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Segmentation of infected region 
in CT images of COVID‑19 patients 
based on QC‑HC U‑net
Qin Zhang1, Xiaoqiang Ren1* & Benzheng Wei2*

Since the outbreak of COVID-19 in 2019, the rapid spread of the epidemic has brought huge challenges 
to medical institutions. If the pathological region in the COVID-19 CT image can be automatically 
segmented, it will help doctors quickly determine the patient’s infection, thereby speeding up the 
diagnosis process. To be able to automatically segment the infected area, we proposed a new network 
structure and named QC-HC U-Net. First, we combine residual connection and dense connection to 
form a new connection method and apply it to the encoder and the decoder. Second, we choose to 
add Hypercolumns in the decoder section. Compared with the benchmark 3D U-Net, the improved 
network can effectively avoid vanishing gradient while extracting more features. To improve the 
situation of insufficient data, resampling and data enhancement methods are selected in this paper to 
expand the datasets. We used 63 cases of MSD lung tumor data for training and testing, continuously 
verified to ensure the training effect of this model, and then selected 20 cases of public COVID-19 
data for training and testing. Experimental results showed that in the segmentation of COVID-19, the 
specificity and sensitivity were 85.3% and 83.6%, respectively, and in the segmentation of MSD lung 
tumors, the specificity and sensitivity were 81.45% and 80.93%, respectively, without any fitting.

Corona Virus Disease 2019 (COVID-19) is a pandemic and global disease. On February 11, 2020, the virus that 
causes the disease was named COVID-19 by the World Health Organization (WHO). As of May 10, 2021, the 
number of COVID-19 has exceeded 150 million, involving 223 countries or regions, including 3,288,455 deaths 
worldwide. To control the spread of the epidemic, Reverse Transcription Polymerase Chain Reaction (RT-PCR) 
is usually selected on the market to screen people infected with COVID-191. However, RT-PCR is only used to 
determine whether the user is infected, and its accuracy is still inadequate. For example, in the recent outbreak 
in India, the RT-PCR was negative, but lung images showed signs of infection. Therefore, in addition to RT-
PCR, other information needs to be integrated to make a judgment. In practice, lung Computer Tomography 
(CT) scan is a common and effective diagnosis and treatment methods. CT scan can show bilateral patchiness 
or ground-glass opacity (GGO) of the lung2, showing more pathological information with higher accuracy. In 
addition, it is convenient for doctors to make a detailed judgment based on the patient’s infection status, which 
is of positive significance to whether the patient is infected with COVID-19, and to establish the treatment plan. 
However, diagnosis and treatment depend on the judgment of doctors. In regions with severe epidemics and a 
lack of medical resources, the number of professional doctors is small, and the workload of the infected region is 
heavy when observed by naked eyes, which may lead to the effect of imaging diagnosis and treatment. To better 
deal with the problems caused by COVID-19, we need a tool to quickly and automatically segment the infected 
region of the lungs of COVID-19 patients3–5.It reduces the amount of work doctors have to do visually to separate 
infected areas, speeds up the diagnosis process and saves time on follow-up treatment.

At present, researchers are using artificial intelligence to achieve accurate image segmentation gradually 
mature. Due to Convolutional Neural Networks’s(CNN) strong feature extraction capability, more and more 
researchers choose CNN to analyze and process images6. Ordinary CNN fully connects the input layer and 
the hidden layer, but when it comes to a larger image, it is requires a lot of parameters to learn the features of 
the entire image through this fully connected method. Zhu et al. proposed a lightweight single-image super-
resolution network EMASRN, and proposed a progressive multi-scale feature block to extract feature informa-
tion of different sizes, and downsample the trained high-resolution(HR) image by using bicubic interpolation 
to synthesize low-resolution (LR) images7. The downsampling method based on interpolation improves the 
resolution of the image by the content of the image itself, without bringing more information, and has the side 
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effects of noise amplification, increased computational complexity and fuzzy results. To improve this shortcom-
ing, in the part of feature reconstruction network, Dense network is widely used, it provides an effective method 
of combining low-level features and high-level features8. Through the cascade of multiple Dense blocks, useful 
contextual information from a large area of the LR image is captured to restore high-frequency details in the HR 
image. However, Dense Block requires additional “transition” blocks to reduce feature mapping channels, which 
will result in additional parameters and a greater amount of calculation. Therefore, we learn the advantages of 
residual learning, and first combine the two to improve the network structure. And named it QC-HC U-Net. 
The innovations are as follows: 

