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Simple Summary: Since the outbreak of the Coronavirus Disease (COVID-19) disease in 2019 im-
munological research is continuing to debunk contingent pathomechanistic interpretations. Currently
the COVID-2019 infection is described in humans as a state of hyperinflammation. As the COVID-
2019 pandemic continued we collected serum (first blood draw) from patients that were admitted
to the hospital (2020/21). Here we show that proteins that indicate “immune decay” (heat shock
protein 27 and 20S proteasome) and immune suppressive soluble suppression of tumorigenicity 2
(sST2) were massively increased in those COVID-19 patients. In addition, we demonstrated that
those proteins were associated with mortality, invasive ventilation, and oxygen support. Facit: Our
results indicate that COVID-19 disease can also be construed as disease that causes an immunological
disintegration. Historically it is notable to report that sepsis pathophysiology underwent a similar
metamorphosis. Until 2003 the clinical picture of sepsis was seen as a consequence of a hyperactive
immune system. This scientific interpretation tottered, and clinical research has evidenced that septic
patients are in a state of immunologic default. Based on our serological data we believe that the
concept of “COVID-19 induced hyperinflammation” is ready to undergo a critical appraisal and calls
for cytoprotective therapeutic interventions.

Abstract: Although, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents one
of the biggest challenges in the world today, the exact immunopathogenic mechanism that leads
to severe or critical Coronavirus Disease 2019 (COVID-19) has remained incompletely understood.
Several studies have indicated that high systemic plasma levels of inflammatory cytokines result in
the so-called “cytokine storm”, with subsequent development of microthrombosis, disseminated
intravascular coagulation, and multiorgan-failure. Therefore, we reasoned those elevated inflamma-
tory molecules might act as prognostic factors. Here, we analyzed 245 serum samples of patients
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with COVID-19, collected at hospital admission. We assessed the levels of heat shock protein 27
(HSP27), soluble suppressor of tumorigenicity-2 (sST2) and 20S proteasome at hospital admission
and explored their associations with overall-, 30-, 60-, 90-day- and in-hospital mortality. Moreover,
we investigated their association with the risk of ventilation. We demonstrated that increased serum
sST2 was uni- and multivariably associated with all endpoints. Furthermore, we also identified 20S
proteasome as independent prognostic factor for in-hospital mortality (sST2, AUC = 0.73; HSP27,
AUC = 0.59; 20S proteasome = 0.67). Elevated sST2, HSP27, and 20S proteasome levels at hospital
admission were univariably associated with higher risk of invasive ventilation (OR = 1.8; p < 0.001;
OR = 1.1; p = 0.04; OR = 1.03, p = 0.03, respectively). These findings could help to identify high-risk
patients early in the course of COVID-19.

Keywords: COVID-19; HSP27; sST2; ARDS; biomarker; 20S proteasome

1. Introduction

The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic
is one of the largest challenges the world faces today. It remains difficult to estimate the
frequencies of severe disease courses and fatalities linked to Coronavirus Disease 2019
(COVID-19), due to the number of undiagnosed and asymptomatic infections, which
varies with differences in susceptibility and vulnerability among different populations.
The reported hospitalization rates for patients with diagnosed SARS-CoV-2 infections
varies between 7 and 25% [1,2]. The Robert Koch Institute reported 23% mortality among
patients hospitalized with COVID-19 in Germany [2]. Among patients that required
intensive care in Germany, mortality rates were 30% and 36% for patients that received
ventilation support [2]. Clinical deterioration or the development of severe or critical
disease typically occurs later in the disease course, at least 7 to 10 days after the infection.
Although several immunopathological mechanisms that lead to severe COVID-19 have
been discovered, the exact immunopathogenesis remains incompletely understood. Several
studies have indicated that pulmonary inflammation in COVID-19 was associated with
high systemic plasma levels of inflammatory cytokines, which resulted in the so-called
“cytokine storm” [3–6]. Inflammatory cytokines are released by infected cells, alveolar
macrophages, recruited T lymphocytes, monocytes, and neutrophils. They increase the
permeability of lung epithelium and reduce its barrier function. As a result, pulmonary
edema fills the alveolar spaces, followed by the formation of hyaline membranes, similar
to the early-phase features of acute respiratory distress syndrome (ARDS) [7,8]. Indeed,
cytokine overproduction is a characteristic feature of ARDS; consequently, several studies
have suggested that a cytokine storm may be the main pathogenic factor in COVID-19-
related ARDS. [9,10]. Additionally, the overproduction of inflammatory molecules is
involved in the subsequent development of microthrombosis, disseminated intravascular
coagulation, and multiorgan-failure. This imbalance between pro- and anti-coagulants
was commonly found in patients that died of COVID-19, along with elevated d-dimer
concentrations [9,11,12].

