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Abstract

Drug addiction has often been described as a “hijacking” of the brain circuits involved in learning and memory. Glutamate is 
the principal excitatory neurotransmitter in the brain, and its contribution to synaptic plasticity and learning processes is well 
established in animal models. Likewise, over the past 20 years the addiction field has ascribed a critical role for glutamatergic 
transmission in the development of addiction. Chronic drug use produces enduring neuroadaptations in corticostriatal 
projections that are believed to contribute to a maladaptive deficit in inhibitory control over behavior. Much of this research 
focuses on the role played by ionotropic glutamate receptors directly involved in long-term potentiation and depression 
or metabotropic receptors indirectly modulating synaptic plasticity. Importantly, the balance between glutamate release 
and clearance tightly regulates the patterned activation of these glutamate receptors, emphasizing an important role for 
glutamate transporters in maintaining extracellular glutamate levels. Five excitatory amino acid transporters participate in 
active glutamate reuptake. Recent evidence suggests that these glutamate transporters can be modulated by chronic drug use 
at a variety of levels. In this review, we synopsize the evidence and mechanisms associated with drug-induced dysregulation 
of glutamate transport. We then summarize the preclinical and clinical data suggesting that glutamate transporters offer an 
effective target for the treatment of drug addiction. In particular, we focus on the role that altered glutamate transporters 
have in causing drug cues and contexts to develop an intrusive quality that guides maladaptive drug seeking behaviors.
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Introduction
Substance abuse disorders represent a major public health 
problem costing the United States over $740 billion annually in 
healthcare-related and indirect costs (NIDA, 2017). Addiction is 
marked by an enduring propensity to relapse. Repeated drug use 
produces persistent neuroadaptions in key brain circuits that 
promote this susceptibility to return to drug use following absti-
nence. Chronic drug use prominently disrupts glutamate home-
ostasis in nucleus accumbens (NAc). Differential effects on basal 
extracellular glutamate levels are observed in NAc depending 
on drug class (e.g., increased by alcohol, decreased by cocaine, 
unchanged by heroin), but reinstatement initiated by drug-asso-
ciated cues triggers a large increase in extracellular glutamate 
across drugs (Scofield et al., 2016); thus, all drugs tested disrupt 

glutamate homeostasis, leading to increased synaptic glutamate 
spillover during a drug-seeking event. Likewise, in human drug 
addicts there is an increase in blood-oxygen-level dependent 
contrast imaging response to drug-related cues in prefrontal 
cortex (PFC) associated with later relapse (Goldstein and Volkow, 
2011). Moreover, pharmacological interventions that restore glu-
tamate homeostasis have demonstrated efficacy in reducing 
drug seeking (Reissner and Kalivas, 2010; Scofield et al., 2016).

Glutamate is a nonessential amino acid neurotransmitter 
responsible for most excitatory synaptic transmission in the 
central nervous system. Arguably, glutamate is the most impor-
tant neurotransmitter for normal brain function as the cellu-
lar substrate of learning and memory (Citri and Malenka, 2007). 
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Most evoked and spontaneous glutamate release is vesicular, 
occurring directly at the synapse and mediated by voltage-gated 
calcium channels (Ermolyuk et  al., 2013). Synaptic glutamate 
release rapidly increases extracellular glutamate approaching 
millimolar concentrations within the synaptic cleft (Moussawi 
et al., 2011a). These elevated levels typically decline within mil-
liseconds due to diffusion and reuptake. Glutamate transport-
ers control signal transmission by removing glutamate from the 
synaptic cleft, thereby limiting its time in the extracellular space 
and access to the extrasynaptic compartment. Thus, under 
physiological conditions, glutamate transmission is temporally 
and spatially restricted, acting on glutamate receptors within or 
on the annulus of the synaptic cleft.

This review emphasizes the role of excitatory amino acid 
transporters (EAATs), which are ultimately responsible for 
controlling extracellular glutamate levels, in regulating the 
motivation to seek drugs. Systematic literature searches were 
performed using PubMed with search criteria consisting of 
“EAATX,” “EAATX and localization/regulation/trafficking,” and 
“EAATX + drug of abuse,” (e.g, EAAT1 and alcohol). Preclinical 
drug studies include noncontingent and contingent drug 
administration protocols, although for EAAT2 we mainly limit 
our discussion to self-administration models due to the surfeit 
of reports on this transporter subtype (Reissner and Kalivas, 
2010; Roberts-Wolfe and Kalivas, 2015). We discuss the normal 
distribution and expression of glutamate transporters and how 
drugs of abuse affect them inclusive of in vitro and in vivo stud-
ies. Finally, we address the potential of EAATs as therapeutic tar-
gets for addiction and other psychiatric diseases.

EAATS

Glutamate transporters control glutamate homeostasis in the 
central nervous system and their presence, or lack thereof, cre-
ates micro-domains of varying extracellular glutamate concentra-
tions. There are 5 sodium-dependent glutamate transporters or 
EAATs comprising the solute carrier 1 family (SLC1): EAAT1/GLAST 

(SLC1A3), EAAT2/GLT-1 (SLC1A2), EAAT3/EAAC1 (SLC1A1), EAAT4 
(SLC1A6), and EAAT5 (SLC1A7). The gene products are designated 
by the SLC1XX nomenclature. The human proteins use a homo-
geneous classification system of EAAT1-5, but 3 EAATs initially 
cloned from rat brain and rabbit intestine were given nonstandard 
names still used in animal model literature: Glutamate Aspartate 
Transporter 1 (GLAST) for EAAT1, Glutamate transporter 1 (GLT-1) 
for EAAT2, and Excitatory Amino Acid Carrier 1 (EAAC1) for EAAT3 
(Jensen et al., 2015; Martinez-Lozada et al., 2016). The EAATs take 
up glutamate against its concentration gradient driven by cotrans-
port with 3 Na+ and 1 H+ alongside the export of 1 K+ (Figure 1) 
(Grewer et al., 2008). Disrupted glutamate transporter function 
is linked to a variety of excitotoxicity-related diseases, including 
Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis, epilepsy, 
multiple sclerosis, and stroke, and more recently psychiatric dis-
eases like schizophrenia (Nakagawa and Kaneko, 2013).

EAAT1/GLAST

Localization/Distribution

Immunocytochemistry detects moderate to strong expression of 
GLAST in cerebellum, hippocampus, striatum, thalamus, brain-
stem, and spinal cord, and low to moderate expression in neo-
cortex, amygdala, and hypothalamus (Lehre et al., 1995; Schmitt 
et al., 1997) (Figure 2). In human postmortem cortical tissue, 
EAAT1 protein is detected in astrocytic processes bordering 
glutamatergic synapses and unexpectedly in the soma, axons, 
and dendritic spines of neurons (Roberts et al., 2014). Neuronal 
EAAT1 expression was suggested to be due to a truncated 
EAAT1/GLAST splice variant that is expressed in unhealthy neu-
rons during hypoxia (Sullivan et al., 2007; Roberts et al., 2014). In 
rat hippocampal cultures GLAST and GLT1 are expressed in neu-
rons up to 7 days in vitro, but disappear with astrocyte matura-
tion (Plachez et al., 2004). Adding astrocyte-conditioned medium 
to neuronal cultures suppresses neuronal GLAST expression, 
demonstrating the importance of glia-neuron communication. 

Figure 1.  Diagram of a glutamate transporter. The transport of glutamate is coupled with cotransport of 3 sodium (Na+), 1 hydrogen (H+), and 1 potassium (K+) ion along 

their concentration gradient. The stoichiometry of coupling has been determined for excitatory amino acid transporter (EAAT)1–4; however, the order of ion binding is 

not completely resolved. EAATs 1–3 compared with EAAT4 transport glutamate with considerably different kinetics and voltage dependence despite a similar uptake 

mechanism. Additionally, EAATs perform an uncoupled flux of chloride (Cl-) cations. This latter function is most predominant in EAAT4 and EAAT5, and nearly absent 

in EAAT2.



