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Abstract: Mesothelioma is an aggressive, rapidly fatal cancer and a better understanding of its
molecular heterogeneity may help with making more efficient therapeutic strategies. Non-coding
RNAs represent a larger part of the transcriptome but their contribution to diseases is not fully
understood yet. We used recently obtained RNA-seq data from asbestos-exposed mice and performed
data mining of publicly available datasets in order to evaluate how non-coding RNA contribute
to mesothelioma heterogeneity. Nine non-coding RNAs are specifically elevated in mesothelioma
tumors and contribute to human mesothelioma heterogeneity. Because some of them have known
oncogenic properties, this study supports the concept of non-coding RNAs as cancer progenitor genes.
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1. Introduction

Protein coding genes make up only 2% of the human genome. In the remaining part of the
genome, many transcriptionally active regions are found that give rise to non-coding RNA (ncRNA) [1].
Long non-coding RNAs (lncRNAs) are defined as longer than 200 nucleotides and represent the
major class of ncRNAs since there are nearly three times as many lncRNA genes as protein-coding
genes [2,3], and recently there has been a steep increase in research focusing on lncRNAs owing to
their impact in several biological processes [4,5]. The class of non-coding RNAs that are smaller than
200 nucleotide includes the microRNA (miRNA, 19–25 nucleotides) that post-transcriptionally regulate
gene expression via the suppression of specific target mRNAs [6].

LncRNA expression plays a crucial role in regulating the gene expression during differentiation
and development [7,8]. For a few lncRNAs, functional characterization is available and indicates
an association with transcriptional regulation and post-transcriptional processing of coding regions.
Specifically, these lncRNAs affect miRNA expression, mRNA stability, and translation [9]. One of the
first lncRNAs described to contribute to cancer was the HOX antisense intergenic RNA (HOTAIR)—this
lncRNA interacts with chromatin and represses the transcription of human HOX genes, thus regulating
development [10]. Several lncRNAs have been identified to be involved in the various hallmarks of
cancer causing various tumor types including lung, liver, prostate, breast, and ovarian cancers [11–13].

Mesothelioma is a rare, aggressive cancer developing from the mesothelium and it is mostly
associated with exposure to asbestos [14]. Recent molecular analyses have defined four different types
of mesothelioma on the basis of gene expression [15], and two molecularly defined groups associated
with different prognosis [16]. In this study, we explore the variation of non-coding RNA expression
associated with this heterogeneity. In order to prioritize which ncRNA might be the most relevant
in a given cancer type, it has been suggested that by using the The Cancer Genome Atlas (TCGA)
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ncRNAome information as a clinical filter, one would be able to generate a reduced and clinically
relevant ncRNA list that could be used for a candidate-oriented functional screening. Here, we take the
opportunity of our recent study in asbestos-exposed C57Bl/6J Nf2+/− mice [17], to identify lncRNAs
and miRNAs associated with tumor development and scrutinize their expression and heterogeneity
in human mesothelioma and human mesothelioma TCGA RNAome. Nf2 heterozygote background
was chosen based on the fact that NF2 mutations are often observed in mesothelioma [18–21], and a
previous study showing its contribution to tumor development [22].

2. Results

We analyzed the expression of non-protein-coding RNA in the RNA-seq data [17] obtained
in tissue extracted from either C57Bl/6J Nf2+/− mice that were exposed eight times to crocidolite
(blue asbestos) every three weeks, or sham-treated mice. Mice had been sacrificed 33 weeks after
first crocidolite exposure in order to have the possibility of investigating pre-cancer and cancer
stages. In order to identify gene expression changes during mesotheliomagenesis, we have analyzed
three treatment groups by RNA-seq: sham, age-matched crocidolite-exposed, and age-matched
crocidolite-exposed with observable tumors. We performed differential expression analysis between
crocidolite-exposed and sham, and identified 108 non-protein-coding genes with more than 2-fold
expression (p < 0.01, False Discovery Rate (FDR) < 0.017). Differential expression analysis between
crocidolite-exposed with tumors and crocidolite-exposed, identified 366 non-protein-coding genes
with more than 2-fold expression (p < 0.01, FDR < 0.024). 33 genes were found in both comparisons, as
shown in the Venn diagram (Figure 1).

