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Abstract

Background: Microarray data enables the high-throughput survey of mRNA expression profiles at the genomic level;
however, the data presents a challenging statistical problem because of the large number of transcripts with small
sample sizes that are obtained. To reduce the dimensionality, various Bayesian or empirical Bayes hierarchical models
have been developed. However, because of the complexity of the microarray data, no model can explain the data
fully. It is generally difficult to scrutinize the irregular patterns of expression that are not expected by the usual
statistical gene by gene models.

Results: As an extension of empirical Bayes (EB) procedures, we have developed the β-empirical Bayes (β-EB)
approach based on a β-likelihood measure which can be regarded as an ’evidence-based’ weighted (quasi-)
likelihood inference. The weight of a transcript t is described as a power function of its likelihood, f β(yt|θ). Genes with
low likelihoods have unexpected expression patterns and low weights. By assigning low weights to outliers, the
inference becomes robust. The value of β , which controls the balance between the robustness and efficiency, is
selected by maximizing the predictive β0-likelihood by cross-validation. The proposed β-EB approach identified six
significant (p < 10−5) contaminated transcripts as differentially expressed (DE) in normal/tumor tissues from the head
and neck of cancer patients. These six genes were all confirmed to be related to cancer; they were not identified as DE
genes by the classical EB approach. When applied to the eQTL analysis of Arabidopsis thaliana, the proposed β-EB
approach identified some potential master regulators that were missed by the EB approach.

Conclusions: The simulation data and real gene expression data showed that the proposed β-EB method was robust
against outliers. The distribution of the weights was used to scrutinize the irregular patterns of expression and
diagnose the model statistically. When β-weights outside the range of the predicted distribution were observed, a
detailed inspection of the data was carried out. The β-weights described here can be applied to other likelihood-based
statistical models for diagnosis, and may serve as a useful tool for transcriptome and proteome studies.

Background
Microarray technology has made it possible to investi-
gate the expression levels of thousands of genes simul-
taneously. At the same time, it presents a challenging
statistical problem because of the large number of tran-
scripts with small sample sizes that are surveyed. A funda-
mental statistical problem in microarray gene expression
data analysis is the need to reduce the dimensionality of
the transcripts. A common approach for dimensionality
reduction is the identification of differentially expressed
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(DE) genes under different conditions or groups. By asso-
ciating differential expressions with the genotypes of
molecular markers, useful information on the regulatory
network can be obtained [1-4]. By assigning DE genes to
the list of gene sets, it is possible to obtain a useful bio-
logical interpretation [5,6]. Further, because the number
of DE genes that influence a certain phenotype may be
large while their relative proportion is usually small, it is
challenging to identify these DE genes from among the
large number of recorded genes [7-14]. Two main types
of statistical inferences for the identification of DE genes
have been used: (1) classical parametric (for example,
t-test, F-test, likelihood ratio test) and non-parametric
[13,15-18] procedures; and (2) empirical Bayes (EB)
parametric [8-12,14,19-22] and non-parametric [23,24]
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procedures. In general, classical procedures detect the DE
genes using p-values (significance levels) either estimated
by permutation or based on the distribution of a test
statistic, while EB procedures use the posterior probabil-
ity of differential expression for the identification of DE
genes.

Classical parametric testing procedures (like the t-, F-
or χ2-test) may produce misleading results when they
are used directly to determine DE genes, because these
methods strongly depend on the sample size and nor-
mality of the expression data [2,17,25-28]. EB hierarchical
models have gradually become more popular than classi-
cal methods for identification of DE genes because these
models explicitly specify the distribution of the gene-
specific mean expression levels and the distribution of
the expression profiles around the means. EB approaches
detect a DE gene by sharing information across the whole
genome; such approaches also work well for small sam-
ple sizes. A popular EB approach using a hierarchical
gamma-gamma (GG) model [11] was developed for the
identification of DE genes. The model was extended [8]
to replicate chips with multiple conditions and a new
option of using a hierarchical lognormal-normal (LNN)
model was introduced. The GG and LNN models were
both developed under the assumption of a constant coeffi-
cient of variation across genes. However, this assumption
is not very realistic and it can negatively affect the result-
ing inference. To overcome these problems, both models
were extended assuming gene-specific variances [29]. It
has been shown that the extended versions of both the
GG and LNN models outperform previous versions of
GG and LNN [8,11] as well as the nonparametric SAM
(significance analysis of microarray) model [17]. A differ-
ent version of the extended EB-LNN model that assumes
gene-specific variances [30] is also available. The per-
formance of the EB-LNN model has been investigated
using several normalization techniques [1]. Most of the
algorithms described above are not robust against out-
liers. Some recent studies have reported that the assump-
tion of normality does not hold for most of the existing
microarray data [31,32]. One of the causes for the break-
down of the normality assumption for gene expression
data may be data contamination by outliers. The cDNA
microarray data are often contaminated by outliers that
arise because of the many steps that are involved in the
experimental process from hybridization to image anal-
ysis. A few Bayesian parametric approaches [32-35] for
the robust identification of DE genes are available; how-
ever, the identification of contaminating genes or irreg-
ular patterns of expression has never been discussed.
When one of these Bayesian parametric approaches is
used, it is difficult to scrutinize or diagnose contami-
nating DE genes in reduced gene expression datasets.
As a result, any further statistical investigations like, for

example, the clustering/classification of the genes in the
reduced gene expression dataset may produce misleading
results.

To overcome this problem, we developed a β-empirical
Bayes (β-EB) approach as an extension of the EB-LNN
model [8,30] assuming gene-specific variances for the
identification of DE genes. The β-EB model is a unique
parametric approach because, not only is it robust against
outliers, but it also detects contaminating genes and statis-
tically diagnoses gene expression profiles. These features
may significantly improve any further statistical analysis
of gene expression data like clustering/classification. The
β-EB method was developed based on the β-divergence
estimation that was proposed by Basu et al. [36] and
fully described later by Minami and Eguchi [37]. It was
shown that the minimization of β-divergence is equiva-
lent to maximizing the weighted (quasi-) likelihood which
we have called β-likelihood. The proposed β-EB method
introduces a β-weight function that produces smaller
weights for contaminating genes and larger weights for
uncontaminating genes to obtain weighted estimates for
the model parameters. Thus, based on the value of the β-
weight function, the inference becomes robust. The value
of β , which controls the balance between robustness and
efficiency, is selected by maximizing the predictive β0-
likelihood. When the dataset satisfies the model assump-
tions and does not include outliers, β may be selected to
be 0. On the other hand, when the model is misspecified
or when the data include outliers, the selected β may be
positive.

Here, we introduce the β-weight distribution as a sensor
that detects outliers or the misspecification of the model.
When β-weights outside the range of the predicted dis-
tribution are observed, a detailed inspection of the data
is conducted. Microarray data offers a unique opportunity
to investigate the distribution of the β-weights because
the data represents the expression of a large number of
genes. By contracting the observed distribution of the
weights with the predicted distribution, it is possible to
detect outliers and to diagnose the hierarchical model sta-
tistically. Although, in this paper, we have introduced a
Gaussian model, the β-likelihood-based approach could
still be applied for robustification of any likelihood-based
estimation of statistical models and this feature may serve
as a useful tool for genome data analysis.