Indeed, COVID-19-associated ARDS displays several general characteristics of non-
COVID-19-associated ARDS, such as impaired gas exchange and characteristic computed
tomography (CT) findings. However, COVID-19 associated ARDS exhibits a more variable
clinical appearance than non-COVID-19-ARDS [7,13,14]. Previous studies have also shown
that reduced numbers of CD4+ and CD8+ T-cells were associated with severe COVID-19.
That finding indicated that COVID-19 induced an immunodeficient state, comparable to
the sepsis-induced immune-cell apoptosis observed in non-COVID-19-related ARDS and
bacterial sepsis [3,4,8,15–17].

Previous studies investigated immune-cell apoptosis in patients with sepsis [18]. They
demonstrated that this phenomenon was associated with increased levels of soluble forms
of circulating cluster of differentiation 95 (CD95), tumor necrosis factor 1 (TNF1), and
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interleukin-1-converting enzyme. Those findings suggested that lymphopenia, Th2 pre-
dominance, and subsequent immunodysfunction were caused by an aberrant state of T-cell
activation that involved the CD95 pathway, the shedding of death-inducing receptors, and a
tendency for CD4+ T-cells to undergo activation-induced cell death. Further studies [19,20]
implicated the involvement of elevated levels of 20S proteasome and caspase cleaved cytok-
eratin 18 (cCK18) in immune-cell apoptosis. 20S proteasome is a multi-catalytic proteinase
complex involved in the enzymatic degradation of ubiquitinated proteins, and it serves
as a marker of cell damage and immunological activity in autoimmune diseases. CCK18
is a marker of apoptosis that is not detectible in vital or necrotic cells, which indicates
that cCK18 is associated with a higher apoptotic turnover during sepsis. In support of the
hypothesis that, in sepsis, Th2 predominance arises from a shift from Th1 to Th2-biased
cell proliferation, Brunner et al. [21] showed an increase in the levels of soluble suppressor
of tumorigenicity (sST2), a member of the interleukin-33 (IL-33) family. Indeed, sST2 is pre-
dominantly expressed in type-2 T helper (Th2) cells, but not Th1 cells, which suggests that
sST2 plays a role in cell proliferation and the promotion of the Th2 immune response. Ad-
ditionally, Mildner et al. [22] showed that sST2 was mainly produced in alveolar epithelial
cells in the lung and cardiac myocytes. They also detected a strong augmentation of sST2
serum levels within 24 h post-LPS infusion, which implied a strong inflammatory response,
accompanied by the secretion of inflammatory cytokines, such as IL-6 and TNF-α. More-
over, heat-shock-protein 27 (HSP27), a member of the small heat shock protein family, was
identified as an early marker of pulmonary damage and disease severity in patients with
chronic obstructive pulmonary disease (COPD) [23,24]. In a recently published study from
Abers et al., sST2 was independently associated with higher mortality in patients suffering
from COVID-19. They also identified elevated IL-6 at hospital admission as early predictor
for increased mortality [25]. In another study from Chen et al. IL-6 besides inflammatory
markers such as C-reactive protein (CRP), d-dimer and ferritin were associated with worse
outcome [4]. Although, the above-mentioned inflammatory markers had been described as
prognostic factors, in a meta-analysis from Leisman et al. [26] serum levels of CRP, IL-6 and
ferritin were compared between severe COVID-19 and other inflammatory diseases such
as Cytokine Release Syndrome (CRS) and ARDS, revealing markedly decreased secretion
of these markers compared to CRS and sepsis.