Figure 1. Overlap of the differentially expressed non-coding genes (more than 2-fold change, p < 0.01) in
crocidolite-exposed vs. sham (asb over sham) and crocidolite-exposed with tumors vs. crocidolite-exposed
(asbtum over asb) comparisons visualized as a Venn diagram.

We selected some of them based on (a) the significance of their differential expression in
tumor vs. crocidolite-exposed inflamed mesothelium and (b) the availability of some functional
knowledge about them (Table 1).
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Table 1. Selected non-coding RNA more than 2-fold upregulated in murine mesothelioma compared to
inflamed crocidolite-exposed mesothelium.

Gene
Name Type p-Value FDR Chromosome Location

(GRCm38.p5)
Human

Ortholog
Upregulation in

Crocidolite vs. Sham

Fendrr
Divergent
lincRNA,
nuclear

1.94 × 10−15 1.4 × 10−14 Chromosome 8:
121,054,882-121,083,110 yes no

Gm26902 lincRNA 1.16 × 10−9 4.91 × 10−9 Chromosome 19:
34,474,808-34,481,546 no no

Gm17501 lincRNA 3.84 × 10−5 8.33 × 10−5 Chromosome 3:
145,650,312-145,677,580 no no

Meg3 lincRNA 7.97 × 10−5 0.0001805 Chromosome 12:
109,541,001-109,571,726 yes no

miR 17-92
cluster lincRNA 7.02 × 10−10 3.05 × 10−9 Chromosome 14:

115,042,879-115,046,727 yes no

Dio3os antisense 0.003026 0.005339 Chromosome 12:
110,275,384-110,278,068 yes yes

Dubr linRNA,
nuclear 9.36 × 10−7 2.79 × 10−6 Chromosome 16:

50,719,294-50,732,773 yes yes

Malat1 antisense,
nuclear 6.09 × 10−7 1.86 × 10−6 Chromosome 19:

5,795,690-5,802,672 yes no

Dnm3os antisense 2.26 × 10−16 1.87 × 10−15 Chromosome 1:
162,217,623-162,225,550 yes no

Hoxaas2 antisense 5.73 × 10−7 1.76 × 10−6 Chromosome 6:
52,165,674-52,169,564 yes no

Firre lincRNA,
nuclear 4.09 × 10−7 1.28 × 10−6 Chromosome X:

50,555,744-50,635,321 yes no

Morrbid nuclear 1.18 × 10−7 3.92 × 10−7 Chromosome 2:
128,178,319-128,502,765 yes yes

miRlet7b miRNA 0.000884 0.001697 Chromosome 15:
85,707,319-85,707,403 yes no

Mir214 mirRNA 1.08 × 10−5 2.78 × 10−5 Chromosome 1:
162,223,368-162,223,477 yes no

Then we compared the selected ncRNAs to differentially expressed genes with more than two-fold
increased expression between inflamed tissue from crocidolite and sham (Table 1, last column).
Of the 14 selected genes, three (Dios3os, Dubr, and Morrbid) were also overexpressed in inflamed
crocidolite-exposed tissues compared to tissues from sham-treated mice.