(1)	 We combine the Dense network and Residual network and add them to the encoder and decoder respec-
tively, forming a new quick connection. Compared with the Residual network and DenseNet, it has higher 
efficiency.

(2)	 In the decoder of the network, Hypercolumns is added when up-sampling operation, which can accurately 
locate the information in the decoder and facilitate subsequent information extraction.

(3)	 Since CT images of lung tumors have a high similarity with images of COVID-19 patients, MSD lung 
tumor cells were first used for training and testing in this network to verify the effectiveness of the model. 
Then, CT images of COVID-19 patients were selected for training and testing to obtain corresponding 
segmentation results. Practice proves that the improved result can get better segmentation results.

Results
Evaluation setting.  Quantitative evaluation: According to commonly used evaluation indicators, this arti-
cle uses complementary indicators to evaluate the results of this experiment, and the dice similarity coefficient 
is used to evaluate the overlap of regions. In addition, the widely used specificity and sensitivity is also used for 
evaluation9.

Among them, y is the image of the theoretical segmentation result, which is manually drawn by the expert, 
and x is the resulting image of the predicted segmentation.

where TP is the number of positive classes predicted by the positive class, and FN is the number of negative 
classes predicted by the positive classes.

Among them, TN is the number of negative classes predicted as negative classes, and FP is the number of 
negative classes predicted as positive classes.

Qualitative evaluation: We analyzed the segmentation results on the two datasets10. The segmentation of the 
tumor area is marked with color. In the COVID-19-CT-Seg datasets, the background area and the infected area 
are represented by colors. Under the same pixel, the result of our method makes the image produce a clearer 
outline of the infected area.

Segmentation results.  For improve the accuracy of the experiment, this paper compares the experimental 
results with the segmentation results of “Automated Chest CT Image Segmentation of COVID-19 Lung Infection 
based on 3D U-Net” proposed by Müller et al.11; and compared with the “Automated Chest CT Image Segmenta-
tion of COVID-19 Lung Infection based on 3D U-Net” proposed by Ma et al.12 Corresponding to the indica-
tors in Muller’s paper, this paper adopts three broad indicators, namely dice similarity index (DSC), sensitivity 
(Sens), specificity (Spec).

The specific comparison results are shown in Tables 1 and 2. In terms of DSC and Senc, the segmentation 
results of the QC-HC U-Net adopted are superior to those of the other two 3D U-Nets. We compared the 
segmentation of infected regions in the Medical Segmentation Decathion (MSD) lung tumor data set, and the 
specificity was increased by about 8%. The segmentation of lung and infected areas in the COVID-19 patient CT 
image datasets (COVID-19-CT-Seg) was improved compared to other 3D U-Nets. The experimental results show 
that the addition of skip connections, shortcut connections and Hypercolumns among the structures provide 
reliable experimental proof for the optimization ability of the model. Table 1 shows the segmentation results 

(1)Dice(x, y) =
2 ∗ �x

⋂
y�

�x� + �y�

(2)Sensitivity =
TP

TP + FN

(3)Specificity =
TN

TN + FP

Table 1.   Comparison of segmentation indexes of COVID-19 pulmonary infection.

DSC (%) Sens Spec

Ma’s Benchmark 67.3 – –

Dominik’s 3D U-Net 79.92 81.15% 99.92%

QC-HC U-Net 85.31 83.60% 99.96%
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of COVID-19-CT-Seg. Compared with the original 3D U-Net, the segmentation of DSC and Sens for tumor 
parts increased by about 6% and 3%, respectively. Since only the COVID-19-CT-Seg data set was used in the 
experiment of Müller et al.13, this article downloaded the code of Müller et al. and verified it with the MSD data 
set. To facilitate us to observe the changes of data, we chose to mark the best segmentation results in bold. The 
results are shown in Table 3.

