
Short article
Integrative dissection of ge
ne regulatory elements at
base resolution
Graphical abstract
Highlights
d Base editing and deep learning pinpoint individual bases that

alter gene expression

d An artificial C-to-T variant in a regulatory element suppresses

CD69 expression

d The artificial C-to-T alters the balance of transcription factor

binding

d Global interplay between GATA3 and BHLHE40 regulates

immune genes and T cell states
Chen et al., 2023, Cell Genomics 3, 100318
June 14, 2023 ª 2023 The Author(s).
https://doi.org/10.1016/j.xgen.2023.100318
Authors

Zeyu Chen, Nauman Javed,

Molly Moore, ..., Luca Pinello,

Fadi J. Najm, Bradley E. Bernstein

Correspondence
fadinajm@broadinstitute.org (F.J.N.),
bradley_bernstein@dfci.harvard.edu
(B.E.B.)

In brief

Chen and Javed et al. integrated

epigenetic perturbations, base editing,

and deep learning to dissect a CD69

enhancer. They identified a single C-to-T

mutation that impacts gene expression

by altering binding of GATA3, TAL1, and

BHLHE40. Extending their analysis, they

find evidence of a broader interaction

between GATA3 and BHLHE40 during

T cell activation.
ll

mailto:fadinajm@broadinstitute.org
mailto:bradley_bernstein@dfci.harvard.edu
https://doi.org/10.1016/j.xgen.2023.100318
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2023.100318&domain=pdf


OPEN ACCESS

ll
Short article

Integrative dissection of gene regulatory
elements at base resolution
Zeyu Chen,1,2,3,6 Nauman Javed,1,2,3,6 Molly Moore,2 Jingyi Wu,1,2,3 Gary Sun,1,3 Michael Vinyard,2,4,5 Alejandro Collins,2

Luca Pinello,2,4 Fadi J. Najm,2,* and Bradley E. Bernstein1,2,3,7,*
1Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
2Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
3Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
4Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
5Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
6These authors contributed equally
7Lead contact
*Correspondence: fadinajm@broadinstitute.org (F.J.N.), bradley_bernstein@dfci.harvard.edu (B.E.B.)

https://doi.org/10.1016/j.xgen.2023.100318
SUMMARY
Although vast numbers of putative gene regulatory elements have been cataloged, the sequence motifs and
individual bases that underlie their functions remain largely unknown. Here, we combine epigenetic pertur-
bations, base editing, and deep learning to dissect regulatory sequences within the exemplar immune locus
encoding CD69. We converge on a �170 base interval within a differentially accessible and acetylated
enhancer critical for CD69 induction in stimulated Jurkat T cells. Individual C-to-T base edits within the inter-
val markedly reduce element accessibility and acetylation, with corresponding reduction of CD69 expres-
sion. The most potent base edits may be explained by their effect on regulatory interactions between the
transcriptional activators GATA3 and TAL1 and the repressor BHLHE40. Systematic analysis suggests that
the interplay between GATA3 and BHLHE40 plays a general role in rapid T cell transcriptional responses.
Our study provides a framework for parsing regulatory elements in their endogenous chromatin contexts
and identifying operative artificial variants.
INTRODUCTION

Genome-wide maps of chromatin state and transcription factor

(TF) binding have nominated more than a million cell type-spe-

cific regulatory elements (REs) in the human genome as potential

context-specific regulators of gene expression.1–3 A critical next

step is to determine their functions and sequence determinants.

Computational tools that predict functional bases and/or gene

targets are rapidly evolving but require systematic bench-

marking against perturbational data.4,5 Massively parallel

reporter assays (MPRAs) enable high-throughput analysis of

sequence determinants within REs but are based on exoge-

nously introduced constructs that do not recapitulate the native

chromatin contexts.6–9 CRISPR interference (CRISPRi) with fu-

sions between dCas9 and the KRAB repressor provides ameans

to suppress an RE in its native context and evaluate consequent

transcriptional changes.10–14 Traditional CRISPR-based genetic

perturbations offer increased resolution15,16 but incur variable

sequence changes due to heterogeneity of insertions or dele-

tions (indels) after DNA repair. Base editors fused to a nickase

Cas9 (hereafter referred to as base editors) introduce single

base variants, often without frameshifts or indels. They have

been used to characterize coding variants17–21 and are valuable

when systematically applied to noncoding REs.
This is an open access article under the CC BY-N
In this study, we integrated CRISPRi, dCas9, and base editing

with computational predictions to parse noncoding regulatory

sequences in the CD69 locus. We identified a �170 bp interval

within a �1,500 bp upstream enhancer that plays a key

role in regulating gene expression. Within this interval, base edit-

ing and deep learning converge upon a critical C at

chr12:9,764,948 (hg38), where a C-to-T transition reduces

element accessibility and CD69 expression. We show that this

C-to-T base edit ablates a GATA3 binding site, thereby displac-

ing a GATA3-TAL1 activating complex and increasing the asso-

ciation of the BHLHE40 repressor across the element and CD69

promoter. Systematic analysis of chromatin accessibility and TF

binding during T cell activation supports a global role for interplay

between GATA3 and BHLHE40 in immune gene responses and

T cell polarization.

RESULTS

Resolving functional bases within immune REs
To dissect functional sequences within REs, we established a

workflow combining chromatin profiling, deep learning,

CRISPRi, dCas9, and base editing (Figure 1A). We combined

assay for transposase-accessible chromatin using sequencing

(ATAC-seq) accessibility maps with deep learning models to
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Figure 1. Integrative analysis of the CD69 regulatory landscape

(A) Schematic depicting characterization of the CD69 locus using successive functional perturbations and deep learning.

(B) Genomic tracks depict accessibility of the CD69 locus in primary CD4+ T cells and Jurkat cells, without or with stimulation (PMA/ionomycin). Enformer signal

track (summed model gradient) shows the predicted contribution of underlying sequence to CD69 transcriptional output in Jurkat cells. Gray bars depict

differentially accessible ATAC peaks in stimulated Jurkat cells relative to resting (FDR < 0.25). CRISPRi sgRNA positions are also indicated. ATAC signal cor-

responds to reads per genomic content (RPGCs).

(C) Flow cytometry of CD69 expression in Jurkat cells targeted with the indicated CRISPRi sgRNA following a stimulation time course. Samples gated on the live

lentiviral transduced population post-puromycin selection.

(D) Expanded view of the absolute value of the Enformer signal (gradient) as described in (B) at single base resolution over RE-4.

(E) Enrichment of dCas9 sgRNAs in CD69+ Jurkat cells relative to CD69� cells (y axis; log2 odds ratio of normalized sgRNA reads). sgRNA positions are plotted

along the x axis according to their 50 starting position on the positive strand. Each data point represents mean ± SEM.

(F) Enrichment/depletion plot of cytidine base editor (CBE) sgRNAs in CD69+ Jurkat cells relative to CD69� cells (as in E). The CBE can edit Cs at base positions 2–

11 opposite the NGG PAM, with a strong preference for positions in the central 2–8 base window. sgRNA positions are plotted along the x axis according to their

50 starting position on the positive strand. Each data point represents mean ± SEM.

For (C), (E), and (F), data represent 2–3 biological independent experiments. A 170 bp region critical for CD69 activation is denoted (D–F, light red).
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predict REs and functional sequences that regulate inducible

gene expression in T cells. We then incorporated CRISPRi,

dCas9 interference, and base editing to directly test the regula-

tory functions of sequences and individual bases (Figure 1A).

We focused on theCD69 locus, which encodes a keymolecule

for T cell signal transduction and tissue residency.22,23 CD69

expression is rapidly induced upon stimulation by T cell receptor

crosslinking or PMA/ionomycin in both CD4+ T cells and the Ju-

rkat T cell line (Figures S1A and S1B). Chromatin accessibility

maps nominated putative regulatory sites that gain accessibility

upon stimulation in primary T cells and Jurkat cells (Figure 1B).