The ncRNA gene with the highest upregulation in mesothelioma tumor in mice exposed to
asbestos was Fendrr (Fetal-lethal noncoding developmental regulatory RNA) and we validated this finding
by quantitative-PCR (Figure 2a). We then took the opportunity to investigate its expression in tumor
tissue collected at different time (Figure 2b) during tumor progression in nine patients. We have
recently deeply characterized genomic alterations in two out of these nine patients [23]. Interestingly,
FENDRR expression was increased in the tissue of the patient, which had maintained epithelioid
histology (P236A_tum and P236B_tum), compared to the patient that had initially been diagnosed
as epitheloid mesothelioma (P95A_tum) but where we have observed epithelial to mesenchymal
transition (EMT) during tumor progression. We could detect FENDRR expression in all first tumor
samples from patients diagnosed with epithelioid mesothelioma but not in patient P399, who had been
diagnosed with biphasic histology.
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Figure 2. Fendrr is overexpressed in mice mesothelioma and associates with epithelial histotype
commitment in human mesothelioma. (a) q-PCR of Fendrr expression was performed in sham,
crocidolite-exposed mice without malignant tumors. Mean ± SE, N = 5–8 mice. * p < 0.05, Mann–Whitney
test. (b) FENDRR gene expression analysis in tumor samples from nine patients for whom tissue is
available at different time points during the progression of the disease. Mean ± SD, N = 3.

The existence of known orthologs in human for 13 of the selected ncRNAs allowed us to evaluate
their contribution to tumor heterogeneity by interrogating publicly available TCGA data of 87 MPM
samples (MESO) through the cBioPortal [24,25] together with five tumor suppressor genes frequently
mutated in mesothelioma (Figure 3). For HOXA-AS2 (lncRNA–HOXA cluster antisense RNA 2), FIRRE
(functional intergenic repeating RNA element) and MORBIDD (myeloid RNA regulator of Bim-induced death),
no differences were detected in TCGA data; therefore, they were not included in the figure. All other
ncRNAs contribute to tumor heterogeneity.

Figure 3. Non-coding RNAs contribute to mesothelioma heterogeneity. “Oncoprint” analysis
performed using cBioportal of selected ncRNAs and five tumor suppressor genes frequently mutated
in mesothelioma.
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Interestingly DNM3OS (dynamin 3 (Dnm3) gene antisense) is amplified in two patients and
consistent with DNM3OS being a precursor for miR214, the latter is amplified as well. Although
DNM3OS overexpression is associated with enrichment is sarcomatoid histotype compared to
epithelioid histotype in Bueno et al [15], in TCGA samples it is amplified in a patient bearing a biphasic
and a patient bearing an epithelioid tumor.

In human mesothelioma miRlet7b was deleted in a patient bearing a biphasic and a patient bearing
an epithelioid tumor, indicating that it possibly contributes to epithelial heterogeneity. FENDRR was
deleted in a patient with biphasic histotype, which would fit with the observation that it is enriched in
epithelioid mesothelioma, but this observation is based only on a single patient.

Interestingly there is a significant co-occurrence of alterations of BAP1 and DIO3OS (p = 0.024),
and of DUBR and miRlet7b (p = 0.028).

3. Discussion

In order to improve the treatment of mesothelioma, it is necessary to better understand how
molecular heterogeneity contributes to tumor growth.

We report here the likely contribution of ncRNAs to the heterogeneity profile and suggest
that oncogenic driver events in mesothelioma development are associated with lncRNA expression.
This extends the current view that focuses on the loss of tumor suppressor functions as drivers.

Fendrr is transcribed divergently from the transcription factor-coding gene Foxf 1. Fendrr-deficiency
results in mice lethality due to lack of proper differentiation of mesenchymal derived tissue [26,27].
This lincRNA is predominantly nuclear and physically associates with the PRC2 Polycomb
complex [28]). In humans the orthologous transcript is expressed from a syntenic region [29].
Silencing FENDRR increases FN1 expression in gastric cancer cells and increases their migration [30].
Interestingly, FENDRR is among the genes enriched in the epithelioid compared to sarcomatoid
mesothelioma cluster based on gene-expression profile [15].

Not much is known about gm26902, except that its expression characterizes a subset of microglia
CD11c+ population, which sustains brain development [31], while expression of gm17501 has been
associated with cardiac hypertrophy [32].