According to the results in Tables 2 and 3, the segmentation results on COVID-19-CT-Seg are better than 
those of the other two 3D U-Nets. In the segmentation of the datasets, the segmentation of the lung back-
groundand the segmentation of the infected region are all improved. Prove the effectiveness of the network 
architecture of this article.

Moreover, according to the data in the table, our segmentation results were superior to those of the other two 
methods, especially in the DSC and Sens, especially in the COVID-19-CT-Seg infection segmentation. This is 
mainly attributed to the optimization strategy adopted, which can achieve the extraction of feature information 
and effectively avoid the vanishing gradient, thus achieving good performance.

According to the loss function we selected, it can be seen from Fig. 1 that in the process of iteration, the loss 
function tends to be stable with the increase of the number of iterations.

Image segmentation results are shown in Figs. 2 and 3, where the blue area is the experimental segmentation 
area. Since the tumor is too small to be seen clearly, it is circled in red in Fig. 2. The leftmost image is the original 
image, the middle image is the doctor-labeled image, and the rightmost image is the segmentation result of the 
experiment in this paper.

Discussion
At present, there are many publicly available large data sets of COVID-19, as shown in Table 4, but most of 
these data are unannotated and cannot be trained in this experiment. Shan creatively proposed a “human-
in-the-loop” (HITL) method, which adopts VB-NET network semantic segmentation14. This method can be 
trained according to a small part of the annotated data, generate new annotated data, and then train again. 

Table 2.   Comparison of pulmonary segmentation indexes of COVID-19.

DSC (%) Sens Spec

Ma’s Benchmark 87.99 – –

Dominik’s 3D U-Net 97.29 97.06% 99.89%

QC-HC U-Net 98.64 98.14% 99.88%

Table 3.   Comparison of MSD tumor segmentation.

DSC (%) Sens Spec

Ma’s Benchmark 67.72 – –

Dominik’s 3D U-Net 73.20 77.66% 99.93%

QC-HC U-Net 81.45 80.93% 99.91%

Figure 1.   Loss function for training and testing.
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HITL can not only effectively alleviate the problem of insufficient data, but also solve the problem of image data 
requiring large-scale annotation. Another way to solve the data shortage is to transfer to learn from other data. 
Ahuja et al. proposed the COVID-19 is detected using transfer learning from CT scan images decomposed to 
three-level using stationary wavelet15. The above method is the self-annotation of data on the basis of relevant 
experiments16–19. Although the problem of insufficient data is solved to a certain extent, supervised learning has 
certain strict requirements for the judgment of accuracy, and relative comparison and analysis of labeled data 
and predicted data are required. Therefore, in order to ensure the effectiveness of the segmentation model, first 
of all, we still choose to train and test on the MSD data set, optimize the model, and then train and test again 
on the COVID-19-CT-Seg. Second, our experiment chooses to train in the MIScnn pipeline, which is mostly 
used for training on small data sets. There are two methods to alleviate the shortcomings of insufficient data.

Image segmentation is an important prerequisite for medical image analysis and interpretation. Due to the 
diversity and complexity of medical images, the segmentation performance of general models is often limited. 
Researchers have proposed a Deep Neural Network model suitable for medical image segmentation from mul-
tiple dimensions20,21. For example, He et al used the multi-task learning strategy to introduce the feature curve 
information into the feature learning, and applied it to guide the segmentation of the prostate, bladder and 
rectum22. In medical images, multimodal data can provide information at many levels due to different imaging 
mechanisms. Tang et al. designed a double-structure deep feature fusion Network for CT-multimodal MR image 
segmentation, and supplemented CT features with MR features at the level of advanced semantic features to 
improve the segmentation results of postoperative glioma on CT images23,24. For example, Zeng et al. proposed 
a deep supervised 3D U-Net Net-like full convolutional Network for the segmentation of proximal femur in 3D 
Magnetic Resonance (MR) images25. Compared with other networks, the U-Net network requires fewer param-
eters and is not easy to overfit. Therefore, U-Net and its variants (3D U-Net, U-Net ++, and Attention U-Net) 
are widely used in the field of medical image segmentation25–28.