Considering these observations, we hypothesized that concentrations of other inflam-
matory molecules and sST2 might be elevated in our patient cohort with severe COVID-19,
and they might act as prognostic markers of survival. In the present study, we investigated
the survival of 245 patients with COVID-19 and determined serum levels of sST2, TNF1
receptor (TNFR1), cCK18, HSP27, and 20S proteasome in specimens collected at hospital
admission. We then explored which inflammatory markers were associated with a poorer
prognosis in overall survival, 30-, 60- and 90-day survival and in-hospital mortality. In ad-
dition, we investigated which parameters could indicate higher risk for patients requiring
ventilatory assistance or oxygen therapy.

2. Materials and Methods
2.1. Study Population

From August 2020 to February 2021, serum samples were collected from patients
infected with SARS-CoV-2 that were treated in the Department of Infectious Diseases and
Tropical Medicine at St. Georg Hospital, in Leipzig. The treating unit included a standard
hospital ward (33 beds) and an intermediate-care unit with 7 beds. At the time of admission,
routine laboratory parameters were determined such as complete blood counts. In addition,
laboratory parameters and clinical information, such as comorbidities and the course of
disease, were derived from the medical history of each patient. Among the 270 serum
samples, 25 were excluded, due to duplicate samples and patients with missing values.
Thus, 245 patient samples were included in this study.
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None of the patients had been vaccinated for SARS-CoV-2 prior to study inclusion.
Patients that required extracorporeal membrane oxygenation (ECMO) procedures were
transferred to another hospital, which was considered a discharge in our analyses.

All patients provided written informed consent prior to blood collection and partici-
pation.

2.2. Serum Samples

Venous blood was drawn within 48 h of hospital admission. Whole blood was cen-
trifuged at 4075× g for 4 min at room temperature. After centrifugation, aliquoted samples
were stored at −80 ◦C, until tests were performed.

2.3. Quantification of Serum HSP27, TNFR1, sST2, cCK18, and 20S Proteasome

We assessed serum levels of HSP27, sST2, and TNFR1 with commercially available
ELISA kits (R&D Systems, Minneapolis, MN, USA), as described previously assessed with
a commercial ELISA kit (Enzo Life Sciences, Farmingdale, NY, USA). All ELISA assays were
performed according to the manufacturers’ protocols. Colorimetric measurements were
performed using Tecan F50 infinite microplate reader (Tecan Group, Männedorf, Switzer-
land) with Magellan software (version 7.2, Tecan, Männedorf, Switzerland). Analytes were
quantified according to external standard curves.

2.4. Statistical Analysis

Statistical analyses were performed using R, version 3.6.2. Data on 245 patients pos-
itive for SARS-CoV-2 were analyzed and associations between inflammatory molecules
(HSP27, sST2, TNFR1, CK18, 20S proteasome) and the following endpoints were investi-
gated: Overall mortality, 30-, 60- and 90-day-mortality, in-hospital mortality, requirement
of ventilatory assistance or oxygen therapy. For the analysis of overall mortality, uni- and
multivariable Cox regression models were computed. Binary endpoints were analyzed
using uni- and multivariable logistic regression as well as ROC curves. The results of the
Cox regression models are presented using Hazard Ratios (HR) with corresponding 95%
Confidence Intervalls (CI) and for the binary endpoints, results of the logistic regression
models are presented as Odds Ratios (OR) with 95% CI. ROC curves and AUCs with
95% CIs are presented. All possible predictors were at first assessed in an univariable
analysis. Subsequently, multivariable models were computed including only significant
predictors from the univariable analyses. Median concentrations of assessed inflammatory
markers were compared using Mann-Whitney-U-test. Due to the exploratory character of
the study, no correction for multiplicity was performed and p-values < 0.05 were considered
statistically significant.