Spencer et al.  |  799

Reciprocally, astrocytes grown without neurons show reduced 
GLAST and GLT1 levels (Gegelashvili et al., 1997).

Regulation of Expression/Trafficking

There is little sequence homology between rat and human 
GLAST/EAAT1 promoters, although they share many predicted 
transcription factor binding sites (e.g., nuclear factor kappa B 
[NF-κB], YY1, cocaine- and amphetamine-regulated transcript 
[CART], specificity protein 1 [SP1]) (Unger et al., 2012). Yin Yang 
1 (YY1) is an important negative regulator of EAAT1 expression, 
while epidermal growth factor (EGF)-dependent transactivation 
of EAAT1 depends on NF-κB binding (Karki et al., 2015). Reporter 
assays directly compared the transcriptional regulation of human 
and rat EAAT1 with known activators of the rat gene (dibutyryl-
cyclic adenosine monophosphate [dbCAMP], pituitary adenylate 
cyclase-activating peptide [PACAP], epidermal growth factor 
[EGF], and transforming growth factor alpha [TGFa]), revealing an 
important species-specific regulatory role for the 3’-untranslated 
region. The 3’-untranslated region represses constitutive tran-
scription in humans but is an enhancer in rodents (Unger et al., 
2012). Despite this interesting difference and sequence dissimi-
larity, the limited studies largely confirm conserved regulatory 
mechanisms controlling EAAT1 expression across species.

EAAT1 function is regulated at the protein level via post-
translational modifications and trafficking. Glutamate itself can 
rapidly increase GLAST activity by increasing surface expression 
(Duan et al., 1999). Calcium/calmodulin (CAMKII)-dependent 
EAAT1 phosphorylation regulates constitutive transporter 

activity (Chawla et al., 2017), and consensus sequences for Protein 
Kinase A (PKA), Protein Kinase C (PKC), and Phosphoinositide 
3-Kinase (PI3K) suggest that phosphorylation may also rapidly 
modulate EAAT1 activity. PKA or PKC inhibitors reduce cell sur-
face EAAT1 expression, while a PI3K inhibitor increases surface 
protein in primary cortical cultures (Guillet et al., 2005).

EAAT1 and Drugs of Abuse

GLAST has been most well studied relating to alcohol addiction. 
We showed that repeated ethanol exposure (7 days, i.p. 1 g/kg) 
elevates basal extracellular glutamate levels and reduces gluta-
mate uptake without changing GLT-1 or GLAST protein in NAc 
24 hours after the last injection (Melendez et al., 2005) (Table 
1). Alcoholism is considered a hyperglutamatergic disease, but 
postmortem brains of human alcoholics (Flatscher-Bader and 
Wilce, 2008) and chronic intermittent ethanol-exposed rats 
(Rimondini, 2002) show increased EAAT1/GLAST in frontal cor-
tex. These increased GLAST levels may represent compensatory 
increases in protein to offset elevated extracellular glutamate. 
In contrast, a recent study using a free-choice ethanol-drinking 
model in male alcohol-preferring rats (P rats) reported no change 
in GLAST expression in PFC or NAc (Hakami et al., 2016). Chronic 
ethanol consumption in female P rats increases extracellular 
glutamate, decreases uptake, and reduces EAAT1 protein in ven-
tral tegmental area (VTA) and NAc shell, with the protein defi-
cit enduring for 2 weeks following ethanol deprivation (Ding et 
al., 2013). These results are consistent with another previously 
reported sex-specific ethanol withdrawal effect on glutamate 

Figure 2.  Glial glutamate transporters. Excitatory amino acid transporter EAAT1/GLAST (blue) is located exclusively on astrocytes and other glial cells. EAAT2/GLT-1 

(red) is likewise predominately restricted to astrocytes. Orange arrows depict the glutamate-glutamine cycle associated with glutamate uptake: glutamine synthetase 

converts up taken glutamate to glutamine, glutamine is transported back to the glutamatergic neuron through sodium coupled amino acid transporters (SNATs), and 

glutamine is converted back to glutamate by glutaminase. The gray dashed arrows depict regulation of EAAT trafficking. Endosomal trafficking of EAAT1 depends 

on sodium-hydrogen exchanger regulatory factor 1 and 2 (NHERF1 and 2). Rapid cell surface expression of EAATs is also prominently modulated by kinase activity. 

Protein Kinase A (PKA) and Protein Kinase C (PKC) inhibitors decrease EAAT1 surface expression, while Phosphoinositide 3-Kinase (PI3K) inhibitors promote surface 

expression. EAAT2 trafficking is regulated both constitutively and inducibly by ubiquitination/deubiquitination cycles. PKC-dependent activation of Neural precursor 

cell-expressed developmentally downregulated gene 4-2 (Nedd4-2) ubiquitin ligase targets EAAT2 for proteasomal degradation. Specific pharmacological activators 

(green arrows) and inhibitors (red bar-line) of each transporter are shown. UCPH-101 and UCPH-102 are the first selective EAAT1 inhibitors. TFB-TBOA ((3S)-3-[[3-[[4-

(Trifluoromethyl)benzoyl]amino]phenyl]methoxy]-L-aspartic acid) is more selective for EAAT1 and EAAT2 but has low efficacy at EAAT3 as well. Dihydrokainate (DHK) 

blocks EAAT2 function. WAY-213613 is a competitive inhibitor with higher selectivity and potency for EAAT2 over EAAT1 and EAAT3. Parawixin 1, purified from the 

venom of spider Parawixia bistriata, selectively increases EAAT2 activity. Pyradizine analogs, including LDN/OSU-0212320 increases EAAT2 function through transac-

tivation. Ceftriaxone and other beta-lactam antibiotics increase EAAT2 expression and function. The antioxidant pro-drug N-acetylcysteine (NAC) increases EAAT2 

function but may interact with the glutamate transport system at multiple levels.



800  |  International Journal of Neuropsychopharmacology, 2017

Table 1.  Addictive Drug-Induced Glutamate Transporter Adaptations

Brain Region Effect on Expression and Species Treatment Protocol

Ethanol
EAAT1/
GLAST

NAc core
PFC
PFC
PFC/NAc
VTA/NAc shell

⇔ Melendez et al., 2005
⇑ mRNA Flatscher-Bader and Wilce, 2008
⇑ mRNA Rimondini et al., 2002
⇔ Hakami et al., 2016
⇓ Ding et al., 2013

Rats
humans, postmortem
Rats
P rats
*Female
P rats

1 g/kg i.p. x 7 days
Alcoholics
Chronic intermittent ethanol vapor
Two-bottle choice
Two-bottle choice

Cannabinoids
Hippocampus ⇓ Castaldo et al., 2010 Rat Perinatal THC
Cerebellum ⇓ Suarez et al., 2004 Rat Perinatal THC