U-net network is upsampled four times in total, and skip connection is used in the same stage, instead of 
directly monitoring and loss back transmission on advanced semantic features. In this way, more low-level 
features are integrated into the feature graph that is finally restored, and features of different scales are also inte-
grated, so that multi-scale prediction and DeepSupervision can be carried out. Four upsampling also makes the 
edge recovery information of the segmented image more refined. Since the structure of the organ itself is fixed, 

Figure 2.   MSD lung tumor segmentation results.

Figure 3.   Segmentation results of COVID-19-CT-Seg patients when the number of slices is 139.

Table 4.   COVID-19 related dataset.

Dataset name Type Composition Describes

COVID-19 CT segmentation dataset CT COVID-19 COVID-19 infected region

JSRT Dataset X-ray normal Pulmonary region

COVID-19-Dataset CT COVID-19 349 CT images

COVID-19 BSTI Imaging Database CT COVID-19 COVID-9 imaging

COVIDx X-ray COVID-19 and no COVID-19 13975 X-ray images
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semantic information is not particularly rich. So both high-level semantic information and low-level features are 
important (u-Net’s jump connections and U-shaped structures are more appropriate). The 3D U-Net we chose 
mainly lies in the fact that volumetric image does not need to input each section separately for training but can 
take the whole image as input to the model. These volumetric images are of great help, because it largely solves 
the embarrassing situation of 3D images being sliced into the model for training, and it also greatly improves 
training efficiency.

This article is dedicated to improving the segmentation accuracy and reducing the adverse effects of the 
segmentation results in the later stage. We combine the two methods of shortcut connection and Hypercolumns 
and apply them to the 3D U-Net network to improve the segmentation performance of the network.

According to the segmentation results, compared with 3D U-Net by Dominik et al. and Benchmark pub-
lished by Ma et al. We added quick connection and Hypercolumns in the structure, and the DSC coefficient of 
“Comparison of segmentation indexes of COVID-19 pulmonary infection” increased by 18% compared with 
the Benchmark. This is an increase of about 6% compared to the 3D U-Net aspect of Dominik et al. The Senc 
index increased by 3.5% compared to the results of Dominik et al. All indicators on the MSD data set have also 
undergone corresponding growth. The specific results are shown in Tables 1, 2, and 3. In the “Comparison of 
segmentation indexes of COVID-19 Pulmonary infection” table, the Spec reached 99.96%, an increase of 0.04%. 
When segmenting the entire lung area, the Senc index dropped by 0.01%, and in the MSD data set, the Spec 
dropped by 0.02%. The experimental results prove that the misdiagnosis rate decreases with the increase of Spec, 
and the QC-HC U-Net network is more inclined to segment small areas. Sens is simply a better way of screening 
out people who are sick. Spec is screening out the normal ones. At the same time, the enhancement of intentional-
ity and Sens (as shown in Table 1) means that the model has a better classification of the population (the negative 
and positive can be well distinguished). This proves that our model has certain advantages in the segmentation 
of COVID-19 lung infection regions. As shown in Tables 2 and 3 Spec indices, the model’s segmentation of the 
entire lung region and tumor region need to be improved. The reduced value makes the prediction result more 
likely to be positive, and TP and FP both increase. At the same time, the prediction result is Negative reduction, 
TN and FN synchronous reduction, which will lead to the reduction of Spec.