3. Results
3.1. Study Population Characteristics

After excluding duplicate samples and patients with missing data, we included serum
samples of 245 patients with SARS-CoV-2 infections. Demographic, clinicopathological,
and laboratory details are shown in Tables 1 and 2. Median values with interquartile range
(IQR) of measured parameters for mortality endpoints are depicted in Table 3. Detailed
description of the World Health Organization (WHO)—Outcome Classification for COVID-
19 is depicted in the Supplementary Data (Table S1) [27].
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Table 1. Demographic characteristics for the study population at hospital admission.

30-Day Mortality 60-Day Mortality 90-Day Mortality In-Hospital Mortality

Characteristics All Patients
(n = 245)

Event
(n = 44)

Event-Free
(n = 177) p-Value Event

(n = 52)
Event-Free

(n = 168) p-Value Event
(n = 52)

Event-Free
(n = 153) p-Value Event

(n = 39)
Event-Free

(n = 206) p-Value

Age (years) 76 (64–83) 80.5 (74–86) 74 (62–83) 80 (74–86) 74 (62–83) 80 (74–86) 74 (62–83) 81 (74–86) 74
(62.25–82)

Sex
Female 113 (46.12%) 16 (36.36%) 83 (46.89%) ns 19 (36.54%) 80 (47.62%) ns 19 (36.54%) 69 (45.1%) ns 16 (41.03%) 97 (47.09%) ns
Male 132 (53.88%) 28 (63.64%) 94 (53.11%) ns 33 (63.46%) 88 (52.38%) ns 33 (63.46%) 84 (54.9%) ns 23 (58.97%) 109 (52.91%) ns

Comorbidities
Diabetes 98 (40.2%) 19 (43.2%) 72 (40.9%) ns 25 (48.1%) 66 (39.5%) ns 25 (48.1%) 60 (39.5%) ns 18 (46.2%) 67 (40.6%) ns
Hypertension 183 (74.4%) 35 (79.5%) 131 (74.4%) ns 43 (82.7%) 122 (73.1%) ns 43 (82.7%) 111 (73.0%) ns 33 (84.6%) 121 (73.3%) ns
Transplantation 2 (0.8%) 0 (0%) 1 (0.6%) ns 0 (0%) 1 (0.6%) ns 0 (0.0%) 1 (0.7%) ns 0 (0.0%) 1 (0.6%) ns
Liver cirrhosis 2 (0.8%) 1 (2.4%) 1 (0.6%) ns 1 (2.0%) 1 (0.6%) ns 1 (2.0%) 1 (0.7%) ns 1 (2.7%) 1 (0.6%) ns
Heart failure 64 (26.1%) 21 (48.8%) 38 (21.5%) <0.01 22 (43.1%) 37 (22.0%) <0.01 22 (43.1%) 36 (23.5%) 0.01 18 (47.4%) 40 (24.1%) <0.01

Medication at admission
ACE Inhibitors 75 (30.6%) 15 (34.1%) 52 (29.5%) ns 18 (34.6%) 49 (29.3%) ns 18 (34.6%) 44 (28.9%) ns 12 (30.8%) 50 (30.3%) ns
Angiotensin-Receptor

Blocker 87 (35.5%) 11 (25.0%) 69 (39.2%) ns 15 (28.8%) 64 (38.3%) ns 15 (28.8%) 60 (39.5%) ns 10 (25.6%) 65 (39.4%) ns