EAAT2/
GLT-1

Cocaine

NAc core ⇓ Knackstedt et al., 2010 Rat Short access SA and extinction
NAc core ⇓ Trantham-Davidson et al., 2012 Rat Short access SA and extinction
NAc core ⇓ Reissner et al., 2015 Rat Short access SA and extinction
NAc core/shell ⇓/⇔Fischer-Smith et al., 2012 Rat Short access SA and acute withdrawal
NAc core/shell ⇓⇓/⇓ Fischer-Smith et al., 2012 Rat Short access SA and long withdrawal
NAc core/shell ⇓⇓⇓/⇓⇓ Fischer-Smith et al., 2012 Rat Long access SA and acute withdrawal
NAc core/shell ⇓⇓⇓⇓/⇓⇓ Fischer-Smith et al., 2012 Rat Long access SA and long withdrawal
NAc core mRNA ⇓ Kim et al., 2016b Rat Extended access SA and extended 

withdrawal
Amphetamine/Methamphetamine
DStr ⇑ Shirai et al., 1996 Rat Methamphetamine sensitization
NAc core/shell ⇔ Szumlinski et al., 2016 Mice Methamphetamine sensitization
midbrain, NAc, Str, PFC ⇔ Sidiripoulou et al, 2001 Rat Amphetamine sensitization
Str and hippocampus ⇓ Althobaiti et al., 2016 Rat Methamphetamine high 10 mg/kg x 4, 

every 2 h
Ethanol
NAc core ⇔ Melendez et al., 2005; Rat 1 g/kg i.p. x 7 days
NAc core/shell ⇓ Sari et al., 2013 P rats Chronic drinking
PFC and Str ⇓ Abulseoud et al., 2014 P Rats/

Wistars
Chronic drinking followed by oral 

gavage
VTA/NAc shell ⇔ Ding et al., 2013 *Female P rats Two-bottle choice
NAc core ⇔ Griffin et al., 2015 Mice Chronic intermittent alcohol
*white blood cells ⇑ Ozsoy et al., 2016 Human Alcoholics at d 1 and d 28 withdrawal
Nicotine
NAc core ⇓ Knackstedt et al., 2009 Rat SA and extinction
NAc core ⇓ Gipson et al., 2013 Rat SA and extinction
Opiates
NAc core ⇓ Shen et al., 2014 Rat Heroin SA and extinction
Cannabinoids
Hippocampus ⇓ Castaldo et al., 2010 Rat Perinatal THC or WIN 55,212-2

EAAT3/
EAAC1

Amphetamine/Methamphetamine

Str ⇓ Kerdsan et al., 2012 Rat Meth: acute (8 mg/kg, ip 1x) or chronic 
(4 mg/kg, ip 14 days)

PFC ⇓ Kerdsan et al., 2012 Rat Meth chronic (4 mg/kg, ip 14 days)
Hippocampus ⇓ Kerdsan et al., 2012 Rat Meth chronic (4 mg/kg, ip 14 days)
PFC ⇓/⇔ Lominac et al., 2016 Mice Chronic meth (10 mg/kg x 10 days) + 

21-d withdrawal
Midbrain, NAc, DStr, PFC no change Sidiripoulou et al., 2001 Rat Amphetamine sensitization
NAc ⇓ Szumlinski et al., 2016 High meth drinking 

mice
naïve

NAc ⇓ Szumlinski et al., 2016 Mice Chronic meth (10 mg/kg x 10 days) + 
21 day withdrawal

NAc ⇔ Szumlinski et al., 2016 Mice Meth CPP
Opiates
PFC, NAc, VTA/HP ⇑ surface/⇔Wan et al., 2016 Mice Morphine CPP
PFC ⇓ Wu et al., 2013 Mice Morphine-induced reinstatement of 

CPP
Cannabinoids
Cerebellum ⇓ Suarez et al., 2004 Rat Perinatal THC

Represents protein level changes except where indicated. Downward arrows indicate a decrease, upward arrows indicate an increase, and sideways arrows indicate 

no change.
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transporter levels (Alele and Devaud, 2005). Other variability 
likely reflects differences in ethanol administration protocols, 
drug exposure periods, withdrawal periods, and brain region-
dependent effects. Moreover, these data indicate that ethanol 
can alter GLAST function, likely through increased membrane 
trafficking, without affecting transcription or translation. In line 
with this interpretation, ethanol exposure dose-dependently 
modifies GLAST distribution, promoting a shift from the cyto-
plasm to the surface in rat astrocyte cultures (Sery et al., 2015). 
A GLAST knockout mouse model was used to directly examine 
the GLAST contribution to alcohol addiction and reinforcement 
with the logical hypothesis that GLAST deletion would promote 
alcohol intake and reward. Surprisingly, GLAST-/- show lower 
alcohol consumption and no ethanol preference in the condi-
tioned place preference (CPP) paradigm (Karlsson et al., 2012); 
however, interpretation of these results is unclear, because 
endocannabinoid signaling is altered in these knockouts. Thus, 
more targeted genetic or pharmacologic manipulations are 
required to fully evaluate this question.

Data pertaining to other drugs is lacking. Nicotine increases 
GLAST expression through a α7 nicotinic acetylcholine receptor 
and fibroblast growth factor-2-dependent pathway in rat corti-
cal cultures (Morioka et al., 2014; Morioka et al., 2015). Perinatal 
delta-9-tetrahydrocannabinol (THC) exposure decreases GLT-1 
and GLAST protein and reduces glutamate uptake in hippocam-
pus (Castaldo et al., 2010) and produces an enduring deficit in 
GLAST levels in cerebellum (Suarez et al., 2004). Repeated inter-
mittent 3,4-methylenedioxymethamphetamine (MDMA) expo-
sure increases GLAST expression in cortex (Kindlundh-Hogberg 
et al., 2008). Finally, other studies suggest that GLAST contrib-
utes to morphine tolerance and antinociceptive effects in spinal 
cord (Mao et al., 2002; Tai et al., 2007; Eidson et al., 2017).

EAAT2/GLT-1

Localization/Distribution

GLT-1 is one of the most abundant proteins ubiquitously 
expressed throughout the brain (Takahashi et  al., 2015) and is 
responsible for ~90% of glutamate uptake. EAAT2 is the human 
homologue of GLT-1, and in postmortem cortical tissue EAAT2 
is detected robustly in astrocytic processes and much less fre-
quently in neuronal profiles, including within the postsynaptic 
density at asymmetric synapses (Roberts et al., 2014). Most GLT-1 
immunoreactivity colocalizes with presynaptic marker synapto-
physin (within 0.2 μm2) and is thus considered the synaptic pool, 
but ~40% of GLT-1 is located distally from the synapse, constitut-
ing an extrasynaptic pool (Figure 2) (Minelli et al., 2001). There 
are at least 3 different GLT-1 isoforms that vary at their C termi-
nus: GLT1a, GLT1b, and GLT1c. These isoforms differ in relative 
abundance (for example: 90%, 6%, and 1%, respectively, in hip-
pocampus) (Holmseth et al., 2009). There are no data to suggest 
that these variants alter transport function per se, but they likely 
contribute to differential protein expression, localization, and/
or trafficking (Holmseth et al., 2009). For example, GLT1a but not 
GLT1b is detected in neurons, and GLT-1b contains a PDZ domain 
absent in GLT1a (Holmseth et al., 2009; Sogaard et al., 2013).

Regulation of Expression/Trafficking

The rat and human promoters of EAAT2/GLT-1 have many con-
served sequences, including binding sites for transcription factors 
NF-κB, cAMP response element binding protein (CREB), and SP-1 
(Sitcheran et al., 2005; Grewer et al., 2014). These sequences and 

their interacting transcription factors control both constitutive 
and/or inducible GLT-1 expression. NF-κB, for example, is involved 
in both basal and inducible regulation of GLT-1 expression. NF-κB 
mediates GLT-1 induction via cAMP, TGFa, and EGF, and is also 
required for TNFa-dependent GLT-1 repression in human H4 
glioma cells (Sitcheran et al., 2005). Comparisons of the human 
and rat promoters in reporter assays reveal remarkable similarity 
but not complete overlap between gene regulation of GLT-1 and 
EAAT2. For instance, TNFa-dependent inhibition occurs through 
distinct mechanisms, but EGF, TGFa, and PACAP-dependent trans-
activation is similar between species (Allritz et al., 2010).