Methods
Thisthesis is based on 3D U-Net, and we hope to achieve better performance by reducing model parameters. 
It can avoid the problem of gradient disappearance in the process of information transmission by adding skip 
connections. By establishing feed-forward connection13, the DenseNet can effectively transfer information at 
each layer to ensure the integrity of information transmission and can reduce the number of parameters on the 
basis of avoiding gradient disappearance. Combining the advantages of the two Network structures, this article 
establishes a new connection method—Quick connection, which is used in the 3D U-Net to reduce the param-
eters of the Network and also have better segmentation performance. And we choose to add Hypercolumns to 
accurately locate the information when performing up-sampling in the decoder, thereby reducing the loss of 
feature information.

Datasets.  Because the proportion of tumor cells and the lung infection in MSD images is relatively similar, 
and the information of lung proportion in CT images is relatively similar. We trained through MSD to verify and 
optimize the performance of the network to better train COVID-19 data.

Ethics declarations.  We confirm that all experimental schemes have been approved by the licensing Committee 
of the school of computer science and technology of Qilu University of technology. We confirm that informed 
consent was obtained from all subjects or, if subjects are under 18, from a parent and/or legal guardian.

MSD lung tumor segmentation datasets.  Using MSD lung tumor segmentation datasets, the datasets comes 
from Stanford University (California, USA). The dataset includes patients with non-small cell lung cancer and is 
a public data set. And this data set served as a segmentation challenge during MICCAI 2018. A total of 63 cases 
of CT scans, annotated to include lung cancer, were marked by a professional thoracic radiologist.

COVID‑19‑CT‑Seg datasets.  We used the data set selected by Ma et  al.12. CT scans of 20 publicly available 
COVID-19 patients, containing more than 1, 800 annotated sections, were collected from the Coronacases Ini-
tiative and Radiopaedia, which contained the CC By-NC-SA license. The annotations were annotated by pri-
mary annotations, refined by two doctors with 5 years of experience, and finally, verified by one doctor with 10 
years of experience. Notes include left lung, right lung, background, and infection components, but the primary 
markers of infection are selected.

Data processing.  We select the following three preprocessing methods: data normalization, data standardi-
zation and resampling. And the method of data enhancement is used to improve the situation of insufficient data 
so that the segmentation results of the model can be more accurate.

Normalization and standardization.  Since COVID-19 data sets come from different sources, and the Houns-
field units(HU) of the infected region are +50 to +100 , while the HU value of the lungs is −1000 to −700 , we 
chose HU as the unit index to cut the pixel intensity value of the image to a maximum of +250 and a minimum 
of −1250 . Because the pixel values of CT images derived from Radiopaedia are already within the normal range 
of 0 to 255. We just adjusted the CTs image from the Coronacases Initiative so that its pixel value was also within 
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the corresponding range. In image processing, the range of pixel values of the transformed image can affect the 
fitting process and segmentation results, so, we chose Z-score, a common standardized method, for all the imag-
ing sample data.

Resampling.  A common parameter on medical images is voxel spacing, which translates the distance among 
two adjacent points in the image into a representation of the distance between the volumes. However, the voxel 
spacing in the lung images is not fixed. To reduce the complexity in the training process and capture the context 
information effectively, the image datasets were resampling, and the voxel spacing was 1.58 × 1.58 × 2.70 , and 
the volume shape was 267 × 254 × 104.

Data enhancement.  To make up for the lack of data, we chose the following four types of data enhancement 
to augment the datasets. Furthermore, each augmentation method had a random probability of 15% to be 
applied on the current image with random intensity or parameters (e.g.random angle for rotation). Through 
this technique, the probability that the model encounters the exact same image twice during the training process 
decreases significantly. 

	 (1).	 Space expansion
		    We mainly choose to expand the space by mirroring, rotating, scaling and elastically deforming the 

image. When the image is changed, the size of the image will change. At this time, choose the simplest 
difference value and fill the unknown region with some constant values.

	 (2).	 Grace
		    We mainly increase the color by changing the gamma value, brightness and contrast. The sampling 

range of gamma value is selected (0.5, 2), the range of brightness is sampled from the multiplier range 
(0.5, 2), and the same brightness the modifier is used for all colors.