Calcium Inhibitors 32 (13.1%) 6 (13.6%) 20 (11.4%) ns 6 (11.5%) 20 (12.0%) ns 6 (11.5%) 20 (13.2%) ns 6 (15.4%) 20 (12.2%) ns
Glucocorticoids 14 (5.7%) 5 (11.4%) 7 (4.0%) ns 5 (9.6%) 7 (4.2%) ns 5 (9.6%) 7 (4.6%) ns 3 (7.7%) 9 (5.5%) ns
Aspirin 52 (21.2%) 8 (18.2%) 41 (23.3%) ns 12 (23.1%) 38 (22.2%) ns 12 (23.1%) 35 (23.0%) ns 7 (17.9%) 40 (24.2%) ns
Heparin 5 (2.0%) 2 (4.5%) 3 (1.7%) ns 2 (3.8%) 3 (1.8%) ns 2 (3.8%) 3 (2.0%) ns 1 (2.6%) 4 (2.4%) ns
NOACs 56 (22.9%) 15 (34.1%) 36 (20.5%) ns 15 (28.8%) 36 (21.6%) ns 15 (28.8%) 34 (22.4%) ns 11 (28.2%) 38 (23.0%) ns

Hospitalization (days) 10 (6–16)

Values are the median (interquartile range) or the number (%), as indicated. Percentages refer to event or no-event group; ACE, angiotensin converting enzyme; NOAC, new oral anticoagulants; ns, non-significant.
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Table 2. WHO outcome classification codes for the study population.

30-Day Mortality 60-Day Mortality 90-Day Mortality In-Hospital Mortality

Characteristics All Patients (n = 245) Event (n = 44) Event-Free (n = 177) Event (n = 52) Event-Free (n = 168) Event (n = 52) Event-Free (n = 153) Event (n = 39) Event-Free (n = 206)

WHO Outcome Classification
at admission

2 3 (1.22%) 0 (0%) 3 (1.69%) 0 (0%) 3 (1.79%) 0 (0%) 2 (1.31%) 0 (0%) 3 (1.46%)
3 63 (25.71%) 8 (18.18%) 50 (28.25%) 11 (21.15%) 47 (27.98%) 11 (21.15%) 43 (28.1%) 7 (17.95%) 56 (27.18%)
4 137 (55.92%) 22 (50%) 100 (56.5%) 26 (50%) 96 (57.14%) 26 (50%) 86 (56.21%) 18 (46.15%) 119 (57.77%)
5 41 (16.73%) 13 (29.55%) 24 (13.56%) 14 (26.92%) 22 (13.1%) 14 (26.92%) 22 (14.38%) 13 (33.33%) 28 (13.59%)
6 1 (0.41%) 1 (2.27%) 0 (0%) 1 (1.92%) 0 (0%) 1 (1.92%) 0 (0%) 1 (2.56%) 0 (0%)

at discharge
0 26 (10.61%) 0 (0%) 19 (10.73%) 0 (0%) 19 (11.31%) 0 (0%) 19 (12.42%) 0 (0%) 26 (12.62%)
1 14 (5.71%) 2 (4.55%) 11 (6.21%) 3 (5.77%) 10 (5.95%) 3 (5.77%) 9 (5.88%) 1 (2.56%) 13 (6.31%)
2 131 (53.47%) 2 (4.55%) 115 (64.97%) 5 (9.62%) 111 (66.07%) 5 (9.62%) 105 (68.63%) 0 (0%) 131 (63.59%)
3 18 (7.35%) 0 (0%) 17 (9.6%) 0 (0%) 17 (10.12%) 0 (0%) 13 (8.5%) 0 (0%) 18 (8.74%)
4 12 (4.9%) 1 (2.27%) 10 (5.65%) 1 (1.92%) 10 (5.95%) 1 (1.92%) 7 (4.58%) 1 (2.56%) 11 (5.34%)
5 1 (0.41%) 0 (0%) 1 (0.56%) 1 (1.92%) 0 (0%) 1 (1.92%) 0 (0%) 0 (0%) 1 (0.49%)
7 1 (0.41%) 0 (0%) 1 (0.56%) 0 (0%) 1 (0.6%) 0 (0%) 0 (0%) 0 (0%) 1 (0.49%)
8 42 (17.14%) 39 (88.64%) 3 (1.69%) 42 (80.77%) 0 (0%) 42 (80.77%) 0 (0%) 37 (94.87%) 5 (2.43%)

Values are the median (interquartile range) or the number (%), as indicated. Percentages refer to event or no-event group; WHO, World Health Organization.