The 3’ untranslated region of GLT-1 has predicted binding 
sites for microRNAs miR-128, miR182, and miR200b, represent-
ing another potential means of transcriptional regulation, but 
these interactions are untested (Lauriat and McInnes, 2007). 
Surprisingly, miR-124a, the most abundant miR in vertebrate 
brain, increases GLT-1 protein without altering gene expression 
denoting translational rather than transcriptional regulation 
(Morel et al., 2013). This effect is mediated via novel exosomal 
transfer of neuronal miR-124a into astrocytes. Other transla-
tional activators of EAAT2 include corticosterone and retinol 
through an interaction with the 5’ untranslated region (Tian et 
al., 2007). Conversely, excessive glutamate or oxidative stress 
significantly inhibits EAAT2 translation (Tian et al., 2007).

EAAT2 expression is additionally regulated at the epigenetic 
level. There is an CpG island before GLT-1 exon 1 that displays 
both enrichment of repressive trimethyl-histone H3 alongside 
decreased acetyl-histone H4 in cerebellum compared with cortex 
(Perisic et al., 2012). Interestingly, EAAT2 expression in cortex but 
not the hypermethylated form in cerebellum is inducible by dexa-
methasone and HDAC inhibitors (Perisic et al., 2010, 2012). This 
distinction in region-specific methylation might contribute to the 
parallel difference in protein distribution. Likewise, lower methyl-
ation of the EAAT2 promoter is observed in astrocyte-neuron co-
cultures compared with astrocytes cultured alone in accordance 
with higher EAAT2 expression in co-cultures (Yang et al., 2010).

Posttranslational modifications of GLT-1 regulate transporter 
expression, function, and trafficking. A  fraction of EAAT2 is 
constitutively sumoylated in vivo with this form preferentially 
retained intracellularly (Foran et al., 2014). GLT-1 palmitoylation 
at cysteine 38 is required for basal glutamate uptake but does 
not impact expression or trafficking (Huang et al., 2010). Finally, 
PKC-dependent phosphorylation of Nedd4-2 ubiquitin ligase 
promotes the inducible internalization and degradation of GLT-1 
(García-Tardón et  al., 2012), while constitutive GLT-1 recycling 
utilizes clathrin-dependent internalization but also involves a 
ubiquitination cycle (Martinez-Villarreal et al., 2012).

EAAT2 and Drugs of Abuse

Cocaine
In a standard short-access cocaine self-administration and exti
nction model, GLT-1 is downregulated in NAc core (Knackstedt 
et al., 2010). GLT-1 protein in NAc core is sensitive to both increas-
ing cocaine intake (extended 6–8  h/d self-administration com-
pared with limited access) and increasing abstinent withdrawal 
period (1 vs 45 days) (Fischer-Smith et al., 2012). In NAc shell, GLT-1 
expression is reduced by limited access with long withdrawal and 
by extended access with short or long withdrawal. Overall, NAc 
shell does not display the same progressive decrease in protein 
levels observed in core and the magnitude of change is lower 
(Fischer-Smith et al., 2012). Indeed, GLT-1 expression in NAc core 
but not shell displays a significant negative correlation with cue-
induced cocaine seeking. Interestingly, while GLT-1 protein levels 
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are altered even following short-access and limited withdrawal in 
NAc core, GLT-1 mRNA is only decreased following prolonged with-
drawal from long access self-administration (R. Kim et al., 2016b). 
This decrease in GLT-1 expression is associated with hypermeth-
ylation, suggesting differential engagement of transcriptional and 
translational mechanisms depending on addiction state.

Amphetamine/Methamphetamine
One study shows methamphetamine sensitization increasing 
GLT-1 in striatum (Shirai et al., 1996), but a recent study finds 
no change in GLT-1 in NAc core or shell following another sen-
sitization protocol (Szumlinski et al., 2016). Likewise, no change 
in GLT-1 in midbrain, NAc, dorsal striatum, or PFC is reported 
following amphetamine sensitization (Sidiropoulou et  al., 
2001). Repeated high doses of methamphetamine (10 mg/kg x 
4, every 2 hours) decrease GLT-1 in striatum and hippocampus 
(Althobaiti et  al., 2016). The disparity between these results 
likely reflects differences in dosing and treatment regimens. 
Indeed, we know that treatment protocol is important for meth-
amphetamine-dependent glutamate dynamics, because meth-
amphetamine self-administration with extinction training 
reduces basal glutamate levels in dmPFC and NAc (Parsegian 
and See, 2014), but extracellular glutamate is increased in NAc 
following withdrawal without extinction (Lominac et al., 2012). 
Unfortunately, the effect of amphetamine/methamphetamine 
self-administration on GLT-1 protein is unknown.

Ethanol
The effects of ethanol administration on GLT-1 levels and func-
tion are not fully consistent. Sari and colleagues (Sari et al., 2013) 
report reduced GLT-1 in NAc core and shell in male P rats follow-
ing chronic drinking. In an ethanol withdrawal study that incor-
porated 2-bottle choice drinking followed by forced oral gavage 
in male P rats and outbred Wistar rats, a similar decrease in 
GLT-1 was observed in PFC and striatum (Abulseoud et al., 2014). 
Interestingly, in female P rats, EAAT1 rather than EAAT2 levels 
(discussed above) are reduced in the NAc shell and VTA (Ding 
et al., 2013). No differences in EAAT2 expression are observed in 
NAc following noncontingent sensitizing ethanol injections in 
rats (Melendez et al., 2005) or chronic intermittent ethanol vapor 
in mice (Griffin et al., 2015). Overall, the reduction in GLT-1 pro-
tein following ethanol consumption/exposure is most reliably 
reproduced in studies utilizing alcohol preferring P rats com-
pared with outbred rats or mice. Therefore, it would be interest-
ing to determine whether basal differences in GLT-1 expression or 
function exist between P rats and other outbred strains or if they 
emerge due to significant differences in ethanol consumption. 
Furthermore, it is also probable that exposure type (daily vs inter-
mittent; choice vs noncontingent) and withdrawal period influ-
ence GLT-1 expression and function, and generally more variable 
results are obtained in noncontingent ethanol exposure models.

There is also clinical evidence for alcohol-dependent 
EAAT2 regulation. In inpatient alcoholics, EAAT2 and EAAT3 
mRNA is increased in white blood cells during early (day 1) and 
late (day 28)  withdrawal compared with healthy controls 
(Ozsoy et al., 2016). Proton magnetic resonance spectroscopy 
shows elevated glutamate levels in NAc in alcohol-dependent 
patients during early withdrawal compared with controls, 
and craving positively correlates with combined glutamate 
and glutamine levels in NAc and anterior cingulate cortex 
(Bauer et al., 2013).

Nicotine, Opiates, and Cannabinoids
Nicotine self-administration in rats decreases GLT-1 protein 
expression in NAc (Knackstedt et al., 2009; Gipson et al., 2013). 

Heroin self-administration produces functional deficits in gluta-
mate uptake along with decreased GLT-1 surface expression in 
NAc (Shen et al., 2014). In a noncontingent mouse model of opi-
ate reward, GLT-1 overexpression in NAc shell reduces morphine 
CPP (Fujio et al., 2005). A single study links perinatal exposure 
to THC or WIN 55,212-2 to decreases in GLT-1 protein and gluta-
mate uptake in hippocampus (Castaldo et al., 2010).