Methods
Here the extension of the EB-LNN model assuming gene-
specific variances [8,30] by β-divergence, which we have
called the β-EB approach, for the identification of DE
genes, is discussed. The simulated and real microar-
ray gene expression datasets that we have analyzed to
investigate the performance of the proposed method are
also described.
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Empirical Bayes hierarchical model
If the transcript-specific parameter θ t = (μt , θ∗

t ), where
μt and θ∗

t are the location and scale parameters respec-
tively, then the conditional likelihood of the tth tran-
script’s expression measurement yt = (yt1, yt2, . . . , ytn)

can be expressed as
∏n

i=1 fobs
(
yti|θ t

)
(t = 1, 2, . . . , T).

The location parameter μt follows the prior distribution,
π(μt|θ), where θ is the hyper-parameter specifying the
prior distribution. The predictive likelihood of yt (uncon-
ditional on the location parameter μt) is obtained by
integrating over the location parameter, μt , as follows:

f0(yt|θ , θ∗
t ) =

∫ ( n∏
i=1

fobs
(
yti|μt , θ∗

t
)
π(μt|θ)

)
dμt .

(1)

When expression measurements between two groups (for
example, different cell types) are compared for transcript
t, the measurements are partitioned into two user defined
groups G1 and G2 of sizes n1 and n2 respectively, where
n1 + n2 = n. If there is no significant difference between
the means of the two groups, the gene is assumed to be
equivalently expressed (EE); otherwise, it is assumed to
be a DE gene. If the tth transcript is DE, the two groups
will have different mean expression levels, μ

(j)
t , j = 1, 2.

Given the values of μ
(j)
t , j = 1, 2 and θ∗

t , the conditional
likelihood of yt =

(
y(1)

t : y(2)
t

)
is written as follows:

f1(yt|μ(1)
t , μ(2)

t , θ∗
t ) =

( n1∏
i=1

fobs
(

yti|μ(1)
t , θ∗

t

))

×
( n2∏

i′=1
fobs
(

yti′ |μ(2)
t , θ∗

t

))
,

(2)

because components of yt are independent of each other.
Assuming that the group means μ

(j)
t , j = 1, 2 (such that

μ
(1)
t �= μ

(2)
t ) independently originate from π(μt|θ), then

the predictive likelihood of yt (unconditional on the loca-
tion parameters μ

(j)
t , j = 1, 2) is obtained as a mean of the

conditional likelihood of yt (2) over the prior distribution
of μ

(1)
t and μ

(2)
t as follows:

f1(yt|θ , θ∗
t ) =

∫ ∫
f1(yt|μ(1)

t , μ(2)
t , θ∗

t )π(μ
(1)
t |θ)π(μ

(2)
t |θ)

× dμ
(1)
t dμ

(2)
t

=
(∫ ( n1∏

i=1
fobs
(
yti|μ(1)

t , θ∗
t

))
π
(
μ

(1)
t |θ

)
dμ

(1)
t

)

×
(∫( n2∏

i′=1
fobs
(
yti′ |μ(2)

t , θ∗
t

))
π
(
μ

(2)
t |θ

)
dμ

(2)
t

)

= f0(y(1)
t |θ , θ∗

t )f0(y(2)
t |θ , θ∗

t ). (3)

Because it is unknown whether the tth gene is EE or DE
between the two groups, the final likelihood of yt (uncon-
ditional on the location parameters) becomes a mixture of
two distributions (1) and (3) as follows:

f (yt|θ , θ∗
t , p0) = p0f0(yt|θ , θ∗

t ) + p1f1(yt|θ , θ∗
t ). (4)

Here, p0 and p1 are the mixing proportions of the EE and
DE transcripts in the two user defined groups respectively,
such that p0 + p1 = 1. The posterior probability of differ-
ential expression (PPDE) is calculated by Bayes rule using
the estimates of p0, f0 and f1 as follows:

p1f1(yt|θ , θ∗
t )

p0f0(yt|θ , θ∗
t ) + p1f1(yt|θ , θ∗

t )
. (5)

It should be noted here that θ and θ∗
t in equations (1)-(5)

are assumed to be exactly the same.

Maximum β-likelihood estimation of mixture distribution
using an EM-like algorithm to calculate β-posterior
probabilities of differential expressions
Box and Cox [38] proposed a family of power transfor-
mations of the dependent variable in regression analysis
to robustify the normality assumption. By choosing an
appropriate value of λ in the transformation,

gλ(y) =
{

yλ−1
λ

(λ > 0)

log y (λ = 0),

the standard linear regression model with the normality
assumption fits well to a wide range of data. Inspired by
this idea, Basu et al [36] and Minami and Eguchi [37] pro-
posed a robust and efficient method for estimating model
parameter θ by minimizing a density power divergence in
a general framework of statistical modeling and inference.
They [36,37] have also shown that minimizer of density
power divergence is equivalent to the maximizer of β-
likelihood function. According to the current problem in
this paper, the β-likelihood function for θ given the values
of the mixing parameter p0 = 1 − p1 and the gene specific
scale parameter θ∗

t for all t can be written as

Lβ(θ |y) = 1
Tβ

T∑
t=1

f β(yt|θ , θ∗
t , p0) − lβ(θ), (6)

where f (.) is the mixture of distributions as defined in
(4) and lβ(θ) = 1

1+β

∫
f β+1(y|θ , θ∗

t , p0)dy − β−1
β

which is
independent of observations. Because the gradient of (6)
can be converted as follows,

∂

∂θ
Lβ(θ |y) = 1

T

T∑
t=1

f β(yt|θ , θ∗
t , p0)

∂

∂θ
log
(
f (yt|θ , θ∗

t , p0)
)

− ∂

∂θ
lβ(θ), (7)
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the maximum β-likelihood estimator (β-MLE) of θ can
be regarded as a weighted (quasi-) likelihood estima-
tor. Then the weight of gene t is described as a power
function of its likelihood, f β(yt|θ , θ∗

t , p0), where f (.) is
defined by equation (4). Thus, the genes with low like-
lihoods have unexpected expression patterns and have
low weights because the normal density function pro-
duces smaller outputs for larger inputs. By assigning low
weights to outliers, the inference becomes robust. It is
obvious from (7) that β-MLE reduces to the classical MLE
for β = 0. Because the expression pattern (EE or DE)
of each gene is unknown, it is difficult to optimize both
the classical log-likelihood function and the proposed β-
likelihood function for directly estimating θ . To overcome
this problem, we consider the EM-like algorithm to obtain
β-MLE of θ treating the mixture distribution (4) as an
incomplete-data density. The hyper-parameters θ and the
mixing proportion p0 are estimated by EM algorithm as
follows:

The hyperparameters, θ , p0 are estimated by the EM
algorithm in two steps. E-step: Compute the Q-function
which is defined by the conditional expectation of the
complete-data β-likelihood with respect to the condi-
tional distribution of missing data (Z) given the observed
data (Y ) and the current estimated parameter value θ

(j)
β as

follows:

Qβ

(
θ |θ (j)

