches to ameliorating hyperoxia 
injury

Preventing or mitigating oxidative damage caused by 
increased ROS levels produced by cells during sup-
plemental oxygen therapy (i.e., hyperoxia) can allow 
hypoxemia and tissue hypoxia to be corrected while 
avoiding or reducing oxygen toxicity. Strategies to 
reduce hyperoxic injury have been investigated in 
humans and rodent models and address key aspects 
including ROS production/neutralization, apoptotic 
cell death, and the inflammatory response, among 
others (Table 2).

Mitochondrial oxygen toxicity in hyperoxia 
has been targeted using synthetic  O2

• – scavengers 
like Mito-TEMPO and Mito-TEMPOL. Both mol-
ecules have a triphenylphosphonium (TPP) moiety 
with a single, shielded, positive charge that drives 

accumulation in the matrix in proportion to mem-
brane potential. Mito-TEMPO has been shown to 
ameliorate lung damage and injury in several models 
of hyperoxia injury (see Alva et al. in press).

Non-mitochondria-targeted antioxidants can also 
reduce the extent of hyperoxia injury. Ascorbic acid is 
effective in reducing the levels of the oxidative dam-
age biomarker 8-isoprostane in young men breathing 
100%  O2 (Fernandes et  al. 2021). The antioxidant 
N-aceylcysteine reduces lung injury in rats exposed 
to 90%  O2 (Qiao et  al. 2019). Similarly, tocopherol, 
retinol, and coenzyme Q have all shown efficacy in 
various models of hyperoxia injury.

Therapeutic strategies targeting the response to 
oxidant injury have also been investigated. As out-
lined above, elevated cytosolic ROS levels generate 
a compensatory response via the Nrf2-Keap1 sys-
tem. A variety of phytochemicals have been shown to 
ameliorate hyperoxia-mediated injury via this sign-
aling pathway. For example, the plant polyphenolic 
compound curcumin activates Nrf2 indirectly (Park 
et al. 2021). Both curcumin (Sakurai et al. 2013) and 
its synthetic analogues (Stamenkovska et  al. 2020) 
reduce lung damage due to hyperoxia in neonatal 
rats. Similar results have been obtained with res-
veratrol (Yang et  al. 2022). Another phytochemical, 

Table 1  (continued)

RNA molecule Type of RNA Hyperoxic model Outcome Reference

CASC2 lncRNA Lung injury/newborn mice/ > 90% 
 O2/4 days/10 days recovery in 
normoxia

BEAS-2B cells/95%  O2/48 h

• Poorly expressed in hyperoxic 
mice

• Overexpression ameliorated 
lung injury in vivo

• Inhibited apoptosis of epithelial 
cells in vitro

(Ji et al. 2021)

DLEU2 lncRNA HLMECs/80%  O2/12–24 h • Downregulated in hyperoxia
• Overexpression inhibited miR‐

181c‐5p and hyperoxic damage

(Wu et al. 2021)

TUG1 lncRNA OIR/newborn mice/75% 
 O2/5 days

• Upregulated in hyperoxia
• Knockdown reduced patho-

logical alterations, apoptosis, 
inflammation, and miR-299-3p 
expression

(Wang et al. 2022b)

Abbreviations: CASC2, cancer susceptibility candidate 2; DLEU2, deleted in lymphocytic leukemia 2; ECM, extracellular matrix; 
FOXD3-AS1, FOXD3 antisense RNA 1; HMGB3, high mobility group box 3; HLMECs, human lung microvascular endothelial cells; 
HPMECs, human pulmonary microvascular endothelial cells; HRMECs, human retinal microvascular endothelial cells; Jak, Janus 
kinase; KO, knockout; MALAT1, metastasis-associated lung adenocarcinoma transcript; MEG3, maternally expressed 3; Mfn1/2, 
mitofusin 1/2; NCAPG, non-SMC condensin I complex subunit G; NLRP3, NLR family pyrin domain containing 3; OIR, oxygen-
induced retinopathy; RIP1/3, receptor-interacting protein 1/3; Smad2, small mothers against decapentaplegic 2; STAT3, signal trans-
ducer and activator of transcription 3; TGF-β, transforming growth factor-β; TUG1, taurine up-regulated 1; T2AECs, type II alveolar 
epithelial cells; Xist, X-inactive specific transcript
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sulforaphane, ameliorates hyperoxia-induced lung 
injury in  Nrf2+/+ but not  Nrf2−/− mice (Cho et  al. 
2019). Taken together, these studies suggest that 
administration of select phytochemicals might be 
beneficial in treating hyperoxia injury.