We complemented these data with predictions from the En-

former model5 trained on chromatin maps and cap analysis of
2 Cell Genomics 3, 100318, June 14, 2023
gene expression (CAGE)-seq data.1,24 We also refined the pre-

dictions by fine-tuning the Enformer model to predict differential

accessibility between resting and stimulated Jurkat cells

(Methods). Genomic intervals corresponding to the promoter,

an intronic region, the 30 UTR, and an interval located �4 kb up-

streamof the transcription start site (TSS) were predicted to have

a strong impact on CD69 transcriptional induction (Figure 1B).

We used CRISPRi to test the functional impact of seven candi-

date REs across the CD69 locus, including the promoter

(sgProm), the intronic element (sgInt), the predicted upstream

element (RE-4), and four other sites in the locus that also gained

accessibility upon T cell activation (RE-1, RE-2, RE-3, and RE-5)

(Figure 1B; Table S1). We infected Jurkat cells with lentiviral
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constructs containing KRAB-dCas9 and sgRNAs, selected pos-

itive cells with puromycin, applied PMA/ionomycin stimulation,

and measured CD69 surface protein expression by flow cytom-

etry. We found that sgRNAs targeting the promoter and RE-4

had the strongest suppressive effects on CD69 induction

(Figures 1C and S1C), while sgRNAs targeting the TSS-proximal

RE-3 had a weaker effect (Figures 1C and S1C). The impact of

the respective CRISPRi perturbations largely correlated with

the Enformer predictions (Figure S1D). RE-4 corresponds to a

DNase hypersensitive site bound bymultiple TFs that has scored

in a luciferase reporter assay and a CRISPR activation

screen.1,25,26 Whereas chromatin accessibility over RE-4 spans

�1.4 kb, the Enformer predictions highlighted a specific

�170 bp sequence interval within RE-4 as most critical for

RE-4 accessibility and CD69 expression (Figures 1D and S1E).

To resolve the functional sequences within these elements

and test the Enformer prediction, we designed a library of 101

sgRNAs that target sequences across RE-3 and RE-4

(Figures S2A and S2B; Table S2). We began with a pooled

dCas9 assay, reasoning that dCas9 would specifically occlude

TFs overlapping target sites and thus affect a narrower interval

than KRAB-dCas9.27 We infected Jurkat cells with a pooled len-

tiviral CRISPR library composed of dCas9 and the 101 sgRNAs,

selected for puromycin resistance and stimulated with PMA/ion-

omycin for 5 h. We then isolated genomic DNA from pre-sorted

and sorted CD69� and CD69+ subsets (Figure S2C) and ampli-

fied the sgRNA cassettes for sequencing. The relative effect of

each sgRNA on CD69 expression was calculated based on its

enrichment/depletion in CD69+ relative to CD69� libraries. Mul-

tiple sgRNAs within the �1.7 kb tiled region suppressed CD69

activation (Figures 1E and S2D).

To pinpoint individual functional bases in these REs, we com-

plemented the dCas9 tiling with cytidine base editor (CBE) and

adenine base editor (ABE) screens. We infected Jurkat cells

with lentiviral constructs containing CBE or ABE and the same

pool of 101 sgRNAs (Figures S2A and S2B; Table S2). We stim-

ulated and sorted the cells and then sequenced the sgRNA cas-

settes frompre-sorted, CD69�, andCD69+ subsets (Figure S2C).

Multiple sgRNAs scored in these screens as reducing CD69 acti-

vation (Figures 1F and S2E–S2G). Notably, the CBE and dCas9

perturbations both pinpointed an �150 bp interval within RE-4

that closely corresponded to the interval highlighted by Enformer

as critical for CD69 expression (Figures 2A and 1D). Several ABE

hits in or near this interval also affected CD69 induction but with

lower fold enrichment, indicative of a lower signal-to-noise ratio

(Figure S2G). In addition to pinpointing this key functional interval

in RE-4, the individual bases nominated by Enformer frequently

coincided with sgRNAs that scored in the CBE screen as regula-

tors of CD69 expression (Figures S2H and S2I). The predictive

value of Enformer was further supported at a genome-wide level

by an enrichment of sequence motifs recognized by TFs with es-

tablished roles in T cell biology (Figure S2J).

Further analysis of the implicated RE-4 sequence interval re-

vealed multiple TF motifs relevant to immune function, including

GATA, bHLH/e-box, TCF, ETS, and STAT (Figure 2B). Notably, a

second top-scoring interval from the CBE and dCas9 screens,

centered at sg#48, showed similar TF motif enrichments (Fig-

ure 2A; chr12:9,765,200-9,765,310). We also scanned the locus
for annotated expression quantitative trait loci (eQTLs). Howev-

er, the implicated RE-4 intervals are highly conserved evolution-

arily and devoid of natural variation in the human population and

thus are invisible to eQTL analysis (Figure 2C).28 These findings

highlight the importance of engineered variants for parsing highly

conserved REs, which tend to be depleted of natural variants.

A single artificial variant alters TF binding patterns and
suppresses CD69
We next sought to validate individual base edits and their tran-

scriptional consequences. We infected Jurkat cells with a CBE

vector containing either the top-ranked sgRNA (sg#70), a highly

ranked sgRNA in an adjacent interval with several scoring

sgRNAs (sg#48), or a control sgRNA (sgCtrl) (Figures 1E, 1F,

and 2A). We confirmed that CBE-sg#70 strongly suppressed

CD69 induction upon stimulation, while sg#48 had a lower but

still significant effect (unpaired t test, p < 0.0001), consistent

with our tiling data (Figures 3A and S3A–S3C). We next amplified

and sequenced the target region from genomic DNA isolated

from Jurkat cells infected with CBE-sg#70.29 CBE-sg#70 is pre-

dicted to incur C-to-T transitions at positions 948 and/or 952

within RE-4 (chr12: 9,764,948 and 9,764,952). In unsorted cells,

C-948 was replaced by T on �57% of alleles. The proportion of

C-948-edited alleles was higher in sorted CD69� Jurkat cells

(67%) and lower in the CD69+ population (53.6%), consistent

with a suppressive effect on CD69 induction (Figure 3B). In

contrast, edits to the other candidate site, C-952, were less

frequent (14.4% at baseline, 16.6% in CD69�, 13.9% in

CD69+; Figure 3B). These results indicate that the single

C-948-to-T edit strongly impacts transcriptional induction of

CD69 in response to stimulation.

We also examined the impact of the C-948 edit on chromatin

accessibility. ATAC-seq profiles revealed reducedRE-4 accessi-

bility in cells harboring the CBE-sg#70 construct relative to CBE

controls (Figures 3C and S3D). The effect was most significant

for RE-4 (Figure S3E; false discovery rate [FDR] < 0.05; STAR

Methods) in the CD69 locus, and we did not observe changes

in the vicinity of other activation associated genes such as

CD28 and NR4A1 (Figure S3F). Hence, the single base substitu-

tion at position C-948 reduces RE-4 accessibility and sup-

presses CD69 induction in stimulated Jurkat cells.

We next considered the mechanism that underlies the potent

effect of this single base mutation. C-948 directly overlaps a

GATA motif predicted by the Enformer model to impact element

accessibility in Jurkat cells (Figures 3D and S3G). The C-948-to-

T edit disrupts a critical position in this motif. Two adjacent

e-box/bHLH motifs were also highlighted by the fine-tuned

model gradients, one of which is located at ideal spacing to com-

plete a GATA:TAL1 binding site. Among cognate TFs, GATA3

is highly expressed in Jurkat cells (Figure 3E), up-regulated

upon stimulation, and broadly implicated in T cell lineage

commitment.30

We therefore used chromatin immunoprecipitation

sequencing (ChIP-seq) to map GATA3, TAL1, and the

enhancer-associated chromatin mark H3K27 acetylation

(H3K27ac). This confirmed strong binding of GATA3 and

TAL1 to RE-4 (Figure 3F). Remarkably, binding of both TFs

was entirely lost in sg#70-edited Jurkat cells, consistent with
Cell Genomics 3, 100318, June 14, 2023 3
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Figure 2. A critical sequence interval within RE-4 influences CD69 expression

(A) Enrichment and genomic position of sgRNAs in dCas9 and CBE tiling screens as in Figures 1E and 1F limited to the central portion of RE-4. Dashed gray lines

correspond to expected C-to-T edit positions for CBE-sgRNAs sg#70 and sg#48.