Table 3. Median serum content of assessed molecules at hospital admission for endpoints investigated.

30-Day Mortality 60-Day Mortality 90-Day Mortality In-Hospital Mortality

Molecules All Patients (n = 245) Event (n = 44) Event-Free(n = 177) Event (n = 52) Event-Free (n = 168) Event (n = 52) Event-Free (n = 153) Event (n = 39) Event-Free (n = 206)

sST2 (ng/mL) 7.9 8.8 (7.8–9.7) 7.7 (6.5–8.7) 8.7 (7.6–9.6) 7.7 (6.5–8.7) 8.7 (7.6–9.7) 7.7 (6.5–8.7) 8.8 (7.9–9.8) 7.7 (6.5–8.7)
HSP27 (ng/mL) 5.8 6.6 (5.3–9.5) 5.5 (4.1–8.0) 6.7 (5.1–9.0) 5.5 (4.0–8.2) 6.7 (5.0–9.0) 5.4 (4.0–8.1) 6.5 (5.0–9.5) 5.5 (4.0–8.1)
20S proteasome

(µg/mL) 2.2 5.2 (0.3–9.6) 1.8 (0–5.4) 4.4 (0.3–9.2) 5.3 (0–5.3) 4.4 (0.3–9.2) 2.1 (0–5.6) 5.7 (1.1–9.8) 2.0 (0–5.4)

cCK18 (U/L) 162 151 (127–233) 173 (130–274) 151 (127–234) 170 (130–259) 151 (127–234) 170 (130–268) 148 (126–233) 171 (131–265)
TNFR1 (ng/mL) 2.4 2.7 (2.0–3.9) 2.3 (1.7–3.9) 2.7 (1.9–4.0) 2.4 (1.7–3.9) 2.7 (1.9–4.0) 2.3 (1.7–3.7) 2.6 (2.0–3.6) 2.3 (1.7–3.9)

Data are given as median with interquartile range; sST2, soluble suppression of tumorigenicity 2; HSP27, heat shock protein 27; cCK18, caspase cleaved cytokeratin 18; TNFR1, tumor necrosis factor receptor 1.
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The study population displayed a female to male ratio of 46.1:53.9 with a median age
of 76 years (IQR: 64–83). The majority of the study population comprised patients with
pneumonic infiltrates, detected by thorax CT, and most (n = 137, 55.9%) required oxygen
supplementation at hospital admission, which corresponded to a WHO outcome classifica-
tion of 4, based on the Ordinal Scale for Clinical Improvement as depicted in Supplementary
Data Table S1 [27]. The median follow-up time was 108 days (IQR: 19.5–162.5 days). The
numbers of deaths after 30, 60, and 90 days were 44 (19.91%), 52 (23.64%), and 52 (25.37%),
respectively. The total number of deaths during follow up was 54. Taken the 60-day post-
hospital mortality, 60 days after discharge 13 from 180 patients died after initially surviving
COVID-19 hospitalization. Twenty-six patients with shorter follow-up than 60 days and
39 patients that already died in the hospital were excluded for this analysis.

3.2. Soluble ST2 Serum Content Is Significantly Associated with Worse Overall Survival

To assess a potential prognostic impact of investigated inflammatory molecules on
Overall Survival, a univariable Cox-Regression model was performed. In our univariable
analysis, age (measured in years) and sST2 (measured in ng/mL) are associated with worse
overall survival in our study cohort (HR = 1.364, p = 0.001). Elevated sST2 levels remained
significantly associated with higher mortality adjusting for age in the multivariable analysis
(HR = 1.353, p = 0.002). All other investigated inflammatory markers showed no significant
association with worse overall survival. Detailed results are listed in Table 4.

Table 4. Univariable and multivariable Cox-Regression in association with overall survival (n = 245).