β

)
= 1

Tβ

T∑
t=1

1∑
k=0

[
pkfk(yt|θ , θ̂∗

t )
]β×�

(j)
tk −λβ(θ)

(8)

where k = 0 for yt belongs to EE pattern and k = 1 for yt
belongs to DE pattern. Here

λβ(θ) = 1
1 + β

∫ 1∑
k=0

[
pkfk(y|θ , θ̂∗)

]1+β

dy − β − 1
β

which does not depend on observations,

�
(j)
tk = p(j)

k fk(yt|θ (j)
β , θ̂∗

t )∑1
k′=0 p(j)

k′ fk′(yt|θ (j)
β , θ̂∗

t )
, (k = 0, 1) (9)

is the posterior probability of kth pattern for gene t and
the value of p1 = 1 − p0 is updated by a separate EM
formulation as follows:

p(j+1)

1 =
⎡
⎢⎣
⎛
⎝∑T

t=1 f β
1 (yt|θ (j)

β , θ̂∗
t )�

(j)
t1∑T

t=1 f β
0 (yt|θ (j)

β , θ̂∗
t )�

(j)
t0

⎞
⎠

1
β−1

+ 1

⎤
⎥⎦

−1

, for β >0

(10)

= 1
T

T∑
t=1

�
(j)
t1 , for β = 0.

For β → 0, the proposed Q-function Qβ(θ |θ (j)) reduces to
the standard Q-function Q(θ |θ (j)) of the standard empiri-
cal Bayes approaches [8,30].

M-step: Find θ (j+1) by maximizing the proposed Q-
function as defined in (8). Continue EM iterations up to
the convergence of successive estimates of θ . The esti-
mate of θ after convergence is taken to be the β-MLE of θ

according to the EM properties.
The tuning parameter, β , controls the balance between

the robustness and efficiency of the estimators. By set-
ting a tentative value for β0, the optimal value is estimated
by maximizing the predictive β0-likelihood via a five-fold
cross validation. The dataset is divided into five sub-
sets by transcripts. For each value of β , the predictive
β0-likelihood of each subset is calculated based on the
maximum β-likelihood estimates of the parameters based
on the rest of the data. Finally, the β value that maximizes
the average predictive β0-likelihood is selected as the opti-
mal value of β . For more information about β-selection,
please see [39,40].

Then, based on the estimate values of the model param-
eters, we can compute the PPDE between two groups of
yt using equation (5) for all t. However, PPDE of con-
taminated gene using equation (5) might be produced
misleading result, since PPDE of yt depends on the esti-
mate values of parameters and measurements of yt . To
overcome this problem, we detect contaminated genes
using β-weight function and replace the contaminated
measurements in yt by its group means. Then we compute
the PPDE of contaminated yt using equation (5) also. The
PPDE based on β-MLE, we call β-PPDE in this paper. The
detail discussion for computation of β-PPDE under LNN
model is discussed below in the LNN model.

The LNN model
In this paper, we use the LNN (log-normal-normal) hier-
archical model for computing the posterior probability
of differential expressions. In the LNN model, log-
transformed gene expression measurements are assumed
to follow normal distribution for each gene with the
transcript-specific parameter θ t = (μt , θ∗

t ), where μt is
the transcript-specific mean and θ∗

t = σ 2
t is the transcript-

specific variance for gene t [8,30]. A conjugate prior for
μt is assumed to follow the normal with some underlying
mean μ0 and variance τ 2

0 ; that is, π (μt|θ) ∼ N(μ0, τ 2
0 ),

where θ = (μ0, τ 2
0 ). By integrating as in (1), the density

f0(·) for an n-dimensional input becomes Gaussian with
the mean vector μ0 = (μ0, μ0, . . . , μ0)t and an exchange-
able covariance matrix as follows:

�tn = (σ 2
t )In + (τ 2

0 )Mn, (11)

where In is an n × n identity matrix and Mn is a matrix
of ones.
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The gene specific variance σ 2
t is computed separately

assuming prior distribution for σ 2
t as scale-inverse

χ2(ν∗, σ 2∗ ), where ν∗ is the degrees of freedom and σ 2∗ is
the scaled parameter. Yang et al. [30] proposed that σ 2

t
could be estimated by a Bayes estimator defined as,

σ̂ 2
t = ν̂∗σ̂ 2∗ + (n1 + n2 − 2)σ̃ 2

t
n1 + n2 + ν̂∗ − 2

where

σ̃ 2
t = (n1 − 1)σ̃ 2

t1 + (n2 − 1)σ̃ 2
t2

n1 + n2 − 2
is the pooled sample variances with

σ̃ 2
tg =

ng∑
i=1

(y(g)

ti − ȳ(g)
t )2/(ng − 1) (12)

as the sample variance in group g = 1, 2. By viewing the
pooled sample variances σ̃ 2

t as a random sample from the
prior distribution of σ 2

t , the estimates (ν̂∗, σ̂ 2∗ ) of (ν∗, σ 2∗ )

are obtained using the method of moments. However, it is
obvious that (12) will be very sensitive to outliers. There-
fore, we have used a maximum β-likelihood estimation of
σ 2

tg which is highly robust against outliers [39] and can be
obtained iteratively as follows:

μ
(j+1)
tg =

∑ng
i=1 ψβ(y(g)

ti |μ(j)
tg , σ 2

tg
(j)

)y(g)

ti∑ng
i=1 ψβ(y(g)

ti |μ(j)
tg , σ 2

tg
(j)

)
(13)

σ 2
tg

(j+1) =
∑ng

i=1 ψβ(y(g)

ti |μ(j)
tg , σ 2

tg
(j)

)(y(g)

ti − μ
(j)
tg )2∑ng

i=1 ψβ(y(g)

ti |μ(j)
tg , σ 2

tg
(j)

)

where

ψβ(y(g)

ti |μtg , σ 2
tg) = exp

⎧⎨
⎩−β

2

(
y(g)

ti − μtg

σtg

)2
⎫⎬
⎭ (14)

is the β-weight function for estimating robust mean and
variance which produces an almost zero or very small
weight for yti if it is an outlying/extreme observation.

To estimate the hyper-parameters θ = (μ0, τ 2
0 ) by max-

imizing of the proposed Q-function (8) in the M-step, we
compute the gradient of Qβ(θ |θ (j)) with respect to θ which
is given by

∂

∂θ
Qβ(θ |θ (j)) = 1

T

T∑
t=1

1∑
k=0

[
pkfk(yt|θ , σ̂ 2

t )
]β

× ∂

∂θ
log
[
pkfk(yt|θ , σ̂ 2

t )
]

× �
(j)
tk − ∂

∂θ
λβ(θ).