(B) Transcription factor motif locations (grouped by broad motif class) for key immune regulators shown across the same interval as in (A) (STAR Methods). Dark

gray areas represent overlapping motifs. Representative PWM logo plots for each motif class are provided on the right-hand side.

(C) Zoomed-out view of the CD69 locus shows CBE sgRNA depletion (red boxes correspond to top-scoring guides in the sg#70 and sg#48 intervals), common

SNPs (black vertical stripes), eQTLs (blue vertical stripes),28 and PhastCon100 conservation score (green stripes).
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the disruption of the GATA motif. Loss of TF binding was

accompanied by reduced accessibility and acetylation in the

edited cells. We also confirmed that GATA3 knockout sup-

pressed CD69 induction in stimulated Jurkat cells (Figure S4A),

while overexpression of GATA3 or TAL1 increased CD69 in-

duction (Figures S4B and S4C). These data support key roles

for the GATA:TAL1 motif and corresponding TFs in CD69 in-

duction, as is consistent with prior studies that have associ-

ated these TFs with transcriptional activation in T cells or other

hematopoietic lineages.30–33

The coordinated changes in chromatin state and transcription

suggested that the displacement of GATA3/TAL1 may be

accompanied by additional regulatory events, potentially

including recruitment of transcriptional repressors. Since the

critical interval contains multiple e-box/bHLH motifs (Figure 2B),

we considered BHLHE40, which is highly expressed in Jurkat

cells and strongly induced upon stimulation (Figure 3E).

BHLHE40 is an established T cell regulator that can function as

a transcriptional repressor.34–37

We mapped BHLHE40 by ChIP-seq in wild-type and sg#70-

edited Jurkat cells (Figure 3F). In wild-type cells, BHLHE40

binding was largely confined to a punctate site over RE-4.

However, in the edited cells, diffuse binding was evident

across an �8 kb region encompassing RE-4 and the CD69
4 Cell Genomics 3, 100318, June 14, 2023
promoter. Thus, in addition to displacing the GATA3-TAL1

activating complex, the C-948-to-T edit promotes the associ-

ation of a key T cell repressor across the locus. To further

investigate, we evaluated the impact of BHLHE40 perturba-

tions. BHLHE40 overexpression suppressed CD69 induction

in both control and CBE-sg#70-edited Jurkat cells, while

knockdown increased induction (Figures 4A and 4B). Overex-

pression of BHLHE41, a homologous TF of BHLHE40, had

no effect on CD69 expression (Figure S4D). Consistent with

its impact on CD69 transcription, overexpression increased

BHLHE40 binding over RE-4 while reducing accessibility and

H3K27ac over the element (Figures 4C and 4D). Interestingly,

BHLHE40 overexpression also resulted in a peak of the repres-

sive chromatin mark H3K27 trimethylation (H3K27me3),

consistent with a direct repressive impact on the element

(Figure 4D).

Further evidence of interplay between these TFs emerged in

our examination of the second interval identified in our dCas9

and CBE screens. The top-ranked edit in this interval (sg#48)

also incurs a C-to-T edit that disrupts a GATA motif flanked

by a bHLH/e-box motif (Figures 2A and 2B). Hence, this

second functional edit may similarly affect the

interplay among GATA3, TAL1 and BHLHE40 in the regulation

of CD69.
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Figure 3. Top-scoring base edits target competitive transcription factor binding sites
(A) Flow cytometry plots of CD69 signal for CBE-sgCtrl and CBE-sg#70 Jurkat cells under resting or stimulated conditions. Bar plot depicts the proportion of

CD69+ cells in CBE-sgCtrl (gray) and CBE-sg#70 (red) after stimulation. P value based on unpaired t test, **p < 0.01. Data are from 4 independent experiments

each with 2–3 technical replicates, mean ± SEM.

(B) Table depicts frequency of incurred base edits in CBE-sg#70-infected Jurkat cells. PCR amplicons from unsorted, CD69�, and CD69+ populations were

sequenced. Consensus sequence is shown along with stacked bars that depict the proportions of C and T bases in the sequencing data (numbers indicate the

percentage of alleles with a C-to-T edit). Shaded boxes indicate the sg#70 target sequence.

(C) Chromatin accessibility shown over the CD69 locus for stimulated CBE-sg#70 (red) and CBE-sgCtrl (gray) Jurkat cells. Bar plot depicts the mean ATAC-seq

signal over RE-4 (TMM normalized counts per million; CPM). P value based on unpaired t test, *p < 0.05. Data are from 3 replicates, mean ± SEM.

(D) Enformer signal (letter height) for the sg#70 target region corresponds to the model gradient with respect to predicted RE-4 accessibility in Jurkat cells and

indicates the predicted impact of each base on RE-4 accessibility. The sgRNA directly coincides with a GATA motif and two e-box/bHLH sites and incurs an edit

that disrupts the former (vertical dashed line).

(E) Volcano plot depicts gene expression fold change (x axis) and significance (y axis) for transcription factor (TF) genes in stimulated Jurkat cells relative to resting

cells. Labels identify differential GATA (red) and bHLH/e-box (blue) family members with significant differential expression at FDR < 0.05.

(F) Genomic tracks for the CD69 locus depict chromatin accessibility (ATAC), H3K27 acetylation (H3K27ac), GATA3 binding, TAL1 binding, and BHLHE40 binding

in CBE-sgCtrl (gray) and CBE-sg#70 (red) Jurkat cells. For ChIP-seq, the y axis represents the�log10(p value) relative to input controls. For ATAC-seq, the y axis

represents the RPGC normalized signal.

Jurkat cells in (A)–(C) and (F) were stimulated with PMA/ionomycin for 2 h.

Cell Genomics 3, 100318, June 14, 2023 5
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Figure 4. GATA3-BHLHE40 interaction impacts global T cell transcriptional responses

(A) Flow cytometry plots of CD69 signal for stimulated Jurkat cells transduced with CBE-sg#70 and a BHLHE40 overexpression (OE) construct (BHLHE40-OE) or

with corresponding controls (sgCtrl and Ctrl-lentivirus [LV], respectively). Bar plot depicts the proportion of CD69+ cells in each condition. P value based on

unpaired t test, ****p < 0.0001. Data are from 3 independent experiments with 2–3 technical replicates, mean ± SEM.

(B) Flow cytometry plots of CD69 signal for stimulated Jurkat cells transduced with shBHLHE40-1, shBHLHE40-2, or shCtrl RNA LV. Flow plots gated on GFP+

cells. Bar plot depicts the proportion of CD69+ cells in each condition. P value based on unpaired t test, ***p < 0.001, *p < 0.05.

(C) Chromatin accessibility in the CD69 locus for CBE-sg#70 Jurkat cells transduced with either BHLHE40-OE LV (light blue) or control (gray). Cells were

stimulated with PMA/ionomycin. *FDR < 0.25. Bar plot data are from 2 replicates, mean ± SEM ATAC-seq signal over RE-4 (TMM normalized CPM).

(D) Genomic tracks for the CD69 locus depict BHLHE40 binding, H3K27ac signal, and H3K27me3 in Ctrl-LV (gray) and BHLHE40-OE (blue) Jurkat cells. The y axis

represents the �log10(p value) relative to input controls.

(E) Venn diagram (left) depicts the overlap between GATA3- and BHLHE40-bound sites within 25 kb of a TSS (STAR Methods), while (right) depicts overlap

between genes with a GATA3- or BHLHE40-bound site within 25 kb of the annotated TSS. Bound sites were defined based on IDR ChIP-seq peaks for either

factor that overlapped an H3K27ac peak in Ctrl-LV Jurkat cells.