EAAT3

Localization/Distribution

In the brain, EAAT3/EAAC1 expression is primarily neuronal 
(Velaz-Faircloth et al., 1996). EAAT3 is relatively ubiquitous, but 
higher densities are observed in cortex, hippocampus, basal 
ganglia, and cerebellum, and it is also found widely in periph-
eral tissues (Velaz-Faircloth et al., 1996). In hippocampus and 
cerebellum, synapses are less likely to be bounded by astrocytic 
processes, perhaps magnifying the importance of neuronal 
EAATs. EAAT3/EAAC1 is present in all neuronal subcompart-
ments both pre- and postsynaptically (Figure 3) (Nieoullon et 
al., 2006). The majority of EAAT3/EAAC1 protein resides intra-
cellularly (Nieoullon et al., 2006). As such, it is theorized that 
EAAT3/EAAC1 is important for diverse functions not necessarily 
related to glutamate uptake and recycling. For example, gluta-
mate taken up by EAAT3 in gamma amino-butyric acid (GABA) 
neurons provides a precursor for further GABA production 
(Bjorn-Yoshimoto and Underhill, 2016). EAAT3 also displays high 
affinity for L-cysteine and thus serves as the primary source of 
intracellular precursor for production of the important antioxi-
dant glutathione (GSH) (Watts et al., 2014).

Regulation of Expression

The EAAT3 promoter contains a unique consensus binding site, 
not shared by EAAT1 or EAAT2, for transcription factor regula-
tory factor x-1, which positively regulates EAAT3 expression (Ma 
et al., 2006). Nuclear factor erythroid 2-related factor 2 interacts 
with a conserved ARE-related sequence in the EAAT3 promoter 
to induce EAAT3 expression (Escartin et al., 2011). This pathway 
is activated by oxidative stress to increase EAAT3 expression and 
augment GSH levels (Escartin et al., 2011). EAAT3 gene expres-
sion is also increased by nuclear factor retinoic acid receptor beta 
(Bianchi et al., 2009).

Three alternative isoforms are reported for human EAAT3 
protein. Two isoforms result from skipping of exon 2 or 11 and 
have significant implications for predicted protein structure 
(Bjorn-Yoshimoto and Underhill, 2016). The third isoform, iden-
tified in humans and mice, is a result of a secondary internal 
promoter producing an N-terminal truncated protein (Porton 
et al., 2013). In humans, these alternative isoforms display dif-
ferential expression in obsessive-compulsive disorder (OCD) 
patients, and certain variants are associated with disease trans-
mission (Arnold et  al., 2006; Porton et  al., 2013). This is note-
worthy given that OCD, like addiction, is a psychiatric disease 
related to obsessive thoughts and impulse control deficits.

Given the primarily intracellular EAAT3 localization, rapid 
regulation of trafficking by posttranslational modifications may 
be more important than transcriptional mechanisms for con-
trolling function. EAAT3/EAAC1 is constitutively internalized 
via clathrin and dynamin-dependent mechanisms and recycled 
back to the plasma membrane via Rab11-dependent trafficking 
(González et al., 2007). Kinases like PKCα and PI3K participate 
in activity-dependent EAAT3 trafficking (Bjorn-Yoshimoto and 
Underhill, 2016).
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EAAT3 and Drugs of Abuse

There is accumulating evidence for some EAAT3 involvement in 
amphetamine/methamphetamine addiction, but EAAT3 levels 
have never been measured following self-administration. In stria-
tum, acute (8 mg/kg i.p., 1 day) and repeated (4 mg/kg i.p., 14 days) 
methamphetamine injections decrease EAAT3 levels, but in fron-
tal cortex this effect is only significant with repeated injections 
(Kerdsan et  al., 2012). Conversely, repeated methamphetamine 
increases EAAT3 levels in hippocampus, perhaps as compensa-
tory mechanism to counter excitotoxicity in this brain region 
(Kerdsan et  al., 2012). Chronic methamphetamine treatment 
(10 days, 2 mg/kg i.p.) followed by 21 days of withdrawal reduces 
EAAT3 levels in NAc (Szumlinski et al., 2016) but not PFC (Lominac 
et al., 2016). Repeated amphetamine injections fail to alter EAAT3 
expression across a number of brain regions (Sidiropoulou et al., 
2001). In mice bred for high vs low methamphetamine preference, 
high-drinking mice have lower EAAT3 levels in NAc core along 
with elevated extracellular glutamate basally and upon metham-
phetamine challenge (Szumlinski et al., 2016). The EAAT3 pheno-
type fails to correlate with methamphetamine place preference 
in outbred C57BL/6J mice, but the hyperglutamatergic profile 

observed in NAc of drug-naive methamphetamine high-drinking 
mice is phenocopied by outbred mice withdrawn from a sensitiz-
ing methamphetamine regimen, suggesting that this molecular 
profile represents both a cause and consequence of methamphet-
amine addiction (Szumlinski et al., 2016).

There is evidence that EAAT3 trafficking and not just expres-
sion can be altered by amphetamines, perhaps contributing to 
inconsistent results observed with total protein. In midbrain 
dopamine cells, acute amphetamine treatment decreases 
EAAT3-specific glutamate uptake via Rho-A-dependent EAAT3 
endocytosis, leading to potentiated glutamatergic synaptic trans-
mission (Underhill et  al., 2014). These researchers went on to 
demonstrate that acute methamphetamine similarly augments 
glutamatergic signaling (Li et al., 2016). These studies implicate 
immediate changes in EAAT3 function for acute amphetamine 
effects that could have implications for long-term adaptations 
downstream contributing to the transition to addiction.

Morphine place conditioning increases membrane EAAT3 
levels in mPFC, NAc, and VTA 24 hours after the final injec-
tion in mice, although expression is unchanged in hippocam-
pus (Wan et al., 2016). Morphine-induced CPP reinstatement 
in rats decreases EAAT3 in PFC measured 30 minutes after the 

Figure 3.  Neuronal glutamate transporters. Neuronal excitatory amino acid transporter EAAT3/EAAC1 (green) is located both and pre- and postsynaptically throughout 

the brain. EAAT4 (yellow) is likewise a neuronal EAAT found mainly in the cerebellum but with some forebrain and midbrain expression. EAAT3 expressed presyn-

aptically on GABAergic neurons participates in supplying glutamate precursor for GABA synthesis (orange arrow). EAAT3 also more effectively transports L-cysteine 

compared with the other EAATs, thus directly supplying precursor for glutathione (GSH) synthesis. Rapid regulation of cell surface expression of EAAT3 is important, 

because the majority of the protein normally resides intracellularly. Protein Kinase A (PKA), Protein Kinase C (PKC), and Phosphoinositide 3-Kinase (PI3K) inhibitors 

decrease EAAT3 surface expression, demonstrating positive regulation by these kinases. Likewise, isoflurane (and other anesthetics) promotes insertion of EAAT3 in 

the plasma membrane also through purported kinase-dependent mechanisms (green arrow). The elimination of the ether oxygen in the nonselective EAAT inhibitor 

threo-beta-hydroxyaspartate (TBOA) to yield L-B-threo-benzyl-aspartate (L-B-BA) produces an inhibitor with 10-fold preference for EAAT3 over EAAT1 and EAAT2 (red 

bar-line).
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priming injection (Wu et al., 2013). Interestingly, constitutive 
EAAT3 knockout does not affect acquisition, expression, or 
reinstatement of morphine preference, but instead morphine 
CPP extinguishes faster in EAAT3-/- mice, perhaps suggesting 
that increased EAAT3 following conditioning is a compensatory 
mechanism to limit reward-related behavior. Cell culture studies 
validate a dynamic regulation of EAAT3 expression by morphine 
with dose- and time-dependent effects upon initial exposure, 
recovery with withdrawal, and increased sensitivity upon reex-
posure (Wu et al., 2013), which may also go towards explaining 
opposing changes reported in rat vs mouse CPP studies above.