Prognostic Markers Hazard Ratio Lower CL Upper CL p-Value

Univariable Cox-Regression
Age (years) 1.047 1.02 1.074 <0.001

HSP27 (ng/mL) 1.083 0.998 1.176 0.055
sST2 (ng/mL) 1.364 1.13 1.647 0.001

TNFR1 (ng/mL) 1.053 0.98 1.132 0.162
cCK18 (1000 U/L) 0.595 0.13 2.735 0.505

20S proteasome (µg/mL) 1.019 0.998 1.041 0.076
Multivariable Cox-Regression

Age (years) 1.047 1.019 1.075 <0.001
sST2 (ng/mL) 1.353 1.116 1.639 0.002

CL, confidence-limit; sST2, soluble suppression of tumorigenicity 2; HSP27, heat shock protein 27; cCK18, caspase cleaved cytokeratin 18;
TNFR1, tumor necrosis factor receptor 1.

3.3. Elevated sST2 Acts as an Potential Prognostic Factor for 30-, 60- and 90-Days Mortality,
Elevated 20S Proteasome Levels Were Associated with Worse 30-Days Mortality

To investigate the association of assessed inflammatory markers with 30-, 60- and
90-day mortality, uni- and multivariable logistic regression models were computed. Since
their follow up time was shorter than 30 days, 24 patients were excluded from the analysis.
Within 30 days, 44 patients died. Increased levels of serum sST2 and 20S proteasome
were associated with higher 30-days mortality in a univariable analysis (sST2: OR = 1.536,
p < 0.001; 20S proteasome: OR = 1.037, p = 0.004). None of the other assessed biomarkers
were significantly associated with worse prognosis in 30-days mortality. In multivariable
analysis with inclusion of sST2, 20S proteasome and age, only sST2 remained significantly
associated with the outcome (OR = 1.457, p = 0.004) (Table 5). Comparing serum content of
sST2, HSP27 and 20S proteasome, patients in the event group showed significantly elevated
levels of these markers (Figure 1, Table 3). TNFR1 and cCK18 serum contents for all binary
endpoints in event and non-event groups are depicted in Figures S1–S6.
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Table 5. Univariable and multivariable logistic regression in association with 30-day mortality (n = 221).

Prognostic Markers Odds Ratio Lower CL Upper CL p-Value

Univariable Logistic Regression
Age (years) 1.056 1.023 1.094 0.001

HSP27 (ng/mL) 1.102 0.997 1.22 0.056
sST2 (ng/mL) 1.536 1.216 1.991 <0.001

TNFR1 (ng/mL) 1.046 0.931 1.16 0.408
cCK18 (1000 U/L) 0.723 0.101 3.097 0.702

20S proteasome (µg/mL) 1.037 1.002 1.077 0.044
Multivariable Logistic Regression

Age (years) 1.059 1.024 1.1 0.002
sST2 (ng/mL) 1.457 1.144 1.911 0.004

20S proteasome (µg/mL) 1.034 0.997 1.076 0.072

CL, confidence-limit; sST2, soluble suppression of tumorigenicity 2; HSP27, heat shock protein 27; cCK18, caspase cleaved cytokeratin 18;
TNFR1, tumor necrosis factor receptor 1.

Figure 1. Comparison of serum contents of (A) sST2, (B) HSP27 and (C) 20S proteasome showed significant elevations of
investigated parameters in the event group. (sST2: p < 0.001, HSP27: p = 0.04, 20S proteasome: p = 0.017).

For 60-day mortality outcome, 25 patients were excluded since their follow up time
was shorter than 60 days. Only sST2 was significantly associated with increased 60-day mor-
tality risk (univariable: OR = 1.335, p = 0.007; multivariable: OR = 1.298, p = 0.016), whereas
the other markers showed no significant effect on the 60-day outcome (Table 6). Taken
the median serum levels of patients who died within 60 days, they should a significant
increment of sST2, HSP27 and 20S proteasome (Figure 2, Table 3).