Meg3 (maternally expressed 3) binds to p53 and activates the transcription of a part of
p53-regulated genes [33]. In gastric cancer, MEG3 increases Bcl-2 levels by sequestering miR-181-a [34].
In addition, MEG3 modulates the activity of TGF-β pathway genes by binding to distal regulatory
elements, which have GA-rich sequences, allowing MEG3 specific binding to the chromatin through
RNA–DNA triplex formation [35,36].

miR17-92 cluster (miR-17-92a-1 cluster host gene) binds HuR, a member of the ELAVL family,
which has been reported to contribute to the stabilization of AU-rich elements (ARE)-containing
mRNAs, possibly modulating HuR activity on target mRNA stability [37]. MiR 17-92 cluster is
amplified in high-grade B-cell lymphoma with Burkitt lymphoma signature, resulting in higher
expression of miR17-92 and lower expression of BIM and PTEN and increased BCR signaling [38]. It is
noteworthy that miR17-92 expression is increased in mesothelioma [39].

Dio3os is transcribed in the antisense orientation to Dio3, which codes for the type 3 deiodinase,
an enzyme-inactivating thyroid hormones that is highly expressed during pregnancy and development [40].

Dubr (also called Dum: developmental pluripotency-associated 2 (Dppa2) Upstream binding
Muscle lncRNA) silences its neighboring gene, Dppa2, in cis through the recruitment of Dnmt1,
Dnmt3a and Dnmt3b, thereby promoting myoblast differentiation and damage-induced muscle
regeneration [41].

Malat1 (Metastasis-associated lung adenocarcinoma transcript 1) expression results in
alternatively spliced transcripts [42]. It is for example necessary for correct splicing of B-Myb,
a transcription factor involved in G2/M transition [43]. In patients with early-stage non-small cell
lung cancer high levels of MALAT1 predict a high risk of metastatic progression [44]. Malat1 loss
of function in mouse revealed that it is a nonessential gene in development or for adult normal



Int. J. Mol. Sci. 2018, 19, 1163 6 of 11

tissue homeostasis [45,46], but depletion of MALAT1 in lung carcinoma cells impairs cellular motility
in vitro and metastasis in mice [47]. Therefore, it has been suggested that MALAT1 overexpression
in cancer may drive gain-of-function phenotypes not observed during normal tissue development or
homeostasis. Its action seems mediated not only by regulation of alternative splicing, as mentioned
above, but also possibly through interaction with HuR [48] like for miR17-92 cluster.

Firre-encoded lncRNA serves as a platform for trans-chromosomal association by interacting with
the nuclear matrix factor heterogeneous nuclear ribonucleoproteins U (hnRNPU) through a 156-bp
repeating sequence and localizes across a ~5-Mb domain on the X chromosome [49]. It was suggested
that it modulates nuclear architecture across chromosomes [49]. Transcription of FIRRE is regulated
by NF-κB signaling in macrophages and intestinal epithelial cells [50]. Indeed, FIRRE positively
regulates the expression of several inflammatory genes in macrophages or intestinal epithelial cells in
response to lipopolysaccharide stimulation via posttranscriptional mechanisms including interaction
with hnRNPU, which controls the stability of mRNAs of selected inflammatory genes through targeting
the adenine-rich element of their mRNAs [50].

Dnm3os is essential for skeletal muscle formation and body growth during development and it
serves as precursor of miR214 [51,52]. It is enriched in the sarcomatoid mesothelioma subtype cluster
compared to epithelioid [15].

Hoxaas2 directly interacts with enhancer of zeste homolog 2 (EZH2) and lysine-specific
demethylase 1 (LSD1), promoting pancreatic cell growth [53].