(F) Heatmap shows differentially expressed genes with GATA3 or BHLHE40 binding within 25 kb of the TSSBHLHE40-OE Jurkat cells relative to control. Cells

were stimulated with PMA/ionomycin. Select immune genes and hits from gene set enrichment analysis are shown on the right.

6 Cell Genomics 3, 100318, June 14, 2023
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Global interplay between BHLHE40 and GATA3 in T cell
responses
Finally, we considered whether BHLHE40 may contribute more

broadly to immune gene regulation and T cell phenotypes. We

found that BHLHE40 overexpression (OE) led to a global reduc-

tion in chromatin accessibility (Figure S5A). BHLHE40 OE also

altered the expression of multiple immune genes, up-regulating

Th1 and effector T cell-related genes and down-regulating Th2

and naive/stemness pathways (Figures S5B and S5C). ChIP-

seq analysis further indicated that BHLHE40 binds REs proximal

to many of these deregulated genes, suggesting that the regula-

tion is at least in part direct (Figures S5D and S5E). Notably, the

global expression programs associated with BHLHE40 OE are in

opposition to those reported for GATA3,31,38–40 which is instead

implicated in Th2 differentiation (e.g., GATA3, interleukin 21 re-

ceptor [IL-21R], IL32) and naive/stemness T cell phenotypes

(e.g., BACH2, CD28).

We therefore compared the REs and genes targeted by the

respective TFs. First, we evaluated the correspondence in

H3K27ac-marked REs bound by the respective TFs genome-

wide. This revealed 16,323 GATA3 and 21,146 BHLHE40 sites,

with a substantial overlap of 10,623 (28%), consistent with

extensive interplay between these TFs (Figure 4E; Table S3).

We next collated the set of 5,478 candidate target genes whose

promoters were located near bound sites for both factors (STAR

Methods; Table S3). These refined targets were also enriched for

genes that were responsive to BHLHE40 OE (Figure S5F). How-

ever, the co-bound genes were relatively biased toward effector

T cell pathways over Th1/Th2 differentiation pathways (Fig-

ure 4F). Overall, these data clarify connections from GATA3

and BHLHE40 to several T cell transcriptional programs and in

particular support direct roles for the opposing regulators in

the rapid transcriptional responses associated with effector

T cell biology.

DISCUSSION

Resolving functional sequences within the vast numbers of puta-

tive REs in the human genome is a critical challenge in human

genetics. Here, we integrate chromatin maps, deep learning,

epigenetic editing, and base editing to parse sequences that

control an exemplar inducible gene in Jurkat T cells. Top-scoring

base edits clustered in an evolutionarily conserved interval within

a CD69 enhancer that was also highlighted by the deep learning

model. Integrating regulatory predictions with TF ChIP-seq re-

vealed that these edits disrupt cooperative TAL1 and GATA3

binding, thereby opening the locus to opposing TFs such as

BHLHE40. Genome-wide analysis suggests a broader interac-

tion between GATA3 and BHLHE40 in regulating immune genes

and T cell phenotypes.

Our results emphasize the importance of epigenetic perturba-

tions and introducing artificial sequence variants for character-

izing regulatory sequences, which tend to be highly conserved

and may be invisible to methods that rely on natural genetic vari-

ation. The approach utilized here also has implications for future

studies. First, there remains a considerable gap between the

throughput of current approaches and the eventual goal of deci-

phering the regulatory code of the entire human genome. Func-
tional perturbations will need to be combinedwith computational

approaches, which can help prioritize regions, such as the deep

learning model incorporated here. Second, different epigenetic

and genetic editing tools may be combined to resolve functional

sequences more effectively than either tool alone. Epigenetic

perturbations with KRAB-dCas9 allow sensitive identification of

putative TF binding regions, which may then be precisely

resolved with dCas9 and base editors.

Our study also highlights the interplay between two key TFs,

GATA3 and BHLHE40. Two top-scoring C-to-T base edits that

suppress the CD69 response both appear to act by shifting the

balance away from coordinate GATA3-TAL1 binding toward

increased BHLHE40 association with the regulatory sequences.

The lack of natural variation makes this region invisible to eQTL

and genetic mapping studies, and hence the artificial variants

uniquely offer insight into the TFs and motifs underlying its func-

tion. Based on their opposing effects at the CD69 locus, we

extended our analysis genome-wide and found that the two fac-

tors co-regulate a number of immune genes and exert opposing

effects on effector T cell function as well as Th1-Th2 differentia-

tion pathways. We speculate that the opposing regulators may

be particularly critical to the rapid responsiveness of co-regu-

lated genes during T cell activation.

In conclusion, we have benchmarked emerging experimental

and computational strategies to resolve regulatory genomic se-

quences with increasing precision. Our study demonstrates, in

particular, the potential of base editing screens and artificial var-

iants for identifying critical regulatory motifs and TF interactions

that underlie rapid and robust transcriptional responses. Further

computational and experimental innovations are needed to scale

these approaches and further illuminate the syntax of human

regulatory genomics.

LIMITATIONS OF THE STUDY

Wealso note limitations of our study. Although our pooled screen

tested a large number of perturbations, it was limited to a single

inducible gene locus in one cell model. Extension of the

approach to additional immune loci and primary T cells is an

exciting future opportunity. Our approach was also limited by

technical aspects of the perturbation tools. The base editor

construct is limited by PAM site availability, meaning that we

could only edit �28% of the Cs or Gs within the targeted REs.

Base editors with less restrictive PAM site requirements41 could

improve the resolution of future screens. While base editor ap-

proaches are mainly focused on C-to-T or A-to-G transitions,

prime editors could enable more systematic base changes if

they could be applied at scale.42We also acknowledge that while

our study characterizes a set of key regulators acting at the base

edit site, it is not exhaustive, and other factors are likely binding

the enhancer and impacting CD69 expression.

Finally, we acknowledge several limitations of the Enformer

model and its usewithin this study. First, although themodel pre-

dictions aided in variant interpretation and hypothesis genera-

tion, the biological findings were primarily underpinned by the

experimental perturbations. Second, while the model predic-

tions and experimental data highlighted similar intervals and

nucleotides, further innovations and more comprehensive
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evaluations are needed to improve base-level accuracy of the

model. In particular, algorithmic improvements, ideally trained

in iterative cycles with experimental tests of artificial variants,

may ultimately yield sufficiently accurate predictive models to

resolve regulatory sequences across the vast noncoding

genome. Given the increasing prevalence and potential of

deep learning for regulatory genomics, integrative studies such

as ours will be critical moving forward.
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RRID:AB_2561020

GATA-3 (D13C9) XP Rabbit mAb Cell Signaling Technology Cat# 5852, RRID:AB_10835690

Dec1 antibody Novus Biologicals Cat#NB100-1800

TAL1 antibody SantaCruz Biotech Cat#sc-393287
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Jurkat cell line, Clone E6.1 ATCC Cat#TIB152,

RRID:CVCL_0367

CD4+ T cells AllCells N/A
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Phorbol 12-myristate 13-acetate Sigma-Alrich Cat#P8139
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BHLHE40-Overexpression-GFP In this study N/A
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GGCTAAATTCCTCTTATTCA

sgCtrl-2 CRISPR-Cas9-GFP In this study sgRNA sequence: GTAACCAAGAGTCAGGACTG

sgGATA3-1 CRISPR-Cas9-GFP In this study sgRNA sequence: ACCGAGTTTCCGTAGTAGGG
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TACGTGCCCGAGTACAGCTC
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Lentivirus packing
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Illumina tagmentation kit Illumina Cat#20034197

Nextera XT Index Kit Illumina Cat# FC-131-1001

MinElute Reaction Purification Kit QIAGEN Cat#28003

MinElute PCR Purification Kit QIAGEN Cat#28004

NEBNext High-Fidelity 2X PCR Master Mix NEB Cat# M0541
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QIAGEN RNeasy Micro kit QIAGEN Cat# 74004