There is limited data linking EAAT3 to other drugs. Acute 
cocaine (10 mg/kg i.p.) administered at P15 transiently reduces 
D-aspartate uptake for 60 minutes associated with increased 
serine phosphorylation of EAAT1, EAAT2, and EAAT3 in PFC 
(Sathler et al., 2016). Perinatal THC exposure produces an endur-
ing deficit in EAAT3 levels in cerebellar Purkinje neurons (Suarez 
et al., 2004).

Translational Studies on EAAT 
Pharmacotherapies for Addiction

Preclinical Models

The preclinical research linking EAAT dysfunction to drug 
addiction has primarily focused on identifying compounds that 
regulate EAAT2/GLT-1 given that GLT-1 mediates most gluta-
mate uptake, but few drugs specifically target one EAAT over 
the others. Function of other EAATs may be affected or alter-
native mechanisms may be engaged by these manipulations. 
This caveat should be kept in mind when considering studies 
summarized below, as even the “specific” GLT-1 inhibitor dihy-
drokainate (DHK) can have off-target effects.

The antioxidant cystine pro-drug N-acetylcysteine (NAC) is 
the best-studied GLT-1 modulating drug. The over-the-counter 
dietary supplement is commonly indicated for acetaminophen 
overdose. NAC can suppress NF-κB signaling and prevent down-
stream activation of proinflammatory cytokines (Oka et  al., 
2000). NF-κB interacts with the GLT-1 promoter at multiple sites 
and has been implicated in transcriptional repression and acti-
vation (Sitcheran et al., 2005). Furthermore, NAC provides cys-
tine for GSH synthesis and can interact directly with reactive 
oxygen species (Badisa et  al., 2013). Unfortunately, as an oral 
medication NAC has low bioavailability, thereby requiring large 
doses. NAC amide (AD4, NAC-amide) is purported to display bet-
ter bioavailability properties (Jastrzębska et al., 2016).

In rodent self-administration models, NAC inhibits cue- and 
cocaine-induced reinstatement of cocaine seeking and restores 
GLT-1 expression (Baker et al., 2003a, 2003b; Madayag et al., 2007; 
Knackstedt et al., 2010; Amen et al., 2011), and this effect is long 
lasting following daily NAC administration prior to extinction 
sessions (Moussawi et al., 2011b; Reichel et al., 2011). A single 
study using NAC-amide similarly shows reduced cue-induced 
and cocaine-primed reinstatement (Jastrzębska et  al., 2016). 
A vivo-morpholino anti-sense strategy was used to show that 
NAC’s ability to decrease cue- and cocaine-primed reinstate-
ment depends on increased GLT-1 (Reissner et al., 2015). Daily 
NAC also reduces extinction responding and cue-induced rein-
statement for heroin and nicotine seeking (Zhou and Kalivas, 
2008; Ramirez-Nino et al., 2013). Surprisingly, NAC has no effect 
on cue-induced reinstatement of ethanol seeking (Weiland 
et al., 2015), but blocks behavioral sensitization to ethanol and 
associated brain changes in ΔFosB in PFC and NAc (Morais-Silva 
et al., 2016).

Compared with the overall positive NAC treatment effects 
on abstinent drug seeking above, the effects on drug reward 
during ongoing intake are equivocal. NAC does not alter the 
acute rewarding effects of cocaine during short access (1–2 h/d) 
self-administration or the acute locomotor stimulating effects 
(Madayag et al., 2007). However, chronic NAC treatment prevents 
locomotor sensitization to cocaine (Madayag et  al., 2007). One 
unique study used a second-order schedule to assess effects of 
NAC on cocaine seeking vs taking within the same experiment, 
and NAC dose-dependently reduces drug seeking but not tak-
ing at acquisition and maintenance stages (Murray et al., 2012). 
Yet, in the long access self-administration model that produces 
escalated drug intake, NAC blunts this escalation (Madayag et al., 
2007); however, if escalated cocaine intake is preestablished, 
NAC treatment is ineffective at reducing escalation progres-
sion or modifying motivation to seek a drug under a progressive 
ratio schedule (Ducret et al., 2016). NAC increases sensitivity to 
punishment in a “voluntary abstinence” model in long access 
rats only, and in NAC-treated rats, cocaine intake never returns 
to control levels following punished suppression (Ducret et al., 
2016). Taken together, these studies point to a state-dependent 
NAC treatment effect on measures of cocaine addiction and 
bring to mind the progressive adaptations in GLT-1 protein and 
gene expression observed in NAc core with increasing cocaine 
exposure and withdrawal length (R. Kim et al., 2016b). This state 
dependence is further supported by the fact that NAC does 
not increase GLT-1 levels in controls (Knackstedt et  al., 2010). 
Additionally, NAC may be more effective as a relapse prevention 
therapy for cocaine addiction delivered during abstinence rather 
than active use, an idea supported by the clinical research. NAC 
may offer more promise as a suppressant of active drug intake 
for other substances. Both acute and chronic NAC reduce nico-
tine self-administration (Ramirez-Nino et  al., 2013). Chronic 
NAC reduces ethanol intake during maintenance drinking while 
having no effect during acquisition (Quintanilla et al., 2016).

Beta-lactam antibiotics stimulate GLT1 expression and func-
tion (Rothstein et al., 2005). These include ceftriaxone, cefazolin, 
amoxicillin, ampicillin, and cefoperazone, of which ceftriax-
one has been best studied. As indicated by their nomenclature, 
these antibiotics contain a beta-lactam ring conferring their 
glutamate-regulating activity. Like NAC, the purported mecha-
nism for ceftriaxone to increase GLT-1 expression involves 
NF-κB-dependent transactivation (Seok-Geun Lee et  al., 2008). 
Repeated dosing is required for optimal effects on behavior and 
changes in GLT-1 (Rao et al., 2015a).

Ceftriaxone inhibits cue- and cocaine-induced reinstate-
ment of cocaine seeking and restores GLT-1 expression (Sari et 
al., 2009; Knackstedt et al., 2010; Sondheimer and Knackstedt, 
2011). Similarly, ceftriaxone inhibits cue-induced reinstate-
ment of heroin seeking and reverses deficits in GLT-1 expres-
sion and glutamate uptake (Shen et al., 2014). Intra-NAc DHK 
and DL-threo-benzyloxyaspartic acid (DL-TBOA) microin-
fusions block the effects of ceftriaxone on cocaine seeking 
(Fischer et al., 2013), and an anti-sense morpholino strategy 
confirmed GLT-1 dependence of ceftriaxone’s effects on heroin 
seeking (Shen et al., 2014). Ceftriaxone reduces drug-induced 
reinstatement of methamphetamine and nicotine CPP 
(Abulseoud, 2012) (Alajaji et al., 2013). Likewise, ceftriaxone 
reduces physical, somatic, and affective nicotine withdrawal 
signs in ICR mice (Alajaji et al., 2013) and nicotine intake in 
female P rats (Sari et al., 2016). Subthreshold doses of MK-801, 
an NMDAR antagonist, plus ceftriaxone reduce the acquisition 
of morphine CPP and block extinction and reinstatement of 
preference (Fan et al., 2012). Therapeutic doses of ceftriaxone 
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alone given during extinction block reinstatement of mor-
phine CPP and normalize plasticity in NAc shell medium spiny 
neurons (Hearing et al., 2016). Repeated ceftriaxone treatment 
reduces alcohol drinking in male and female P rats coincident 
with an increase in GLT-1 levels in PFC and NAc (Sari et al., 
2011, 2016). Other beta-lactams, ampicillin, cefazolin, cefop-
erazone, and amoxicillin, decrease ethanol intake and increase 
GLT-1 expression in PFC and NAc (Rao et al., 2015b; Hakami 
et al., 2016). Further, ceftriaxone alleviates alcohol withdrawal 
syndrome symptoms (Abulseoud et al., 2014) and reduces 
relapse-like drinking behavior modeled by restoration of drink-
ing following a 2-week withdrawal (Qrunfleh et al., 2013; Rao 
and Sari, 2014). Finally, cefazolin and ceftriaxone reduce cue-
induced reinstatement to ethanol (Weiland et al., 2015).