(15)

It reduces to the gradient of the standard Q-function
denoted by ∂

∂θ
Q(θ |θ (j)) based on the log-likelihood func-

tion for β = 0. The second term on the right-hand side
of equation (15) is independent of observations; the first

term is the weighted gradient of Q(θ |θ (j)) with the weight
function

[
pkfk(yt|θ , σ̂ 2

t )
]β . This weight function produces

a smaller weight if the tth gene is contaminated by out-
liers; otherwise, it produces a comparatively larger weight
for the tth gene independent of whether it is EE (k=0)
or DE (k=1). Therefore contaminated genes cannot influ-
ence the estimates and robust estimates of the parameters
can be obtained. For convenience of choosing the thresh-
old weight to identify contaminated genes statistically, we
define the β-weight function for the gene t as follows

φβ(yt|θ̂ , σ̂ 2
t , k) ∝[ pkfk(yt|θ̂ , σ̂ 2

t )]β , (16)

where the circumflex above a parameter indicates the
proposed estimate of the parameters. Excluding the nor-
malization constant, the β-weight function corresponding
to an EE gene becomes,

φβ(yt|θ̂ , σ̂ 2
t , k = 0) = exp{−β

2
(yt −μ̂0)

′�̂−1
tn (yt −μ̂0)},

(17)

which measures the deviation of each gene expression
data vector from the grand mean vector for the expres-
sion of all the genes in the dataset. The β-weight function
corresponding to a DE gene becomes

φβ

(
yt|θ̂ , σ̂ 2

t , k = 1
)

= exp
[
−β

2

{(
y(1)

t − μ̂
(1)
0

)′

× �̂
−1
tn1

(
y(1)

t − μ̂
(1)
0

)
+
(

y(2)
t − μ̂

(2)
0

)′

× �̂
−1
tn2

(
y(2)

t − μ̂
(2)
0

) }]
, (18)

where μ̂
(1)
0 =(μ̂0, μ̂0, . . . , μ̂0)t and μ̂

(2)
0 =(μ̂0, μ̂0, . . . , μ̂0)t

are the grand mean vectors, and �̂tn1 = (σ̂ 2
t )In1+

(τ 2
0 )Mn1 and �̂tn2 = (σ̂ 2

t )In2 + (τ 2
0 )Mn2 are the exchange-

able covariance matrices in two user defined groups. Both
the β-weight functions defined by equations (17) and (18)
for genes t = 1, 2, . . . , T produce weights that are between
0 and 1 for any data vector yt .

Because, both weight functions are the negative expo-
nential function of the squared Mahalanobis Distance
(MD) defined by MDt = (yt − μ̂0)

′�̂−1
(yt − μ̂0) ≥ 0

between the data vector yt and and the mean vector μ̂0.
From equations (17) and (18), the β-weight for gene t
decreases when MDt increases and increases when MDt
decreases. That is, the β-weight for a gene t becomes
smaller (≥ 0) when yt is contaminated by outliers, and
larger (≤ 1) when it is not contaminated.

The large number of transcripts in microarray data
enables a statistical investigation of the observed distribu-
tion of the β-weights compared to the predicted distribu-
tion under the assumption that the model is correct and
the data is free from outliers. To investigate this further,
we start with the case where the predicted distribution can
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be obtained theoretically. When the normality assump-
tions hold and there are no outliers, and when the gene-
specific variance is known for EE genes, the cumulative
distribution of the β-weight wt = φβ(yt|θ , σ 2

t , k = 0) for
gene t with known gene specific variance (σ 2

t ) becomes,

Gt(w0) = Pr{wt ≤ w0}
= Pr

{
exp

[
−β

2
(
yt − μ0

)′
�−1

tn
(
yt − μ0

)] ≤ w0

}

= 1 − Pχ2
n
(− 2

β
log w0),

which implies that wt follows 2
β×w0

pχ2
(n)

(− 2
β

log w0),
where χ2

(n) denotes the chi-square variable which assumes
values − 2

β
log w0 for 0 < w0 ≤ 1, with n

degrees of freedom. Similarly, for DE genes (18) the
β-weight wt = φβ(yt|θ , σ 2

t , k = 1) also follows
2

β×w0
pχ2

(n=n1+n2)
(− 2

β
log w0), for 0 < w0 ≤ 1 using the

additive property of χ2 distributions.
In many cases, however, the variance is unknown. For

such cases, the distribution of the β-weights is obtained
by parametric bootstrapping. Thus statistically, we can
examine whether or not a gene is contaminated by outliers
using either one of the two β-weight functions because
both weight functions follow the same distribution and
show similar trends for the observed weights of both gene
expression patterns (DE and EE). However, the tth gene is
defined as contaminated by outliers if

wt = φβ(yt|θ̂ , σ 2
t , k = 1) < w0 = ξp

where ξp is the p-quantile of the β-weights defined by

Pr
{
φβ(yt|θ̂ , σ 2

t , k = 1) < ξp
}

≤ p.

Heuristically, we choose p = 10−5 for the detection
of contaminating genes. Then we compute the β-PPDE
using equation (5) updating the measurements in the con-
taminated genes. To compute the β-PPDE with respect to
a contaminating gene expression, say, for example, yt =(

y(1)
t : y(2)

t

)
by equation (5), we modify the contaminated

measurements in y(g)
t using the robust mean μ̂tg obtained

iteratively using equation (13). Here y(g)

ti is taken to be the
ith contaminated measurement of y(g)

t in group g=1, 2 if

ψβ(y(g)

ti |μ̂tg , σ̂ 2
tg) < αp,

where αp is the p-quantile of the β-weights defined by

Pr
{
ψβ(y(g)

ti |μ̂tg , σ̂ 2
tg) < αp

}
≤ p.

Here ψβ(y(g)

ti |μtg , σ 2
tg) is the β-weight function that is used

to compute the robust mean and variance (14), which

follows 2
β×w0

pχ2
(1)

(− 2
β

log w0), where χ2
(1) denotes the chi-

square variable which assumes values of − 2
β

log w0 for
0 < w0 ≤ 1, with 1 degree of freedom. However, we can
set an arbitrary threshold (α0=0.2 ) to detect contaminated
measurements with weights that are below the threshold,
because weights are close to zero for outlying/extreme
observations.

Simulated data that were used to examine the
performance of the β-EB approach
The β-EB approach that we developed detected a large
proportion of outliers with p-values less than 10−5. In the
microarray data of head and neck cancer, 1.75% of the
genes were outliers; in the lung cancer data, 13.75% were
outliers; and in Arabidopsis thaliana, 16.59% were out-
liers in the empirical data analysis. A detailed inspection
of the outliers detected in the lung cancer data reflected
misspecification of the model. To investigate the effect
of outliers and model misspecification, we conducted a
numerical simulation in which we compared the perfor-
mance of the proposed β-EB approach with the t-test,
linear models for microarray data (Limma) [22], SAM
[17], and other EB approaches (EB-LNN, eGG [29], eLNN
[29], GaGa [21]). The t-test, Limma, and SAM detect DE
genes based on p-values while, the EB procedures and the
β−EB approach detect DE genes based on posterior prob-
abilities. Therefore, we calculated the AUC (area under
the curve) and pAUC (partial area under the curve) of
the ROC curves. We also compared the estimated pro-
portion of DE genes obtained using the β−EB and EB
approaches. This characteristic plays an important role,
especially when the aim of the study is to identify the
major regulatory elements that influence the expressions
of a large number of genes. The EB approaches estimate
the proportion of DE genes by the mean posterior proba-
bility. The β−EB approach estimates it by using equation
(11). No reasonable procedure to calculate the propor-
tion of DE genes for the t-test, Limma and SAM methods
could be found, because, in these methods, the estimation
depends on the threshold value of the p-values.