	 (3).	 Noise
		    We choose to add Gaussian noise to enhance the image data. The noise variance is randomly selected 

from (0, 0.1).
	 (4).	 Patchwise
		    This method can reduce the risk of overfitting. To facilitate our research on the data, we randomly 

crop the image and cut the image roll into 160 × 160 × 80 patches, which is convenient for us to study 
the data. Among these patches, we introduced half of the size of the patch ( 80 × 80 × 40 ) to overlap them 
to improve the performance of prediction. After each patch is predicted, they are reconstituted into the 
volume of the original shape, and the overlapping region will be divided equally at this time. Through the 
above data processing methods, the problem of insufficient data can be greatly improved, and the model 
can be better optimized.

Network structure.  Network overview.  The 3D U-Net used is shown in Fig. 4. The Network is mainly 
divided into encoder and decoder. The encoder consists of convolution, Batch Normalization (BN), Rectified 
Linear Unit (ReLU) and Polling, which can extract features from the input images and analyze them. Decoder 
is composed of up-sampling, convolution, BN (Batch Normalization) and ReLU and its function is to generate a 
segmenting block map after receiving the analyzed image of the encoder. The highest resolution of the network 
uses 32 feature maps, and the lowest resolution uses 512 feature maps. In order to achieve better applicability of 
the Network and effectively avoid the disappearance of the gradient, this article chooses to add skip connections 

Figure 4.   3D U-Net architecture diagram.
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in the encoder and decoder, and the encoder information can be directly transmitted to the decoder; To reduce 
the loss of information in the combination of characteristic information, we add a quick connection to each 
convolution block, which is represented by the red line in Fig. 4. In order to accurately locate the information 
in the decoder and enable better extraction of information, this article chooses to add Hypercolumns when up-
sampling is performed in the decoder.

Quick connection.  ResNet is a widely used network architecture. It differs from 3D U-Net in that ResNet adds a 
connection between Convolutional and Rectified Linear Unit(Conv-ReLU) and Conv-ReLU, as shown in Fig. 5. 
A skip connection is added to this network, which is equivalent to taking a shortcut when carrying out output 
transmission and skipping the operation of the current layer. In the process of back-propagation, the network 
information of the next layer is also skipped operation and directly transferred to the next layer (all 1:1 trans-
missions, no additional parameters are required). The advantage of this approach is that it effectively avoids the 
gradient disappearance caused by the operation.

However, the skip connection has an obvious shortcoming in that it lacks the dense concatenation of the 
convolution output feature map. It means that when the input information passes through many layers, the 
information will be lost before reaching the end, which is not conducive to the accuracy of the result. To avoid 
the loss of information and ensure the maximization of information dissemination, the DenseNet proposes a 
more radical dense connection mechanism: all the layers are interconnected. Specifically, the input of each layer 
of the network is the union of the output of all the previous layers, and the feature graph learned by this layer will 
be directly transmitted to all the layers behind as input. In this way, each layer contains the output of all previous 
layers. Since DenseNet directly contacts across channels, the size of feature graphs for different layers should 
be the same as contact. To facilitate contact, DenseNet divides multiple Dense blocks. Because the size of the 
feature map inside each Dense block is not the same, it chooses to use a 1x1 convolution operation to aggregate 
the feature maps, and crop the input information to fit the layer output. This is shown in Fig. 6. The feature map 
matching of the exterior of the Dense block chooses to use a Transition module between each Dense block to 
make the excessive connection. These features allow DenseNet to achieve better performance than ResNet with 
less parameter and computing costs. DenseNet can alleviate the problem of gradient disappearance, and it can 
also greatly reduce the number of parameters and enhance the propagation of features. DenseNet dense con-
nection is shown in Fig. 6:

However, Densenet will carry out many concatnate operations, which requires a large amount of storage 
and some storage optimization techniques. Especially when the number of DenseNet layers is larger, the storage 
required is even greater.