Several other agents with glutamate uptake-regulating capa-
bilities have been investigated to a lesser extent. Clavulanic 
acid, a structural beta-lactam analog with some beta-lactamase 
inhibitory activity, has greater oral availability and brain pen-
etrability compared with ceftriaxone and negligible antibiotic 
activity (J. Kim et al., 2016a). Chronic treatment with clavulanic 
acid increases GLT-1 expression in NAc and reduces motiva-
tion for cocaine under a progressive ratio schedule (J. Kim et al., 
2016a). Clavulanic acid also reduces morphine CPP and locomo-
tor sensitization (Schroeder et al., 2014). Riluzole, a neuropro-
tective drug approved for treating amyotrophic lateral sclerosis, 
increases GLT-1 transcription through a supposed heat shock 
factor 1-dependent mechanism (Liu et al., 2011) and augments 
GLT-1 protein levels and function (Carbone et al., 2012). Riluzole 
reduces expression of locomotor sensitization to metham-
phetamine (Itzhak and Martin, 2000) and blocks morphine and 
amphetamine CPP, although on its own it produces a prefer-
ence (Tzschentke and Schmidt, 1998). Acute and chronic riluzole 
treatment reduces ethanol self-administration in mice and with-
drawal-induced convulsions (Besheer et al., 2009). MS-153 [(R)-(-
)-5-methyl-l-nicotinoyl-2-pyrazoline] is a synthetic pyrazoline 
analog that enhances glutamate uptake (Shimada, 1999). MS-153 
blocks the development of amphetamine and morphine CPP 
(Nakagawa, 2005). It also reduces alcohol intake and increases 
GLT-1 in NAc, hippocampus, and amygdala in association with 
increased NF-κB65 and decreased IκB-α in P rats (Alhaddad et 
al., 2014; Aal-Aaboda et al., 2015). GPI-1046 is a neuroimmuno-
philin that reduces ethanol consumption and increases GLT-1 
levels in PFC and NAc and enhances GSH synthesis in striatum 
(Tanaka et al., 2002; Sari and Sreemantula, 2012). Propentofylline 
is a methylxanthine derivative that reduces astroglial activation 
(Sweitzer and De Leo, 2011) and increases GLT-1 levels in NAc of 
cocaine withdrawn rats. Accordingly, 5 daily injections of pro-
pentyphylline reduce reinstated cocaine seeking (Reissner et al., 
2014).

PRECLINICAL MODELS

Clinical trials using NAC to treat drug addiction have been sys-
tematically reviewed recently (Deepmala et  al., 2015; Nocito 
Echevarria et al., 2017). There are 5 NAC clinical trials for cocaine 
dependence. In the largest double-blind placebo-controlled 
study, NAC does not differ from placebo in self-reported cocaine 
use or drug-negative urines; however, in a subset of patients 
that were abstinent at study initiation, their days to relapse 
increased (LaRowe et al., 2013). In a smaller trial, NAC decreased 
self-reported use and money spent on cocaine (Mardikian et al., 
2007). Proof of principle laboratory trials show decreases in self-
reported craving and attentional bias in response to cocaine cues 
or drug infusion (LaRowe et al., 2007; Amen et al., 2011). These 

results are in line with NAC acting more as a relapse preven-
tion medication rather than cocaine cessation treatment, which 
is supported by rodent studies where NAC is largely ineffective 
at modifying cocaine intake under short access self-admin-
istration conditions but reliably reduces reinstatement when 
given during extinction (Baker et al., 2003a; Madayag et al., 2007; 
Reissner et  al., 2015). In 2 trials conducted for methampheta-
mine dependence, results are equivocal. Methamphetamine-
dependent individuals receiving NAC + naltrexone received 
no benefit over placebo (Grant et  al., 2010); however, a more 
recent double-blind crossover trial shows NAC reduced craving 
(Mousavi et al., 2015).

There are 3 clinical trials for NAC with cannabis depend-
ence and 6 for nicotine use or dependence. A small open-label 
trial shows decreased self-reported cannabis use and craving 
in adolescents (Gray et al., 2010), although there was no differ-
ence between NAC treatment and control in the follow-up study 
(Roten et al., 2013). However, in a larger, double-blind, placebo-
controlled study conducted in adolescent and young adult can-
nabis-dependent patients, NAC increased drug-negative urines 
(Gray et al., 2012). A large, multi-site, clinical study through the 
National Institute on Drug Abuse Clinical Trials Network titled 
Achieving Cannabis Cessation – Evaluating NAC treatment was 
established to replicate positive findings in a larger sample 
(McClure et al., 2014). The results of nicotine clinical trials with 
NAC vary. This may be due in part to complications associated 
with high comorbidity between smoking with other drug use 
and psychiatric disorders. For example, in a study on substance 
use in bipolar patients, nicotine use was not reduced by NAC 
(Bernardo et al., 2009), while in a study of pathological gamblers, 
NAC temporarily reduced nicotine dependence measures (Grant 
et  al., 2014). In a double-blind, placebo-controlled, pilot study 
of heavy smokers, NAC did not reduce craving or withdrawal 
symptoms, but the first cigarette smoked after brief abstinence 
reportedly felt less rewarding (Schmaal et al., 2011). Dependent 
smokers treated with chronic NAC self-reported reduced daily 
cigarettes smoked, although actual carbon monoxide levels, 
craving, and withdrawal systems were unaffected (Knackstedt 
et al., 2009). Recently, an open-label pilot trial of NAC plus varen-
icline reported a modest reduction in daily cigarettes smoked 
(McClure et al., 2015), and a 12-week, double-blind, placebo-con-
trolled pilot of NAC in patients with therapy-resistant tobacco 
use disorder showed a reduction in daily cigarette use, exhaled 
carbon monoxide, and depression scores (Prado et  al., 2015). 
Ongoing clinical trials will clarify effects of NAC on substance 
use and craving.

The clinical data is lacking as it concerns other glutamate 
uptake modulators in addiction. A single, multi-arm, modified 
blinded, placebo-controlled efficacy screening trial of cocaine-
dependent individuals found riluzole ineffective at reducing 
drug-negative urines or decreasing craving beyond placebo 
(Ciraulo et  al., 2005). There is currently one double-blind pla-
cebo-controlled study recruiting cocaine-dependent partici-
pants to assess safety and drug interactions between clavulanic 
acid and cocaine (NCT02563769).

PERSPECTIVES

Is GLT1 the Whole Story?