Simulated gene expression profiles with and without outliers
We generated 50 datasets that roughly reflect the head
and neck cancer data described in empirical data analy-
sis below. Each dataset contained measurements of 1,000
genes, and 50 out of the 1,000 genes were DE (p1 = 0.05).
The log-transformed expression was assumed to follow
normal distribution. The mean log-expression level of a
gene followed a normal distribution with the mean μ0=2.0
and the variance τ 2

0 = 3.0. The gene-specific variance σ 2
t

of the log expression level among the genes varied from
the exponential distribution with a mean of σ 2 = 0.10.

We considered two scenarios with different proportions
of contaminating genes (10%, 20%), and two scenarios
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with two patterns of outliers (mild outliers: μ′
ti = 5μti),

and (extreme outliers: μ′
ti = 10μti). To estimate the

dependence of the performance on the sizes of the groups,
we considered two more scenarios with different group
sizes (moderate/large (n1 = n2 = 30) and small (n1 =
n2 = 10)).

Simulated gene expression profiles from misspecified model
To show how the β− weight can be used for model
diagnosis, we generated the expressions of each of the
1,000 genes in the dataset from their gamma distribution.
The shape parameter that we obtained followed log nor-
mal distribution with the location parameter 1 and scale
parameter 1. The scale parameter of the gamma distribu-
tion was set to 0.067. The LNN model was applied to this
data. When the shape parameter is large, a gamma distri-
bution can be approximated by a log normal distribution;
however, when the shape parameter is small, especially
when it is smaller than 1, the gamma distribution has a
heavy mass near 0 and it cannot be approximated by a log
normal distribution. In our simulation scenario, the pro-
portion of transcripts with a shape parameter < 1 was
0.159. We used the dataset that contained the measure-
ments of 1,000 genes with 30 samples in each of the two
groups. The measurements for 50 out of 1,000 genes were
DE (p1 = 0.05). The gene-specific variance (scale) of the
log expression level among genes varied from the gamma
distribution.

The empirical data
Head and neck cancer data
The publicly available microarray data from the study of
head and neck cancer [41] was used in this study. Most
head and neck cancers are squamous cell carcinomas
(HNSCC), originating from the mucosal lining (epithe-
lium) of these regions. The data consists of the expression
levels of 12,625 cellular RNA transcripts in the tumor
and normal tissues from 22 patients with histologically
confirmed HNSCC.

Lung cancer data
The publicly available microarray data from the study of
two types of lung cancer [42] were used in this study.
Non-small cell lung cancer (NSCLC) is the most com-
mon bronchial tumor. It has been classified into two major
histological subtypes, adenocarcinoma (AC) and squa-
mous cell carcinoma (SCC). After quality assessment of
60 microarray hybridizations, the data represent the gene
expression profiles of 54,675 cellular RNA transcripts in
40 AC and 18 SCC samples [42].

Arabidopsis thaliana expression data
The published pre-processed expression data for 22,810
probe sets on the Affymetrix Arabidopsis ATH1 (25K)
array across 1,436 hybridization experiments [43] was

analyzed in the present study. The data included a high-
density haplotype map of the Arabidopsis Bay-0 × Sha RIL
population (211 RILs), using 578 single feature polymor-
phism (SFP) markers. Data obtained from TAIR (The Ara-
bidopsis Information Resource: http://www.arabidopsis.
org/) included the complete genome sequence, the gene
structure, and gene product information.

Results and discussion
Simulation results
Performance of the β-EB approach using the simulated data
with and without outliers
Table 1 shows the average estimates of the proportion of
DE genes (p1), area under the ROC curve (AUC) and par-
tial area under the ROC curve (pAUC; at FPR≤ 0.2) of
the eight procedures in the case of large/moderate size of
groups (n1 = n2 = 30). In the absence of outliers, the
average estimates of p1 were close to the true p1 = 0.05
for both the classical EB-LNN and β-EB approaches; the
AUC and pAUC were also found to be similar for the
two approaches. In the presence of outliers, as noted ear-
lier, the average estimates of p1 were close to the true
p1 = 0.05 for the β-EB approach; however, the average
estimates of p1 were over-estimated by all the other model
based EB approaches (EB-LNN, eGG, eLNN, GaGa). The
model based EB approaches were very sensitive to out-
liers. In the case of 20% contaminated genes with extreme
outliers, the pAUC became worse in general. The three EB
approaches (eGG,eLNN and GaGa) had even lower pAUC
values than the t-test, Limma and SAM. The pAUC of
EB-LNN was a little larger then that of the other three EB-
approaches, but still worse than t-test, Limma and SAM.
β−EB gave the large value of pAUC among all procedures.
We observed the same pattern in the case of small size of
groups (n1 = n2 = 10, Table 2).

The β-weights in the β-EB approach can be used not
only to detect outliers, but also to diagnose the model
assumptions. When the β-weights for each gene in the
simulation data were calculated, the predictive distri-
bution reflected the observed distribution and outliers
with unstable expressions were identified by their low
weights with p-values < 10−5 (see the Additional file 1:
Figure S1).

In the absence of outliers, β was selected to be 0 for
more than half the cases, while in the presence of outliers,
β was selected to be 0.015 on average. When outliers were
present, there were no cases where the β was selected to
be 0. This result implies that the selected value of β could
be used as a predictor of the presence of outliers.

The use of the β− weight to diagnose model misspecification
To investigate the use of the β− weight as a sensor
for model diagnosis, we generated the expressions of
each gene in the simulated data set from their gamma

http://www.arabidopsis.org/
http://www.arabidopsis.org/
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Table 1 The proportion of DE genes (p1 = 0.05), AUC, and pAUC with a FPR ≤ 0.2 estimated by the t-test, Limma, SAM,
and EB approaches (EB-LNN, eGG, eLNN, GaGa) and the β-EB approach averaged over 50 simulated datasets: the case of
large sample

t Limma SAM eGG eLNN GaGa EB-LNN β-EB

In absence of outliers

p1 - - - 0.0488 0.0458 0.0494 0.0496 0.0482

- - - (0.0010) (0.0009) (0.0010) (0.0010) (0.0013)

AUC 0.9861 0.9861 0.9862 0.9848 0.9734 0.9879 0.9892 0.9890

(0.0020) (0.0021) (0.0020) (0.0019) (0.0030) (0.0017) (0.0015) (0.0016)

pAUC 0.1929 0.1934 0.1924 0.1925 0.1894 0.1940 0.1941 0.1940

(0.0008) (0.0008) (0.0008) (0.0008) (0.0011) (0.0006) (0.0007) (0.0007)

In presence of 10% contaminated genes with mild outliers

p1 - - - 0.0807 0.1053 0.1008 0.0649 0.0504

- - - (0.0013) (0.0012) (0.0014) (0.0013) (0.0014)

AUC 0.9649 0.9661 0.9699 0.9515 0.9396 0.9524 0.9621 0.9870

(0.0031) (0.0030) (0.0029) (0.0030) (0.0026) (0.0052) (0.0020) (0.0019)

pAUC 0.1826 0.1830 0.1844 0.1696 0.1577 0.1649 0.1724 0.1924

(0.0012) (0.0012) (0.0012) (0.0012) (0.0009) (0.0008) (0.0009) (0.0008)