Strategies for avoiding apoptotic cell death have 
also been investigated. The mPTP inhibitor cyclo-
sporin A has successfully reduced hyperoxic injury in 
a murine model (Pagano et  al. 2004). Similarly, the 
caspase inhibitor TRP601 reduces hyperoxia injury in 
mice (Sifringer et al. 2012).

Although the overproduction of ROS appears to be 
responsible for acute hyperoxia injury, the disruption 

of  O2-dependent cellular signaling is clearly impor-
tant in the long-term manifestations of oxygen toxic-
ity. Prolyl hydroxylase inhibitors that stabilize HIF-1 
ameliorate hyperoxia injury in a wide range of experi-
mental models. This relates to the fact that HIF-1α 
degradation is not complete under physioxic condi-
tions in vivo (i.e., 2–6%  O2) (Yan et al. 2010; Bracken 
et al. 2006; reviewed by Stuart et al. 2019), and it can 
therefore play a role in growth and development. In 
contrast, hyperoxia that increases tissue  pO2 will be 
associated with reduced HIF-1α levels and concomi-
tant loss of HIF-1 signaling activity. Further research 
is needed to determine how all of these studies can be 

Fig. 3  Molecular mechanisms and cellular pathways of hyper-
oxia. Through an increased production of reactive oxygen spe-
cies, hyperoxia dysregulates signaling pathways and promotes 
epigenetic modifications, resulting in altered gene expression, and 

ultimately leading to senescence, inflammation, and death. In the 
mitochondria, hyperoxia inhibits respiration and promotes cardi-
olipin oxidation and cytochrome c release, further contributing to 
the induction of cell death pathways. Created with BioRe nder. com

https://www.BioRender.com
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translated in human patients in order to evaluate their 
potential efficacy in clinical practice.

Conclusions and future directions

Hundreds of studies with isolated proteins and orga-
nelles, cultured cells, animal models, and humans 
indicate widespread oxidative injury and dysregula-
tion of  O2-dependent signaling processes in hyperoxia 
(Fig. 3), leading to serious and sometimes permanent 
pathologies. Virtually all experiments have been of 
relatively short duration (< 1 week); however, oxygen 
supplementation in severe COVID-19 and COPD can 
be needed for longer periods. Furthermore, the vast 
majority of studies have focused on the developmen-
tal effects of oxygen toxicity in the neonate. Future 
studies should focus on improving our understanding 
of long-term effects of exposure in adults.

Since there is no apparent alternative to addressing 
the tissue hypoxemia associated with oxygen supple-
mentation in patients experiencing reduced lung func-
tion, effective strategies must be aimed at ameliorating 
the negative effects of hyperoxia. A wide variety of 
approaches has been studied in pre-clinical models, and 
there is no shortage of candidate molecules showing 
some efficacy. However, given the vast range of oxy-
gen effects on cells, this is a complex problem. None-
theless, establishing these strategies is of immediate 
importance, given the ongoing need for oxygen therapy 
related to the COVID-19 pandemic and beyond.

Equally important, in terms of scientific data quality, 
is addressing the issue of oxygen toxicity in mamma-
lian cell culture. Virtually all cell culture is performed 
under substantially hyperoxic conditions, with impor-
tant effects on cellular activities. It would be a reason-
able assumption that cells grown in standard condi-
tions (~ 18%  O2) may be somewhat preconditioned and 
thus less sensitive to the toxicity of severe hyperoxic 
environments (> 60%  O2) compared to cells grown at 
physioxia. This underlines the need for revisiting pre-
vious results obtained from cell culture-based research, 
including studies using in  vitro hypoxia and hyper-
oxia models. It is thus imperative that cell culturists be 
aware of how the hyperoxia of cell culture affects their 
experiments and make adjustments to avoid this prob-
lem. While the elevated cost of commercially available 
 O2-regulating incubators may seem like a barrier to 
implement physioxia in cell culture workflows, we have 

recently developed an inexpensive cell culture incuba-
tor capable of maintaining physioxia (Samokhin et  al. 
2022) that can be employed for this purpose. Given the 
pervasive nature of oxygen’s effects on cellular func-
tion, it is a key parameter to regulate in vitro.
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