Inspired by Jafari et al., we also added shortcut connections in 3D U-Net13. First of all, a shortcut connection 
is added between the first Conv-BN(Convolutional and Batch Normalization) and the last Conv-BN output, and 
then the result of the connection is summed up with the operation result through the Conv-BN to achieve the 

Figure 5.   ResNet module.

Figure 6.   Dense block.
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function of aggregation feature graph like the DenseNet. This connection allows the parameters to be updated 
at the first Conv and if the gradient of the subsequent Conv is close to zero, allows subsequent operations to 
proceed without the gradient loss. Secondly, unlike the DenseNet that selects multiple learnable 1x1 Convs to 
aggregate the feature maps, this article chooses to use a simple summation method to combine the feature maps.

In this article, input and output in each layer of the encoder section are combined in a cascading manner, and 
then the result of the feature graph combination is transmitted to the next layer (Fig. 7 encoder Block). This has 
the advantage of having input information from each layer and allowing the feature graph to match the feature 
graph of the next layer with fewer parameters. In the cascade block added in this article in the decoder part, the 
Conv 1 × 1 and BN algorithms are used to perform operations (as shown in Fig. 7 decoder Block). Compared 
with the contact operation in the DenseNet, this method can reduce the number of input channels.

Hypercolumns.  On the basic 3D U-Net architecture, Hariharan et al. Proposed29 that the features of the last 
layer of the decoder is relatively rough, while the information of the first layer of the decoder is too precise 
and lacks semantic information. Therefore, they choose to add Hypercolumns when performing up-sampling 
operations on the decoder, and to weigh the information between the different layers of the decoder part. The 
specific method is to compare all nodes of the corresponding pixel Network Activate the output value as a 
feature in order to locate the target. The principle is to form a vector of the position activation output values 
of all corresponding pixels for later operation. This paper uses the above methods for reference to improve the 
segmentation accuracy.

We extract the output on the corresponding layer by simply adjusting each feature map to the size we want 
by using bilinear interpolation. The sampled feature map is used to represent F, then the feature vector of the i 
position is as required by Eq. (4):

where f is the feature graph of upsampling, and fi is the feature vector of this position. α ik depends on the posi-
tion of i and k in the box and feature map.

Since these feature mappings are the result of convolution, they do not encode the boundary information of 
a given image pixel. We can take advantage of the nonlinear effect of this position, but we cannot infer it from 
the deviation of a particular position. This requires a different classifier for each location. The easiest way to get 
a location-specific classifier is to train each individual classifier for 5050. Train the kk grids of the classifier and 
insert functions gk(· ) between them. Each classifier is a function gk that takes an eigenvector and outputs the 
probability between 0 and 1. As shown in the specific Eq. (5):

where pik is the probability output of the K classifier at the position. The above process is to adjust the size of 
all feature maps and then classify each position. However, it would be too much to calculate hundreds of fea-
ture maps based on this method, so we can split the super columns at relevant positions and then perform the 
calculation.

We will run several linear classifiers at the top of the high-level functionality, and we will save the feature 
mapping calculation by using the following operations. As shown in Eq. (7), the corresponding weight block is 
set in the classifier.

(4)fi =
∑

k

�ikFk

(5)hi(⋅) =
∑

k

�
(j)

ik
F
(j)

k

(6)pi(⋅) =
∑

k

�ikgk(fi) =
∑

k

�ikpik

Figure 7.   Quick connection.
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fi is the feature vector at position i and consists of the corresponding jth feature map F(j) . w is a linear classi-
fier, and it is decomposed. The classifier w is w(j) after upsampling by Eq. (4), and f (j)

i
 is expressed as f (j) after 

upsampling by Eq. (4). Since the up-sampling is a linear operation, we can apply the classifier first. Observe 
that applying the classifier to every position in the feature map is the same as a 11 convolution. Therefore, we 
decompose it into blocks corresponding to each feature map and run a 11 convolution on each feature map to 
generate a fractional graph so that all fractions map to the sum of the target resolution. As shown in Eq. (8). The 
schematic diagram is shown in Fig. 8.