Dynabeads mRNA Direct Kit ThermoFisher Cat# 610.12

RNA Fragmentation Reagents ThermoFisher Cat# AM8740

Turbo DNase ThermoFisher Cat#AM2238

FastAP enzyme ThermoFisher Cat# EF0651

Dynabeads MyOne Silane ThermoFisher Cat# 37002D

T4 RNA ligase NEB Cat#M0204L

AffinityScript RT Enzyme Agilent Cat#600107

Phusion Master Mix NEB Cat# M0531L

AMPure XP Beads Beckman Coulter Cat# B23318

IDT indexes IDT N/A

ChIP-seq reagents
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Proteinase K Invitrogen Cat# 25530-015

DNA end-repair kit Epicenter Biotech Cat# ER0720
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Amplicon-seq reagents and primers

QIAamp DNA Micro Kit QIAGEN Cat#6304

DNeasy Blood and Tissue Kit QIAGEN Cat#69504

Titanium� Taq DNA Polymerase Takara Cat# 639208

Agencourt AMPure XP SPRI beads Beckman Coulter Cat# A63880
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sg#70 amplicon F-primer: GGTGAGACG
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sg#70 amplicon R-primer: AATTCACCC

ACTGAAAGGAAAA

IDT N/A

Software and algorithms

CRISPResso2 Clement et al.29 http://crispresso.pinellolab.org/submission/

EQTLGEN Võsa et al.28 https://eqtlgen.org/cis-eqtls.html

(Continued on next page)

e2 Cell Genomics 3, 100318, June 14, 2023

Short article
ll

OPEN ACCESS

http://crispresso.pinellolab.org/submission
https://eqtlgen.org/cis-eqtls.html


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Python v3.9 http://www.python.org/downloads/release/python-390/

R v4.2 http://www.r-project.org/

Bioconductor v3.15 http://www.bioconductor.org/

DESeq v2 Anders and Huber43 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

CSAW Lun et al.44 https://bioconductor.org/packages/release/

bioc/html/csaw.html

ComplexHeatmap Gu et al.45 https://bioconductor.org/packages/release/

bioc/html/ComplexHeatmap.html

Enformer v1 Avsec et al.5 https://tfhub.dev/deepmind/enformer/1

Enformer fine-tuning code for this paper https://doi.org/10.5281/zenodo.7775557,

https://github.com/BernsteinLab/BE_

CD69_paper_2022

DeepTools 3.5.0 Ramirez et al.46 https://github.com/deeptools/deepTools

TFModisco 0.4.2.3 Shrikumar et al.47 https://github.com/kundajelab/tfmodisco

MEME suite v5.4.1 Bailey et al.48 https://meme-suite.org/meme/

ENCODE ATAC-seq pipeline v 2.1.3 https://github.com/ENCODE-DCC/

atac-seq-pipeline

ENCODE ChIP-seq pipeline v 2.1.6 https://github.com/ENCODE-DCC/

chip-seq-pipeline2

STAR v2.7.9a Dobin et al.49 https://github.com/alexdobin/STAR

Salmon v1.6 Patro et. al50 https://github.com/COMBINE-lab/salmon

Bedtools v2.30.0 Quinlan et al.51 https://github.com/arq5x/bedtools2

Samtools v1.12 Li et al.52 https://github.com/samtools/samtools

MOODS v1.9.4.1 Korhonen et al.53 https://github.com/jhkorhonen/MOODS

Deposited data

Jurkat ATAC-seq, wild-type Nasser et al.4 GEO: GSE155555

CD4+ T-cell ATAC-seq GEO: GSE124867

Jurkat RNA-seq, wild-type Brignall et al.54 GEO: GSE90718

+/- edited Jurkat ChIP-seq, ATAC-seq this paper GEO: GSE206377

+/- BHLHE40-OE Jurkat RNA-seq,

ChIP-seq, ATAC-seq

this paper GEO: GSE206377
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Bradley E.

Bernstein (bradley_bernstein@dfci.harvard.edu).

Material availability
Base-editor construct will be available on addgene upon publication. sgRNA library requests should be directed to Fadi J. Najm

(fadinajm@broadinstitute.org)

Data and code availability
Datasets generated as part of this study have been deposited at GSE206377. All code for data processing, analysis, and Enformer

model tuning/analysis are available on Zenodo at https://doi.org/10.5281/zenodo.7775557 and github at https://github.com/

BernsteinLab/BE_CD69_paper_2022.git. Accession numbers and original study references for the publicly available ATAC-seq

data in resting and stimulated Jurkat and CD4+ T cell ATAC-seq, as well as wild-type Jurkat RNA-seq, are listed in the key resources

table. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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Guide library design and cloning
Pooled libraries for expression of sgRNAs were generated as detailed previously.55 Briefly, DNA oligos were annealed into double

stranded fragments with compatible overhangs and ligated into BsmBI sites into vectors. Vector backbones were CRISPRi+guide

puro (pXPR_066, Broad GPP), lentiCRISPR v2-dCas9 (gift of Thomas Gilmore, Addgene 112233), rApobec-nCas9-UGI-puro

(pRDA_256, Broad GPP) and EFS-ABE8e-V106W-nCas9-puro(pRDA_426, Broad GPP). Libraries were then transformed by electro-

poration into electrocompetent E-coli (Invitrogen) and spread onto bioassay plates. Bacterial colonies were harvested and isolated

using the Plasmid Plus Midi Kit (Qiagen). Peak proximity and acceptable on-target efficacy scores56 determined sgRNA selection for

the CRISPRi tests. After RE-3 and RE-4 were identified, sgRNAs in these peak regions were selected and included for screening with

dCas9 and base editors and can be found in Table S2.

Cell culture and stimulation
The Jurkat cell line (ATCC, Clone E6.1, TIB152) was cultured in complete RPMI (RPMIMedium 1640,Gibco, 11875085, 1%Penicillin-

Streptomycin, Gibco, 15140122, 10%Heat Inactivate Fetal Bovine Serum, Peak Serum, 20mMHEPES,Gibco,15630080,1%Sodium

Pyruvate, Gibco, 11360070, and 1%NEAA,Gibco, 11140050) at a maximum density of 2 x 106 cells/ml in 25 cm or 75 cm cell culture

dishes. Stimulation of Jurkat cells for 2-7 hour experiments was achieved with 50ng/ml Phorbol 12-myristate 13-acetate (PMA,

Sigma-Alrich, P8139) and 500ng/ml ionomycin calcium salt from Streptomyces conglobatus (ionomycin, Sigma-Alrich, I0634).

Cryopreserved CD4+ T cells isolated from healthy donors were obtained from AllCells. On the day of stimulation, cells were thawed

in RPMI 1640medium supplemented with 2mML-glutamine and 50%FBS, counted and resuspended in TexMACSmedium (Miltenyi

Biotec) supplemented with 20 IU/mL human Interleukin-2 (IL-2) and 1% penicillin-streptomycin. Cells were seeded at 1 million cells

per well in a 48-well plate. Cells were either left untreated or stimulated with 10 mL T Cell TransActTM, human (Miltenyi Biotec) via CD3

and CD28 for 24hrs.

Lentivirus production
293T cells approaching 70-80% confluency in 10 cm cell culture dishes were used for packaging. Cells were pre-treated with 25 uM

chloroquine diphosphate (Millipore Sigma, C6628) in 3 ml of complete DMEM (Gibco DMEM with 1% Penicillin-Streptomycin and

10% Heat Inactivate Fetal Bovine Serum) and incubate in the 37�C and 5% CO2 incubator for more than 30 minutes. Lipofectamine

3000 Transfection Reagent (ThermoFisher, L3000001) was used to deliver plasmids into 293T cells. Briefly, 15 ug lentiviral vector

plasmid, 15 ug of psPAX2 and 5 ug pMD.G plasmid were vortexed with 40 ul P3000 reagent in 1.5 ml OptiMEM (ThermoFisher,

31985070). Then 40 ul Lipofectaminewas added to 1.5mlOptiMEMand briefly vortexed. The twoOptiMEMsolutionswere combined

and mixed well by vortexing for 30s and incubated at room temperature for at least 20 minutes. Carefully, the OptiMEMmixture was

added dropwise to 293T cells and incubated in a 37�C and 5% CO2 incubator for 6 hours. Media were aspirated and replaced with

5ml of fresh complete RPMI. Lentiviral supernatant was harvested between 24 hours and 48 hours after transfection.