Morrbid is highly and distinctively expressed by mature eosinophils, neutrophils, and classical
monocytes in both mice and humans [54]. Interestingly it could be a marker of exposure to carcinogenic
fibers since it is overexpressed in tissues of mice exposed to long carcinogenic compared to short
non-carcinogenic asbestos and also long compared to short nanotubes [55].

miRlet7 downregulates interferon β (IFNβ) and is upregulated in macrophages upon IFNβ

treatment [56].
Although the method that we have used to extract RNA was not optimal for miRNA analysis

we detected the overexpression of miR214, likely because of Dnm3os overexpression. MiR214
downregulates PTEN [57] and Sufu [58].

Although only Malat1, from the ncRNAs mentioned, is an lncRNA for which a clear genetic link
with tumorigenesis has been established [59,60], it is likely that ncRNAs function in mesothelioma as
“cancer progenitors genes” [61]. In addition to MALAT1, overexpression of miR17-92 cluster is likely
oncogenic and of potential therapeutic interest because it activates druggable pathways. Similarly,
overexpression of miR214 possibly indicates activation of Hedgehog and PI3K signaling.

Although for FENDRR the contribution to heterogeneity is based on the observation that it is
enriched in epitheloid histotype and that one patient has a deletion in this gene, the fact that it is
overexpressed in tumors and associates with epithelioid commitment in the patients analyzed indicate
that further studies should explore the role of this lncRNA in mesothelioma.

Because MEG3 has been found to modulate TGF-β activity and it has an heterogeneous expression,
it would be interesting to investigate whether its expression plays a role in the EMT signature that
we observed in the mesothelioma tumors developing in asbestos-exposed mice [17] and also if it
contributes to mesothelioma’s so-called transitional state [62].

In an era where immunotherapy is also being intensively explored in mesothelioma treatment [63],
it might be wise to consider the deletion of miRlet7b as a possible biomarker for response.

In summary, we were able to identify lncRNAs that are overexpressed in mesothelioma and
we found that they contribute to human mesothelioma heterogeneity. We suggest that they may
indicate pathways for precision medicine. One limitation of our approach might be the fact that in our
experimental model we observed only spindeloid tumors, which is the opposite of what is observed in
human mesothelioma, where epithelioid histotypes are the most frequent.

Appropriate functional experiments need to be carried out and it would make sense to establish
consortia to validate our hypotheses. There is a plethora of ncRNA genes whose functions we need to
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understand better. In addition, very instructive functional studies rely on animal models but modeling
lncRNA function in mice might be difficult because lncRNAs are conserved at much lower rates
compared to protein-coding genes, and therefore orthologs are more difficult to identify.

4. Materials and Methods

4.1. Analysis of RNA-Seq Data from Tissue Samples from Asbestos-Exposed Mice

RNA was extracted and analyzed as described in our previous paper, where we characterized the
overall transcriptome profile of the same samples [17]. Assessment of miR expression was not optimal
because the Qiagen RNeasy kit was used to extract RNA, which does not preserve very short RNAs.

4.2. Relative Gene Expression

Fendrr gene expression was conducted as previously described [17] [64–66] using the following
primers (5’–3’): human: AGTGCACTGTGTGCTCTTAG and GAGGATCTGTGGTTGGGTATTT mouse
GAAACCAGAGAGCTCCGAATAG and CTTCTGGTGGAGTCAGATCAAA. As in previous studies,
histone 3 and β-actin were used as normalizer genes for human and murine gene expression,
respectively. RNA was extracted from human mesothelioma tumors and cDNA was prepared as we
recently described [23].

4.3. Analysis of Publicly Available Datasets

To analyze the expression and genetic alterations of selected non-coding RNA together with five
tumor suppressor genes frequently mutated in mesothelioma, we obtained the data from TCGA, using
www.cbioportal.org. For mRNA differential expression we used a z score of 1.2, where the z-score is
the standard deviation of static levels of transcript expression in a given case compared to the mean
transcript expression in diploid tumors.
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