Experimental design.  The experiment was chosen to be carried out on the Tensorflow framework. Since the 
infection of COVID-19 is similar to lung tumors, this article first selects 80% of the MSD lung tumor dataset for 
training and 20% for testing, and continuously optimizes the model. Finally, 80% of the COVID-19-CT-Seg data 
is also selected for training and 20% for testing, so that the lung infection region of COVID-19 can be segmented 
more accurately. Finally, 80% of the COVID-19-CT-Seg data is also selected for training and 20% for testing, so 
that the lung infection region of COVID-19 can be segmented more accurately. We performed 150 iterations for 
each dataset, with a batch size of 2 and an epoch of 300, and the whole process for each dataset took about 30 h. 
This article uses the Adam optimizer for training, and the learning rate is set to 0.0001. In order to avoid training 
loss, this article also adopts a dynamic learning rate, which can reduce the learning rate by 0.1.

Since the proportion of the infected region is small, it is not conducive to accurate segmentation. Therefore, 
this paper uses the sum of the Tversky index30 and the classification cross-entropy as the loss function Eqs. (9, 
10, 11).

FP means false positive, and FN means false negative. False negatives and false positives can be controlled, and 
the trade-off between false positives and false negatives can be carried out through control. In this experiment, 
0.5 is selected. The cross-entropy Loss function belongs to the Loss function of classification type, and the ele-
ment only has two values of 0, 1, which can be used in the scene of semantic segmentation on a large scale. The 
multi-class adaptation for multiple categories (categorical cross-entropy) is represented through the sum of the 
binary cross-entropy for each class c,whereas yo,c is the binary indicator of whether the class label c is the cor-
rect classification for observation o.The variable po,c is the predicted probability that observation o is of class c.

Limitations.  There are few COVID-19 data available for deep learning. To achieve the better training effect, 
this paper uses the method of data enhancement to increase the data set and verifies the effectiveness of the 
algorithm through MSD data before conducting COVID-19 analysis. Through the above methods, the model in 

(7)WTfi =
∑

j

W (j)T f
(j)

i

(8)W (j)T f (j)T =
∑

k

�
(j)

ik
F
(j)

k

(9)Ltotal =LCCE + LTversky

(10)LCCE = −

N∑

c=1

yo,c log(Po,c)
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Figure 8.   Hypercolumns schematic.
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this paper has achieved a relatively ideal result. Unfortunately, datasets are scarce. So having a lot of real data can 
further optimize the test model.

Conclusion
In this paper, a QC-HC U-Net is designed. In terms of training data set, we firstly expand COVID-19 data by 
means of data enhancement to improve the problem of insufficient COVID-19 data. Then the data is preprocessed 
by normalization and standardization. In the aspect of model design, based on 3D U-Net, quick links are added 
in the modules of encoder and decoder to ensure feature extraction and effectively avoid the disappearance of 
the gradient. In the up-sampling operation of the decoder, simple Hypercolumns is added to facilitate the precise 
positioning of the decoder and the balance of the characteristic information between each layer of the decoder. 
We chose to test the model using datasets of lung tumor cells and COVID-19-CT-Seg, respectively. Compared 
with the benchmark of Ma et al. and the results of Muller et al., the model we designed outperforms the original 
network structure and provides better segmentation results.

Data availability
We hereby specifically state that all methods are carried out in accordance with the relevant guidelines and 
regulations. The COVID-19-CT-Seg we used contains an Attribution-NonCommercial-ShareAlike International 
(CC BY-NC-SA) certificate. The data set is made by Coronacases Initiative and Radiopaedia disclosure of open 
data sets, which is available at https://​zenodo.​org/​record/​37574​76#. The MSD Lung Tumor data is provided by 
Medical Segmentation Decathlon, and the following descriptions are made about the data:All data will be made 
available online with a permissive copyright-license (CC-BY-SA 4.0), allowing for data to be shared, distributed 
and improved upon. All data has been labeled and verified by an expert human rater and with the best effort to 
mimic the accuracy required for clinical use.
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