Lentivirus tranduction
Jurkat cells were resuspended in 1ml media and seeded at a density of 2-5 x 105 cells per well of a 12-well plate. Lentiviral super-

natant was supplemented with 8 ug/ml polybrene (Sigma-Alrich) added to the Jurkat cells. The plate was then centrifuged at 2000xg,

32�C for 60mins. Cells were then incubated at 37�C and 5% CO2 overnight and changed into complete RPMI on the next day. For

GFP+marked lentivirus, cells were sorted or analyzed 4-5 days after transfection via flow cytometry(Note: too long overexpression or

KD for TFs completely changed the cell status, thus keeping experiments in 4-5 days window is critical). For puromycin selection, 5

ug/ml of puromycin was added to the transduced cells and selected for 2 days.

Flow cytometry and sorting
Suspended cells were centrifuged down at 300xg, room temperature for 5 minutes. The cells were stained with the antibody cocktail

in the staining buffer of a 1:1 mix of PBS and Brilliant Staining Buffer (BD, 566349), at room temperature for 20 mins or at 4�C for 30-

40 mins. Cells were washed once in PBS with 1% FBS and then resuspended in the same buffer. Flow cytometry or FACS was pro-

cessed on either BD LSRFortessa X-20 or SONY SH800 following the manufacturing instructions. Antibodies and dyes used from

Biolegend: Brilliant Violet 510TM anti-human CD69 Antibody (310936);APC anti-human CD69 Antibody (310910); Zombie NIRTM

Fixable Viability Kit (423106).

At least 2 x 105 CRISPR library infected Jurkat cells were collected as a pre-sorted baseline. 2-4 x 106 CRISPR library infected

Jurkat cells were resuspended in 2 ml of complete RPMI and stimulated with 50 ng/ml PMA and 500 ng/ml ionomycin for 5 hours,

and then processed for FACS as described above. Sorted CD69- and CD69+ populations were collected for genomic DNA isolation.

Genomic DNA isolation and sequencing
Genomic DNA (gDNA) was isolated using QIAamp DNA Micro Kit (QIAGEN, 6304) or DNeasy Blood and Tissue Kit (QIAGEN, 69504)

according to the manufacturer’s protocol. The gDNA concentrations were quantified by Qubit. For PCR amplification, at least 330 ng

of gDNAwas used per reaction for greater than 500-fold library coverage. Each reaction contained 1.5 ul Titanium Taq (Takara), 10 ml
e4 Cell Genomics 3, 100318, June 14, 2023
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of 103 Titanium Taq buffer, 8 ml deoxyribonucleotide triphosphate provided with the enzyme, 5 ml DMSO, 0.5 ml P5 stagger primer

mix (stock at 100 mM concentration), 10 ml of a uniquely barcoded P7 primer (stock at 5 mM concentration), and water up to 100ul.

P5 Primer: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCT TCCGATCT

TTGTGGAAAGGACGAAACACCG

P7 Primer: CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGAC

GTGTGCTCTTCCGATCTCCAATTCCCACTCCTTTCAAGACCT

PCR cycling conditions included: an initial 5 min at 95�C; followed by 30 s at 54�C, 30 s at 53�C, 20 s at 72�C, for 28 cycles; and a

final 10-min extension at 72�C. PCR primers were synthesized at Integrated DNA Technologies. PCR products were purified with

Agencourt AMPure XP SPRI beads according to the manufacturer’s instructions (Beckman Coulter, A63880). Samples were

sequenced on a MiSeq (Illumina). Reads were counted by alignment to a reference file of all possible guide RNAs present in the li-

brary. The read was then assigned to a condition on the basis of the 8-nt index included in the P7 primer.

Amplicon sequencing
To assess base editing frequency of the sg#70 locus, we designed primers flanking this region resulting in a 214bp product. Forward

primer: GGTGAGACGTCAGAAAGGAAGT and reverse primer: AATTCACCCACTGAAAGGAAAA. Amplicons were next ligated with

Illumina Truseq adaptors, cleaned and size selected with AMPure XPSPRI beads, and sequenced on aMiSeq paired end run. FASTQ

files were processed with CRISPResso2 v2 with standard settings for base editor29.

ATAC-seq experimental processing
ATAC-seq lysis buffer contains 10mMTris-HCl (pH=7.4), 10mMNaCl, 3mMMgCl2, 0.1%Tween-20, 0.1%NP40, 0.1%Digitonin, 1%

BSA and topped up with ddH2O. ATAC-seq washing buffer contains 10mM Tris-HCl (pH=7.4), 10mM NaCl, 3mM MgCl2, 1% BSA

and topped up with ddH2O.

5 x 10̂ 4 cells were centrifuged down with the resuspension buffer (PBS with 1%BSA) in a low-binding eppendorf tube at 4�C,
500xg for 5 mins. Each pellet is resuspended with 50 ul of lysis buffer and incubated on ice for 5 minutes. 50 ul of wash buffer

was added to the lysis buffer containing nuclei and centrifuged down at 4�C, 500xg for 5 minutes. The supernatant is then removed

and 50ul resuspension buffer is added to the tube without disturbing the pellet. Nucleus are then centrifuged down at 4�C, 500xg for

5minutes. Tagmentation of the genome DNA is processed using the Illumina tagmentation kit (20034197) for 30 mins in 37�C. Frag-
mented products are then isolated via MinElute Reaction Purification Kit (QIAGEN, 28003) according to the manufacturer’s instruc-

tions. Illumina Nextera XT SetA indexes and NEBNext High-Fidelity 2X PCR Master mix (NEB, M0541) are used to amplify the

fragmented products of each sample, with 12 PCR cycles of 98�C-10s, 63�C-30s and 72�C-1min. PCR products are then isolated

via MinElute PCR Purification Kit (QIAGEN, 28004) following manufacturer’s instructions.

RNA-seq experimental processing
Whole RNA was extracted from over 13 10̂ 5 cells using the QIAGEN RNeasy Micro kit (QIAGEN, 74004) according to the manufac-

turer’s instructions. 1ug RNAwas then used to prepare the RNA-seq library. Poly-A+ RNA is enriched using DynabeadsmRNADirect

Kit (ThermoFisher, 610.12) according to the manufacturer’s instructions and eluted in 18ul Tris-HCl buffer(pH=7.4). Zinc fragmenta-

tion is processed using RNA Fragmentation Reagents(ThermoFisher, AM8740), followed by Turbo DNase (ThermoFisher, AM2238)

and FastAP enzyme (EF0651) treatment. Then the fragmented RNA are cleaned-up using Dynabeads MyOne Silane (ThermoFisher,

37002D) and eluted in 7ul of nuclease-free water. Next, RNA-adaptors are ligased to eluted RNA using T4 RNA ligase (NEB, M0204L)

at 23�C for 1 hour and adaptor-ligated RNA was cleaned-up using Dynabeads MyOne Silane and eluted in 13.5ul of nuclease-free

water. First strand of cDNA is synthesized using AffinityScript RT Enzyme (Agilent, 600107) according to the manufacturer’s instruc-

tions at 54�C for 1 hour. First-strand cDNA was cleaned-up using Dynabeads MyOne Silane and eluted in 5.5ul of nuclease-free wa-

ter, followed by cDNA adaptor ligation. After another round of clean-up, the adaptor-ligated cDNA was processed to library PCR

amplification using Phusion Master Mix (NEB, M0531L) with IDT adaptor indexes. The final library was cleaned-up with AMPure

XP Beads (Beckman Coulter, B23318) to a final size around 280bps.