Recent research from Underhill and colleagues (Underhill et 
al., 2014) has ignited interest in neuronal transporter EAAT3 
in relation to amphetamine/methamphetamine addic-
tion, but this transporter might be similarly affected by other 
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psychostimulants. AMPH reduces EAAT3 function in midbrain 
dopamine neurons, resulting in potentiated glutamatergic trans-
mission (Underhill et al., 2014; Li et al., 2016). Acute administra-
tion of cocaine similarly induces long-term potentiation in VTA 
dopamine cells (Ungless et al., 2001), and it is hypothesized that 
this early synaptic potentiation contributes to the transition to 
compulsive drug use (Lüscher, 2013). Thus, it would be interesting 
to determine if EAAT3 dysfunction contributes to this effect for 
cocaine and other drugs. Moreover, outside of addiction, it has 
been shown that EAAT3 plays a critical role in learning and mem-
ory. Fear conditioning rapidly increases surface EAAT3 expression 
in hippocampus, and EAAT3-/- mice display deficits in context 
and cue-related learning and memory (Wang et al., 2014). These 
data could have implications for cue and context reward associa-
tions during drug self-administration and reinstatement if drugs 
of abuse modify EAAT3. Interestingly, learning and memory defi-
cits in EAAT3-/- are rescued by NAC treatment likely due to resto-
ration of redox status (see below) (Cao et al., 2012).

We have not discussed EAAT4 or EAAT5. EAAT5 is restricted 
to retina and thus irrelevant to this discussion. However, EAAT4 
is a neuronal glutamate transporter expressed abundantly in 
cerebellar Purkinje cells, but also at lower levels throughout 
the forebrain and midbrain with the highest levels in substan-
tia nigra pars compacta, VTA, habenula-interpedunclar system, 
supraoptic nucleus, lateral posterior thalamic nucleus, and sub-
iculum (Massie et al., 2008). EAAT4 can act as a glutamate-gated 
chloride channel adding to the ways this transporter might reg-
ulate synaptic transmission (Furuta et al., 1997). Little is known 
about the potential role of EAAT4 as a substrate for drug addic-
tion, but given that EAAT4 protein is detected in midbrain and 
forebrain regions, the study of drug effects on this transporter 
should be expanded. This is further supported by evidence of 
antipsychotic treatments impacting EAAT4 expression (Huerta, 
2006; Segnitz, 2009), and the demonstration that learned help-
less rats display decreased levels of EAAT4 in the hippocampus 
and cerebral cortex given the connection between substance 
abuse and other affective disorders (Zink et al., 2010).

How Much Does Regulation of Redox State 
Contribute to NAC Treatment Efficacy?

Alcohol, psychostimulants, and opiates affect cellular redox sta-
tus and can lead to the formation of oxidative or nitrosative stress 
(ROS and RNS). Redox-sensitive posttranslational modifications on 
cysteine residues, such as S-glutathionylation and S-nitrosylation, 
can influence the function of many addiction-related signaling 
proteins, and there is direct evidence for the involvement of these 
processes in cocaine addiction. GSH is one of the most important 
cellular antioxidants, and it is modified to GSH disulfide under 
conditions of oxidative stress. The GSH:GSH disulfide ratio is a 
common measure of intracellular redox status. Acute cocaine 
increases redox potential and S-glutathionylation of proteins in 
NAc (Uys et al., 2011). Currently, studies are underway to deter-
mine which proteins are modified as a result of chronic drug use. 
In addition to its ability to increase GLT-1, NAC is a precursor for 
GSH. NAC treatment reverses GSH depletion in rat astroglial cells 
following cocaine-induced oxidative stress (Badisa et al., 2013).

Nitric oxide is another important molecule regulated by redox 
state. Cocaine increases nitric oxide levels in dorsal striatum (D. 
K. Lee et al., 2011). Cue-induced reinstatement of cocaine seek-
ing increases s-nitrosylation and enzymatic activity of extracel-
lular matrix enzymes matrix metalloproteinases (MMPs) in NAc 
core (Smith et al., 2017). This activation of matrix metallopro-
teinases during cue-induced reinstatement generalizes across 

abused drugs and is required for cue-reinstated drug seeking 
(Smith et al., 2014). In vitro studies indicate that NAC can block 
activation of pro-MMP-9 and inhibit enzymatic function of acti-
vated protein (Pei et al., 2006), thus another parallel mechanism 
through which NAC could regulate drug seeking.

Targeting Glutamate Transport in Other Psychiatric 
Diseases

An emerging hypothesis states that addiction is one disease 
exemplary of a class of disorders that carry intrusive thinking 
as a symptomatic endophenotype, including OCD, major depres-
sion, and schizophrenia (Kalivas and Kalivas, 2016). Each of these 
diseases has a suggested etiology involving dysregulated gluta-
matergic transmission with varying degrees of evidence dem-
onstrating EAAT involvement. As mentioned before, the EAAT3 
genetic locus is associated with OCD risk (Arnold et  al., 2006; 
Porton et  al., 2013), and glutamate-modulating drugs including 
NAC, riluzole, and minocycline have garnered interest as alterna-
tive therapies for resistant OCD with several clinical trials at vari-
ous stages of completion (Pittenger, 2015). In human postmortem 
studies, deficits in EAAT protein and RNA are reported in frontal 
cortex and striatum of depressed patients (McCullumsmith and 
Meador-Woodruff, 2002; Miguel-Hidalgo et al., 2010). Likewise, a 
chronic unpredictable stress rat model of depression markedly 
downregulates EAAT2 and EAAT3 in the hippocampus (Zhu et al., 
2017). Also, acute stress in rats causes an enduring reduction of 
GLT-1 in the NAc (Garcia-Keller et al., 2016), and a recent double-
blind clinical trial in veterans comorbid for posttraumatic stress 
disorder and substance use disorder revealed that NAC reduced 
both drug craving and symptoms of posttraumatic stress disorder 
(Back et al., 2016). Sub-anesthetic ketamine, an off-label treatment 
for refractory depression increasingly used in the clinic, rescued 
this deficit and the associated behavior (Zhu et al., 2017). Similar 
results were reported with decreased GLT-1 levels in hippocam-
pus of depressed rats ameliorated by the traditional antidepres-
sant fluoxetine, suggesting that normalization of these proteins 
may be important for antidepressant efficacy (Chen et al., 2014). 
Accordingly, double-blind studies in depressed patients show 
that NAC reduces symptoms of depression (Fernandes et  al., 
2016; however, see Berk et al., 2014). For schizophrenia, the glu-
tamate hypotheses originated from observations that NMDAR 
antagonists like phencyclidine and ketamine produce schizo-
phrenia-like symptoms. Examination of human postmortem 
brains reveals consistent alterations at the level of morphology 
of glutamatergic neurons and synapses, but alterations of mRNA 
and proteins related to glutamate transmission, including EAATs, 
are varied (Hu et al., 2015). Nonetheless, therapies targeting glu-
tamate transmission at multiple levels are being investigated 
as adjunctive and stand-alone schizophrenia treatments, and 
NAC in combination with antipsychotic medication significantly 
improves symptoms of schizophrenia over control (Berk et  al., 
2008). Altogether, these examples in no way constitute a compre-
hensive analysis of this literature, as that is beyond the scope of 
this review, but these data are highlighted to illustrate remark-
able mechanistic overlap between addiction and other often co-
morbid mental diseases. Thus, EAAT-modulating drugs may have 
translational relevance across compulsive psychiatric disorders.

Conclusions

Disruptions in glutamate homeostasis following chronic drug 
use are a well-conserved neuropathology contributing to the 
lasting vulnerability to relapse characteristic of addiction, and 
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we posit that contributions of glutamate transporters to this 
phenomenon warrant additional investigation. This requires 
developing more specific pharmacological tools and additional 
examination of mechanisms underlying existing drugs. We 
introduce an emergent role for cellular redox status in response 
to chronic drugs. We propose that this dual and interactive role 
between glutamate transporters and redox status be kept in 
mind as addiction pharmacotherapies are developed and tested. 
Finally, based on positive clinical trials with NAC that restores 
GLT-1 levels in animal models of addiction, we suggest that 
glutamate transport may offer a therapeutic target extending 
beyond addiction to other psychiatric disorders characterized 
by intrusive thoughts.
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