In presence of 10% contaminated genes with extreme outliers

p1 - - - 0.0834 0.1076 0.1043 0.0599 0.0489

- - - (0.0015) (0.0012) (0.0014) (0.0013) (0.0014)

AUC 0.9692 0.9695 0.9676 0.9488 0.9333 0.9422 0.9601 0.9880

(0.0031) (0.0031) (0.0028) (0.0034) (0.0030) (0.0064) (0.0019) (0.0017)

pAUC 0.1842 0.1844 0.1834 0.1684 0.1542 0.1610 0.1617 0.1931

(0.0012) (0.0012) (0.0011) (0.0010) (0.0010) (0.0009) (0.0010) (0.0007)

In presence of 20% contaminated genes with mild outliers

p1 - - - 0.1275 0.1693 0.1565 0.0946 0.0521

- - - (0.0016) (0.0014) (0.0016) (0.0018) (0.0016)

AUC 0.9405 0.9415 0.9430 0.9147 0.8984 0.9085 0.9502 0.9850

(0.0041) (0.0041) (0.0030) (0.0028) (0.0025) (0.0026) (0.0021) (0.0017)

pAUC 0.1728 0.1727 0.1723 0.1409 0.1214 0.1320 0.1601 0.1904

(0.0014) (0.0014) (0.0011) (0.0009) (0.0007) (0.0006) (0.0014) (0.0007)

In presence of 20% contaminated genes with extreme outliers

p1 - - - 0.1260 0.1735 0.1614 0.0869 0.0502

- - - (0.0023) (0.0014) (0.0015) (0.0015) (0.0014)

AUC 0.9465 0.9460 0.9455 0.9112 0.8910 0.8980 0.9421 0.9869

(0.0040) (0.0040) (0.0034) (0.0035) (0.0034) (0.0035) (0.0028) (0.0017)

pAUC 0.1733 0.1721 0.1720 0.1391 0.117 0.1282 0.1539 0.1923

(0.0014) (0.0014) (0.0012) (0.0012) (0.0010) (0.0009) (0.0016) (0.0008)

The numbers in parentheses are the standard errors for the 50 simulation trails.
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Table 2 The proportion of DE genes (p1 = 0.05), AUC, and pAUC with a FPR ≤ 0.2 estimated by the t-test, Limma, SAM,
and EB approaches (EB-LNN, eGG, eLNN, GaGa) and the β-EB approach averaged over 50 simulated datasets: the case of
small sample

t Limma SAM eGG eLNN GaGa EB-LNN β-EB

In absence of outliers

p1 - - - 0.0489 0.0430 0.0482 0.0502 0.0518

- - - (0.0010) (0.0009) (0.0009) (0.0009) (0.0009)

AUC 0.9688 0.9707 0.9675 0.9721 0.9614 0.9780 0.9780 0.9781

(0.0026) (0.0023) (0.0023) (0.0023) (0.0023) (0.0016) (0.0016) (0.0016)

pAUC 0.1858 0.1865 0.1849 0.1858 0.1839 0.1873 0.1870 0.1872

(0.0009) (0.0008) (0.0008) (0.0007) (0.0009) (0.0007) (0.0007) (0.0007)

In presence of 10% contaminated genes with mild outliers

p1 - - - 0.0936 0.1153 0.1106 0.0451 0.0529

- - - (0.0013) (0.0010) (0.0012) (0.0010) (0.0009)

AUC 0.9466 0.9487 0.9452 0.9352 0.9235 0.9444 0.9626 0.9740

(0.0030) (0.0028) (0.0030) (0.0027) (0.0025) (0.0020) (0.0018) (0.0017)

pAUC 0.1773 0.1766 0.1733 0.1591 0.1477 0.1595 0.1769 0.1839

(0.0010) (0.0011) (0.0009) (0.0011) (0.0009) (0.0009) (0.0008) (0.0008)

In presence of 10% contaminated genes with extreme outliers

p1 - - - 0.0919 0.1210 0.1167 0.0379 0.0523

- - - (0.0011) (0.0010) (0.0011) (0.0009) (0.0009)

AUC 0.9399 0.9418 0.9439 0.9347 0.9145 0.9344 0.9447 0.9766

(0.0036) (0.0035) (0.0034) (0.0024) (0.0029) (0.0020) (0.0025) (0.0016)

pAUC 0.1740 0.1716 0.1710 0.1569 0.1413 0.1512 0.1668 0.1859

(0.0011) (0.0012) (0.0012) (0.0009) (0.0009) (0.0008) (0.0011) (0.0007)

In presence of 20% contaminated genes with mild outliers

p1 - - - 0.1398 0.1883 0.1725 0.0435 0.0522

- - - (0.0016) (0.0011) (0.0013) (0.0010) (0.0009)

AUC 0.9208 0.9213 0.9214 0.9049 0.8825 0.9099 0.9301 0.9710

(0.0035) (0.0034) (0.0035) (0.0027) (0.0030) (0.0024) (0.0022) (0.0018)

pAUC 0.1678 0.1617 0.1595 0.1335 0.1120 0.1304 0.1510 0.1818

(0.0011) (0.0014) (0.0013) (0.0012) (0.0011) (0.0011) (0.00126) (0.0009)

In presence of 20% contaminated genes with extreme outliers

p1 - - - 0.1380 0.2001 0.1832 0.0343 0.0535

- - - (0.0029) (0.0011) (0.0012) (0.0009) (0.0009)

AUC 0.9103 0.9109 0.9162 0.8877 0.8680 0.8914 0.9122 0.9753

(0.0043) (0.0041) (0.0040) (0.0031) (0.0032) (0.0027) (0.0032) (0.0016)

pAUC 0.1633 0.1561 0.1565 0.1195 0.1018 0.1163 0.1434 0.1840

(0.0013) (0.0015) (0.0013) (0.0017) (0.0010) (0.0010) (0.0015) (0.0008)

The numbers in parentheses are the standard errors for the 50 simulation trails.
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distribution. Many of the genes with shape parameters
(aa) less than 1 have small β− weights (Figure 1(a)).
The gamma distribution with aa<1 has a high proba-
bility of being close to 0 Figure 1(b), and cannot be
approximated by the log normal distribution. Genes with
low β− weights are found to have heavy lower tails
(Figure 1(c)). Some genes, however, with aa<1 have mod-
erate β− weights and the log-transformed expression
profiles of these genes were similar to the normal distribu-
tion (Figure 1(d)). To see the performance for the case of
model mis-specification, we compared our method with
EB-LNN approach. We showed the average estimates of
the proportion of DE genes (p1), mis-specification rates
(MR), false positive rates (FPR), false negative rates (FNR)
by controlling false discovery rate (FDR) at 0.01. We also
compared pAUC (at FPR≤ 0.2). The current modification
of outliers did not rescue the effect of model misspec-
ification well regarding with the detection of DE genes

(Table 3). Currently, the information is equally treated
among transcripts when DE transcripts are identified.
That is, the identification of DE transcripts depends on
the ratio of f1 and f0 and does not depend on the abso-
lute values. When these values are very small, we may
suspect that the expression profile of the transcript is not
consistent with the specified model and may postpone the
solid decision. The improved procedure will discount the
information content of transcripts with low β-weight. On
the other hand, the bias of the estimated proportion of
DE genes p1 was reduced in the β−EB approach. This is
because the estimation of p1 puts different weight among
transcripts (Equation 10).