ChIP-seq experimental processing
Jurkat cells were pelleted and fixed using 1% formaldehyde at 37�C for 10 mins then quenched by glycine. Samples were next

washed with cold PBS+proteinase inhibitor (ThermoFisher, 78429), resuspended in lysis buffer (1% SDS, 0.25% DOC, 50mM

Tris-HCl, pH=7.4), and incubated on ice for 10 mins. Samples were diluted up to 1ml in eppendorf using ChIP dilution buffer

(0.01% SDS, 150mM NaCl, 0.25% Triton, 50mM Tris-HCl, pH=7.4) and sonicated using a Covaris E220, with the following settings:

24mins with 5%duty factor, 140Wmax power and 200 cycles/burst. For Figure 4F, each sample(2.5 x 10̂ 7 cells) was then split into 4

eppendorf tubes: 1) 20ul, top up to 200ul for input; 2)180ul, top up to 1ml for H3K27Ac ChIP (2.5ul, Active Motif, 39133); 3) 400ul, top

up to 1ml for GATA3 ChIP (10ul, CST-D13C9, 5852); 4) 400ul, top up to 1ml for BHLHE40 ChIP (10ul, Novus Biological, NB100-1800);

or 1 x 10̂ 7 cells per sample was used for TAL1 ChIP(10ul, Santa Cruz Biotechnology, # SC-393287). For Figure 4D, each sample (1 x

10̂ 7 cells) was then split into 3 eppendorf tubes: 1) 200ul, top up to 1ml for H3K27AcChIP (2.5ul, ActiveMotif, 39133); 2) 200ul, top up

to 1ml for H3K27Me3 ChIP(2.5ul, Active Motif, 39155); 3) 600ul, top up to 1ml for BHLHE40 ChIP (10ul, Novus Biological, NB100-

1800). The tubes were incubated overnight at 4�C on a rotator.
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On the next day, Protein G beads (ThermoFisher, 10003D) were washed and added to the antibody-containing suspension and

rotated at 4�C for 2 hours. The beadswere thenwashedwith an ice-cold RIPAwash buffer: RIPA-500, LiCl, and 10mMTris-HCl buffer

(pH=8.5). The beads were eluted in a wash buffer (10mM Tris-HCl, pH=8.0, 0.1% SDS, 150mM NaCl, 5mM DTT) and incubated at

65�C on a shaker for 1 hour. Samples were then treated with RNAse (Roche, 11119915001) at 37�C for 30 mins and then with pro-

teinase K (Invitrogen, 25530-015) at 63�C for 3 hours. AMPure XP Beads (Beckman Coulter, B23318) were used to purify the DNA

fragments from the samples. Eluted fragments were then processed for DNA end-repair (Epicenter Biotech, ER0720), Klenow A

base adding (Klenow from NEB, M0212L), adaptor ligation (Ligase from NEB, M2200S) and PCR amplification (PFU Ultra II HS 2x

master mix from Agilent, 600850-51) according to manufacturer’s protocols. Index primers were ordered from Integrative DNA Tech-

nology. PCR was set up with the following conditions: 2 mins for 95�C; 30 sec at 95�C, 30 sec at 55�C,30 sec at 72�C for 16 cycles;

1 min at 72�C. PCR products were purified using AMPure XP Beads with a final size of around 300 bps.

Enformer predictions and fine-tuning
Fine tuning

The published Enformer model without any modifications was downloaded from https://tfhub.dev/deepmind/enformer/1. For model

fine-tuning, we loaded themodel checkpoint made available by the authors at gs://dm-enformer/models/enformer/sonnet_weights/.

The cell-type/organism specific heads in the original model were then replaced with three new dense layers, corresponding to ATAC-

seq from resting and stimulated Jurkat T-cells not in the original training data as well as the difference between the two. Training data

for these output heads were obtained by downsampling bam files for resting and stimulated Jurkat T-cells to 20 million reads, and

generating normalized bigwigs using the bam_cov function in the basenji suite available at https://github.com/calico/basenji. The

difference track between the two was created using bigwigCompare from DeepTools. Bigwigs were then converted into the required

input format using the basenji_data script. The modified model was then trained on a Google Cloud TPU-VM v3-64 pod-slice using a

multi-learning rate scheme. For the differential accessibility prediction, all negative values in the target track were set to 0 in order to

be able to keep the original softplus activation used in the final dense layer. The original model trunk, consisting of all convolutional

and transformer layers shared for all organisms/tracks was trained using the AdamW optimizer from the tensorflow addons library at

a learning rate of 1.0e-05 andweight decay of 5.0e-07. The three added output heads were trained at a higher learning rate of 1.0e-03

and weight decay of 5.0e-07. The model was trained for 32 epochs, with checkpointing every 4 epochs, and training was stopped

when the validation loss did not decrease by 1.0e-03 relative to the lowest recorded validation loss for 30 epochs. The best check-

pointed model was chosen at epoch 32 which reached a validation pearson’s correlation of 0.7625, 0.7318 and 0.6419 for stimula-

ted,resting, and the differential ATAC-seq profiles for Jurkat cells respectively.

Gradient score calculation

Gradient based model interpretation was conducted as described at https://github.com/deepmind/deepmind-research/blob/

master/enformer/enformer-usage.ipynb. For CAGE-seq interpretation, we calculated the gradient of the model for unstimulated Ju-

rkat T-cells with respect to the predicted CAGE-seq signal at the CD69 promoter. This was achieved by centering a 393216 bp

genomic window within the CD69 promoter(chr12:9760820-9760903) and computing the gradient for human output head # 4831

with respect to output bins 446-450(corresponding to the approximate promoter width). The absolute value of the gradients were

then summed in 128bp bins for coarse grain resolution (Figure 1D). A similar approach to nominate bases contributing to RE-4 acces-

sibility was adopted to obtain the base resolution contribution scores for the fine-tuned model corresponding to Figure S2 and 3. For

this analysis, the window was centered around RE-4 (chr12:9764300-9765900) and the gradient was computed with respect to

output bins 442–454 (Figures S1D and 3D), which corresponds to the approximate width of RE-4 (�1.5kb).

Enhancer score calculation

For calculating the enhancer score, we computed the model gradient with respect to the predicted CAGE-seq output at the CD69

TSS. The absolute value of the gradient score was summed over a 2kb window centered at the ATAC-seq narrowpeak at each candi-

date RE, with the exception of RE-3 for which we manually selected the region chr12: 9762300-9764300 based on the small peak in

accessibility in stimulated Jurkat cells and CD4-T cells at this position.

Variant effect prediction

For predicting the results of each BE guide, we started with a 196608 bp sequence centered at the CD69 TSS (the same used to

compute the model gradient as described above). We then mutated each C->T lying within 2-8 bp opposite the NGG PAM site

for each guide, and ran two forward passes of the model using the mutant sequence and its reverse complement. For each forward

pass, the predicted CAGE-seq output was computed as the summed signal over the TSS bins (446-450). We then computed the %

difference in predicted CD69 output for each mutation relative to WT, and averaged across the two predictions (forward and reverse

strand).

ATAC-seq data processing
All ATAC-seq data were aligned and processed using the ENCODE uniform ATAC-seq processing pipeline v2.1.3 available at https://

github.com/ENCODE-DCC/atac-seq-pipeline. The pipeline was configured to use default parameters, adapter auto-detection, the

bowtie2 aligner,57 and MACS258 for peak calling. GRCh38 V29 and associated mitochondrial genomes and blacklists were obtained

from https://www.encodeproject.org/references/ENCSR938RZZ/.
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RNA-seq processing
RNA-seq datasets were processed using a custom pipeline utilizing fastp v0.23.259 for automatic adapter trimming with default set-

tings for paired-end datasetsGene quantifications were obtained using Salmon v1.650 and the GENCODE V38 annotation60 with the

seqBias, gcBias, posBias, and validateMappings flags enabled.

ChIP-seq data processing
ChIP-seq read alignment, quality filtering, duplicate marking and removal, peak calling, signal generation, and quality-control was

conducted using the ENCODE ChIP-seq pipeline v2.1.6 available at https://github.com/ENCODE-DCC/chip-seq-pipeline2.