Analysis of the head and neck cancer data
Assuming the LNN model, we used the β-EB approach
to analyze the head and neck cancer data [41]. By
cross-validation, the tuning parameter β was estimated
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Figure 1 β-weights can diagnose a misspecified model. (a) Scatter plot of log(aa) versus β-weight. Many of the genes with a shape parameter
(aa) less than 1 have small β− weights. (b) The true distribution of gamma for different values of the shape parameter when the value of scale
parameter is one. (c) The log-transformed expressions based on genes between weight < 0.53 and log(aa) < -1 in (a) are plotted below the lines for
group 2 tissues and above the lines for group 1 tissues. The genes with low β− weights were shown to have heavy lower tails. (d) The
log-transformed expressions based on genes between weight ≥ 0.6 and log(aa) < -1 in (a) are plotted below the lines for group 2 tissues and above
the lines for group 1 tissues. The log-transformed expression profiles of these genes were shown to be similar to the normal distribution.
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Table 3 The proportion of DE genes (p1 = 0.05), MR, FPR, FNR with controlled value of FDR at 0.01, and pAUC (at FPR ≤
0.2) for EB and β-EB approaches averaged over the 50 simulated datasets from the gamma distribution

p MR FPR FNR pAUC

In the case of model mis-specification

EB-LNN 0.0309 0.0287 0.0002 0.5776 0.1359

(0.00054) (0.0004) (0.00004) (0.0081) (0.0013)

β-EB 0.0371 0.0281 0.0002 0.5704 0.1361

(0.0006) (0.00038) (0.00004) (0.008) (0.0014)

The genes with the posterior probabilities of DE ≥ 0.674 for EB-LNN and posterior probabilities of DE ≥ 0.902 for β−EB by controlling FDR at 0.01. The numbers in
parentheses are the standard errors for the 50 simulation trails.

to be 0.016 [see Additional file 1: Figure S2(a)]. The dis-
tribution of β-weights was qualitatively similar to the
previously reported parametric bootstrap-based predic-
tive distribution for all but 261 outliers (2.2% of the total
genes) that have small β-weights for which p < 10−5

(Figure 2). Because the sample size was large, the EB
and β-EB approaches both generated consistently deci-
sive results for the proportion of DE/EE for most of the
genes. Of the 12,625 genes, 9,538 were estimated to be
EE with posterior probabilities > 0.95 (posterior prob-
abilities of DE were < 0.05). Both methods estimated
the same 525 genes to be DE with posterior probabilities
> 0.95 (Figure 3(a)). The mixing proportion of the DE
genes p1 for the classical EB-LNN and β-EB approaches
was estimated to be 0.095 and 0.084 respectively. The
classical EB-LNN approach may have overestimated the
proportion of DE genes (see Table 1).
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Figure 2 The distribution of the β weights for the head and neck
cancer data. The observed distribution (blue) of β-weights was
qualitatively similar to the parametric bootstrap-based predicted
distribution (red) with the exception of 261 outliers (2.2% of the total
genes) with small β-weights (p < 105).

The β-EB approach detected six contaminating genes
(LRP8, S100A8, S100A9, TRIM29, CSTA, ACP5) as out-
liers with the posterior probability of DE > 0.95; the
posterior probability for these genes by the classical EB-
LNN approach was < 0.5. For the most part, even
after log transformation, these genes were over-expressed
or under-expressed in only one or two of the samples
(Figure 3(b)). There is strong evidence that links all of
these genes with cancer.

Aberrations of the short arm of chromosome 1 (1p) are
common events in lung and many other types of can-
cer. The low-density lipoprotein receptor-related protein
8 (LRP8) which is associated with the Wnt developmen-
tal pathway is coded by a gene on chromosome 1p; this
gene has been shown to be over-expressed in lung can-
cer [44]. Wnt ligands bind to LRPs, and interfere with the
multi-protein APC/β-catenin destruction complex. The
complex role of β-catenin in cell proliferation and cell
adhesion has been the main focus of many mechanistic
studies.

S100 proteins, belonging to the superfamily of EF-
hand calcium-binding proteins, are involved in cellular
processes translating changes in Ca2+ levels into spe-
cific cellular responses by binding to target proteins. At
least 16 genes of the multigenic S100 family, including
the genes coding for S100A8 (MRP8 or calgranulin A)
and S100A9 (MRP14 or calgranulin B), are clustered on
human chromosome 1q21, a region that is a frequent
target for the chromosomal rearrangements that occur
during tumor development. The complex of S100A8 and
S100A9 (also called calprotectin) is actively secreted dur-
ing the stress response of phagocytes [45]. The com-
plex activates the signaling pathways that promote tumor
growth and metastasis by inducing the expression of
multiple downstream protumorigenic effector proteins
[46]. The classical EB-LNN approach strongly identified
S100A8 and S100A9 as EE genes with posterior probabili-
ties of DE being 0.027 and 0.030 respectively.

The TRIM29 protein (tripartite motif-containing pro-
tein 29) was reported to bind p53 and antagonize p53-
mediated functions [47]. CSTA (stefin-A) inhibits the
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Figure 3 Posterior probabilities estimated by EB and β-EB for
the head and neck cancer data. (a) Scatter plot of the posterior
probabilities (pp.) estimated by the proposed β-EB approach and by
the classical EB-LNN approach. The red “+” marks represent outliers
with β-weights for which the p-values < 10−5. The blue “o” marks the
outliers that were identified as DE by the β-EB approach (pp. > 0.95)
and as EE by the original EB approach (pp. < 0.5). (b) Expression levels
of the six genes (marked by the blue “o” in (a)) that were identified as
DE by the β-EB approach and as EE by the EB approach. The
log-transformed expressions are plotted below the lines for the
tumor tissues and above the lines for the normal tissues. Outliers with
low β-weights are indicated in red.

cysteine proteinases that participate in the dissolution
and remodeling of connective tissue and basement mem-
branes in the processes of tumor growth, invasion, and
metastasis [48]. Tartrate-resistant acid phosphatase 5

(ACP5 or TRAP) may act as a growth factor to pro-
mote proliferation and differentiation of osteoblastic cells
and adipocytes. The intensity of histochemical activity in
several human breast cancer cell lines and tissues that
express TRAP was found to correlate with the degree of
tumorigenicity [49].

The classical EB-LNN approach attached lower poste-
rior probabilities to these genes, probably because the
extraordinary expression of these genes in a few sam-
ples led to an over-estimation of the variances within the
groups.

Analysis of the lung cancer data
The value of β was estimated to be 0.018 (Additional file 1:
Figure S2(b)). The β-weight distribution of the two types
of lung cancer data [42] showed a large deviation from the
predicted distribution (Figure 4). The β-weight distribu-
tion had heavy tails on both sides, suggesting that some
of the assumptions behind the LNN model were violated.
We inspected the distribution of the mean expression lev-
els of the genes and found that the distribution of the
mean log-transformed expression levels is bi-modal and
not uni-modal (Figure 5(a)). Most of the genes that had
unexpectedly low and unexpectedly high weights had low
mean-expression levels. To further investigate the prop-
erties of the outliers, we plotted the standard deviations
against the means of the log-transformed expression lev-
els of the genes (Figure 5(b)). We found that the genes
with extremely low weights tended to have large stan-
dard deviations, implying their irregular expression in
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Figure 4 The distribution of the β weights for the lung cancer
data. The observed distribution (blue) of β-weights showed a large
deviation from the predicted distribution (red). Because the observed
distribution has extremely heavy tails on both sides compared with
the predicted distribution, we put lower and upper 10−5 tiles for the
predicted distribution.
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Figure 5 Features of the expression profiles of the two types of lung cancer data. (a) Distribution of the log mean expression levels. The
distribution of the outlier genes is shown distribution in blue. (b) Scatter plot of gene-specific means versus standard deviations. The red dots
represent genes with low β-weights (p < 10−5); green dots represent genes with high weights (p < 10−5); and the blue dots represent the outlier
genes. (c) When transcripts with little variation (standard deviation < 0.05) were excluded, the upper heavy tail observed in Figure 4 disappeared.

some samples. Genes with extremely high weights had low
standard deviations and low means.

The β-weight is a monotone decreasing function of
the squared Mahalanobis Distance between the log trans-
formed expression profile and the transcript specific log
transformed mean (equations 17 and 18). When the
transcripts with little variation (standard deviation <

0.05) were excluded, the upper heavy tail disappeared
(Figure 5(c)).

Analysis of the Arabidopsis thaliana microarray data
Assuming the LNN model, we applied the proposed β-
EB approach to the combined microarray data and marker
genotypes information from A. thaliana. To identify tran-
scripts that are significantly linked to genomic locations,
at each marker we tested for significant linkage across
transcripts instead of testing each transcript for significant

linkage across markers. This procedure amounted to iden-
tifying DE transcripts at each marker, with groups deter-
mined by marker genotypes “A” and “B”. For simplicity,
we considered a backcross population from two inbred
parental populations, P1 and P2, genotyped as either A or
B at the M markers. The β-EB approach predicted a large
number of DE genes compared with the classical EB-LNN
approach, because of some gene expressions breakdown
the normality assumptions or contaminated by outliers
(Figure 6(c)). Through cross-validation, the tuning param-
eter β was estimated to be 0.016 for chromosomes 1-5.
Here, we focus on a telomeric region of chromosome 4,
where β-EB detected potential hotspots and the classical
EB-LNN did not (Figure 6(a)). The parametric predicted
distribution and observed distribution of the weights of
the data from A. thaliana were measured for marker 73 on
chromosome 4. The β-weight distribution showed a large
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Figure 6 Genomic architecture of the eQTL study across the five A. thaliana chromosomes. (a) Expected numbers of DE transcripts/e-traits
(y-axis) plotted against the marker location in mega bases (Mb) on the x-axis. (b) Parametric predicted distribution (red) and observed distribution
(blue) of β-weights for the A. thaliana data were measured for marker 73 on chromosome 4. The observed distribution showed a large deviation
from the predicted distribution. (c) Expression levels of the 18 transcript with weights less than 0.003 (i.e., w < .003). The log-transformed expressions
are plotted below the lines for marker genotype “B” and above the lines or marker genotype “A”. Outliers with low β-weights are indicated in red.

deviation from the predicted distribution (Figure 6(b)).
The expression levels of the 18 transcript with weights
less than 0.003 (i.e., w < .003) are shown in Figure 6(c).
The log-transformed expressions at marker genotype B
are plotted below the lines while those at marker geno-
type A are plotted above the lines. Outliers with low
weights are in red. According to information obtained
from the Arabidopsis gene regulatory information server
(AGRIS) [50], this region inclu des three transcription
factors one of which is CYC1 (cyclin-dependent protein
kinase regulator) [51].

Conclusions
The microarray technique has opened the door to the
study of the transcriptome. The methods used to ana-
lyze microarray data can also be applied to expression
proteomics data which measures the end product of

the gene expression cascade, the mature protein, and is
more closely related to the biological function than data
at the message levels [52]. To analyze these data it is
essential to be able to detect genes or proteins that are
DE under different conditions or environments. Para-
metric models are useful for the efficiency of the esti-
mation and also for the biological interpretation of the
outputs. In this study, we observed that standard likeli-
hood approaches, or Bayesian approaches that are based
on likelihoods, may misidentify some crucial genes in
test data sets from cancer studies. Whether or not the
observed abnormal expressions are unique to the gene
expressions in cancer tissues or whether this is present
even in normal tissues where the irregular expressions
of genes may be found under stress conditions is still
unclear. However, the two examples of microarray gene
expression data that we examined in this study imply
that it is difficult to develop a single parametric model
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that effectively describes microarray data in all cases.
Several statistical approaches for the identification of DE
genes have been developed. However, the accuracy of
most of them suffer when contaminating genes or irreg-
ular patterns of expressions are present. A few robust
algorithms for the identification of DE genes are avail-
able. However, these algorithms do not address the prob-
lem of the identification of contaminating genes. It is,
therefore, difficult to scrutinize or diagnosis the con-
taminating DE genes from a reduced gene expression
data set and further statistical investigations, like cluster-
ing/classification, using reduced gene expression datasets
containing contaminating DE genes may produce mis-
leading results.

In this paper, we describe the β-EB procedure that
we have developed. This procedure extends the EB-LNN
model using β-divergence. To overcome the problems
mentioned above, this β-EB approach assumes gene-
specific variance. We estimated the model parameters
by maximizing the β-likelihood function using an EM-
like algorithm. The gene-specific variance was estimated
separately outside the EM algorithm. To avoid the over-
estimation of gene-specific variance, we adopted the β-
likelihood approach for each gene, with the value of β

set to 0.1 based on the result of an earlier study [39].
Then, the posterior probability of differential expres-
sion and β-weights for identification of DE genes and
contaminating genes, respectively, are computed. The
values of the β-weights are between 0 and 1. Con-
taminating genes are defined as having the smaller β-
weights. In addition, we discuss the statistical significance
of contamination using the distribution of β-weights.
The contaminated expressions are updated by a robust
group mean [39] and the posterior probability of dif-
ferential expression of contaminating genes are updated
using the previous estimates of the model parameters.
Thus, our method does not sacrifice computational effi-
ciency. The proposed method can be used to improve
the results of further statistical investigations like cluster-
ing/classification when reduced gene expression datasets
are used.

While the proposed β-EB procedure preserves the mer-
its of parametric hierarchical models, it is also highly
robust against outliers. The value of the tuning param-
eter β plays an important role in the performance of
the proposed method. The β parameter is selected using
cross-validation. The idea of β-weights that we have used
here can be applied to any other likelihood based statisti-
cal model for diagnosis and may prove to be a useful tool
for transcriptome and proteome studies.
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