GRCh38 V29 and blacklists were obtained from https://www.encodeproject.org/references/ENCSR938RZZ/. In brief, reads were

aligned to the GRCh38 genome using bowtie2(-X2000), filtered to remove poor quality reads (Samtools) and de-duplicated (Picard

MarkDuplicates). We provided matched input controls for each TF ChIP sample (GATA3, BHLHE40, TAL1) when running the pipeline

(further details provided with the data submission at GSE206377). With the exception of sg70_P260 (edited), BHLHE40 ChIP p value

bigwigs shown for each sample represent theMACS2 signal track output for pooled replicates (corresponding to call-macs2_signal_

track_pooled p value output in the above pipeline). For sg70_P260 BHLHE40, we used only replicate 1 due to poor quality of repli-

cate 2.

Other software
Figures and graphical abstract were assembled into panels using Adobe Illustrator and BioRender.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq analysis
Differential expression analysis between conditions was conducted using DESeq V243 with default settings. Significance of differen-

tial expression for Figures 3E, 4F, and S5B, and S5E was determined using an FDR cutoff of 0.05. Log fold change values were cor-

rected with the lfcShrink option using the apeglmmethod. For BHLHE40-OE gene expression analysis, BHLHE40-OEwas compared

to wild-type only in for stimulated Jurkat cells. Differential expression results can be found in Table S3.

Heatmapwas constructed using the Complex heatmap package v 2.12.0.45 Genes were subsetted to only keep those differentially

expressed between BHLHE40-OE and BHLHE40-WT at FDR < 0.05, and further subsetted to those with BHLHE40 or GATA3 binding

events (see methods ChIP-seq processing) within 25kb of the gene TSS as described in the further legends.

Gene set enrichment analysis was conducted using the FGsea package v 1.22.061 and the ImmuneSigDB subset of the C7

immunologic gene set62 from http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp. The product of -log10(p value) and log2-
FoldChange was used as the ranking metric for input to gene set enrichment. Significant pathways were collapsed using the collap-

sePathways function from FGsea with default settings.

ATAC-seq analysis
Differential accessibility analysis was conducted with the CSAW package v 1.28.44 Briefly, a consensus set of peaks was obtained

from the union of peaks across all input samples/replicates. Peaks lying within blacklist regions and with low signal(less than �3

log10CPM) were removed. Reads were counted in 300 bp windows genome-wide and merged to a maximum width of 5 kb. Finally,

counts were TMM normalized and significant differentially accessible peaks were identified based on a genome-wide FDR cutoff of

0.05 unless otherwise indicated.

For assessing accessibility changes near RE-4 in the edited cells in Figure S3E, we calculated a less conservative FDR/BH correc-

tion by restricting the analysis to peaks within a 1Mb window of RE-4 (using the p.adjust R command on the smaller set of nearby

peaks).

ATAC-seq tracks in all figures were computed by pooling replicates where applicable using samtools52 and creating signal tracks

using DeepTools bamcoverage.46 Signal tracks were normalized using the reads per genomic bin normalization (RPGC) options in

DeepTools with the pre-computed effective genome size for GRCh38 (2747877777) in order to create coverage bigwigs.

ChIP-seq analysis
For Ctrl_LV GATA3 and BHLHE40 ChIP, we further processed the data by calling peaks using MACS2 with the default parameters in

the above pipeline (p value < 0.01, max # peaks 500,000, andmatched input control for GATA3/BHLHE40). Consensus peaks across

replicates for Ctrl-LV GATA3 and BHLHE40 ChIP were obtained using the included IDR analysis step (IDR cutoff at 0.05). For

H3K27ac, a less conservative set of consensus peaks were obtained by pooling both replicates and calling peaks using MACS2

(same parameters as above). For GATA3 and BHLHE40, we defined the binding event as the 500 bp window centered at the called

narrowPeak summit. For H3K27ac, the enhancer was defined as the 2000 bp window centered at the narrowPeak summit. De-novo

motif analysis using the XSTREME package (Grant and Bailey, 2021) from theMEME-suite yielded the expected GATA andBHLHE40

motifs among the top discovered motifs.

For the analyses in Figures 4E and 4F, binding events for BHLHE40/GATA3 were obtained by intersecting the centered IDR peaks

with H3K27ac peaks in Ctrl-LV Jurkats. BHLHE40 or GATA3 regulated genes were identified by using the bedtools closest51
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command to identify gene TSS that were <25kb away from aGATA3 or BHLHE40 binding event. Co-regulated genes were defined as

the intersection between BHLHE40 and GATA3 regulated genes. Gene TSS locations were defined using the GENCODE V38 anno-

tation, and defining the TSS as the starting point of the first exon for the longest isoform of each gene, extended to 500 bp by +125/

+375 bp in the 3’/50 direction respectively. GATA3 and BHLHE40 binding events and target genes (based on the distance cutoff) are

available in Table S3.

Motif analysis
Motif scan of the RE-4 region corresponding to chr12: 9764556–9765505 was conducted by extracting the regions genomic

sequence using bedtools getfasta51 and scanned using the MOODs motif scanner v1.9.4.153 and the HOCOMOCO v11 database,

with a p value cutoff of 0.0001 and background base probabilities of 2.977e-01 2.023e-01 2.023e-01 2.977e-01. We first grouped

motif matches with the same annotated motif class and start position, keeping only the match with the highest MOODs score.

We then removed motif matches with a MOODs score <0, and further filtered to keep the top 25% of matches, corresponding to

a score cutoff of 2.78. We then clustered motifs based on whether the motif cluster name contained GATA, bHLH, TCF, ETS,

NFKB, NFAT, CREB, or STAT. Representative PWMs plotted in Figure 2 were obtained from the HOCOMOCO web portal.

Common SNP, eQTL and conservation score analysis
Common SNPs with MAF R 1% were downloaded from Ensembl GRCh38.63 Expression quantitative trait loci(eQTL) were down-

loaded from eQTLGEN,28 and filtered to keep only cis-eQTLs with FDR < 0.05 (https://eqtlgen.org/cis-eqtls.html, gene locus for

CD69). Conservation scores in Figure 2C correspond to phastCons100way score (0–1, clear to dark green).64

Enformer based motif identification
For identifying TFmotifs using Enformer base importance scores (Figure S3), we used the TFModisco suite.47 This tool clusters short

stretches of bases using base importance scores to discovermotifs that can then bematched to known databases. First we centered

393216 bp genomic windows as above at the promoter of each of 2195 genes that were differentially expressed (FDR < 0.01, see

Methods, RNA-seq analysis) between resting and stimulated Jurkat cells. Then, we computed the gradient of the model at each

base within the window for output head 4831 as above with respect to the CAGE-seq signal at the promoter, corresponding to

bins 446–450. For each window, we also computed the model gradient on a dinucleotide shuffled version of the sequence which

was averaged across all genes in order to obtain an empirical null distribution of gradients. In order to reduce computing time, we

extracted model gradients, sequence, and null gradients for the 750 centered bp window centered at each ATAC-seq peak detected

from unstimulated Jurkat cells. Predictions were run in parallel across all genes simultaneously using a custom WDL/Google Cloud

script. Finally, hypothetical contribution scores at each positionwithin the 750 bp input windowwere computed as themodel gradient

corresponding to each non-reference base. TFmodisco was then used with default settings in order to identify putative regulatory

motifs. Candidate seqlets were then matched to HOCOMOCO v11 motifs65 using Tomtom from the MEME-suite V5.4.148 with a

q-value cutoff of 0.05.

Other statistical analysis
Unpaired t-test was used for Figure 1C, S2I, 3A, 3C, S3B, S3C, 4A–4C, and S4A–S4D using Graphpad Prism Version 9.5.0(525). Data

points represent mean ± s.e.m, with 2–4 sample replicates per experimental group as described in the figure legends.

Each dot of mean ± s.e.m in Figures 1E, 1F, and S2D–S2H represents triplicates from 3 individual screening experiments, using

Graphpad Prism Version 9.5.0(525).

Pearson’s correlation test was performed in Figure S2H using the cor.test command in R version 4.2. Pearson’s correlation and p

value are indicated in the figure legend.
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