Table 6. Univariable and multivariable logistic regression in association with 60-day mortality (n = 220).

Prognostic Markers Odds Ratio Lower CL Upper CL p-Value

Univariable Logistic Regression
Age (years) 1.052 1.023 1.087 <0.001

HSP27 (ng/mL) 1.092 0.992 1.204 0.071
sST2 (ng/mL) 1.332 1.091 1.659 0.007

TNFR1 (ng/mL) 1.07 0.964 1.186 0.19
cCK18 (1000 U/L) 0.566 0.081 2.42 0.502

20S proteasome (µg/mL) 1.032 0.997 1.07 0.076
Multivariable Logistic Regression

Age (years) 1.051 1.02 1.086 0.002
sST2 (ng/mL) 1.298 1.061 1.624 0.016

CL, confidence-limit; sST2, soluble suppression of tumorigenicity 2; HSP27, heat shock protein 27; cCK18, caspase cleaved cytokeratin 18;
TNFR1, tumor necrosis factor receptor 1.
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Figure 2. Serum levels of (A) sST2, (B) HSP27 and (C) 20S proteasome of patients not surviving 60 days differed significantly
from patients surviving the first 60 days. (sST2: p < 0.001, HSP27: p = 0.036, 20S proteasome: p = 0.021).

For the analysis of 90-day mortality, 40 patients were excluded due to shorter follow-
up time. In our study cohort, 52 patients died during the first 90 days. In the univariable
and multivariable logistic regression model, increased values of sST2 were significantly
associated with higher 90-day mortality risk in both, the univariable (OR = 1.335, p = 0.007)
and multivariable (OR = 1.304, p = 0.014) analyses. (Table 7) Serum levels of sST2 and
HSP27 were also elevated in non-surviving patients (Figure 3, Table 3).

Table 7. Univariable and multivariable logistic regression in association with 90-day mortality (n = 205).

Prognostic Markers Odds Ratio Lower CL Upper CL p-Value

Univariable Logistic Regression
Age (years) 1.053 1.022 1.088 0.001

HSP27 (ng/mL) 1.096 0.996 1.209 0.061
sST2 (ng/mL) 1.335 1.095 1.663 0.007

TNFR1(ng/mL) 1.098 0.984 1.236 0.098
cCK18 (1000 U/L) 0.536 0.076 2.296 0.463

20S proteasome (µg/mL) 1.027 0.993 1.065 0.122
Multivariable Logistic Regression

Age (years) 1.051 1.02 1.087 0.002
sST2 (ng/mL) 1.304 1.068 1.631 0.014

CL, confidence-limit; sST2, soluble suppression of tumorigenicity 2; HSP27, heat shock protein 27; cCK18, caspase cleaved cytokeratin 18;
TNFR1, tumor necrosis factor receptor 1.

Figure 3. Comparison of serum contents of (A) sST2, (B) HSP27 showed significant elevations of sST2 (p < 0.001) and HSP27
(p = 0.023). In (C) no significant alteration of 20S proteasome levels in the event group was detected (p = ns).
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3.4. sST2 and 20S Proteasome Serum Levels Are Significant Predictors for In-Hospital Mortality

To evaluate the prognostic impact of investigated biomarkers on hospital survival,
logistic regression models were performed. Of 245 included patients, 39 died in the hospital.
In univariable analysis, sST2 (OR = 1.697, p < 0.001) and 20S proteasome (OR = 1.044,
p = 0.019) were significantly associated with increased risk of in-hospital mortality. This
effects also remained in multivariable analysis (OR = 1.631 and 1.041, p < 0.001 and 0.033,
respectively). The other investigated parameters showed no significant prognostic impact
on in-hospital mortality (Table 8). sST2 and 20S proteasome levels were significantly
elevated in patients who died during hospitalization (Figure 4, Table 3).

Table 8. Univariable and multivariable logistic regression in association with in-hospital mortality (n = 245).

Prognostic Markers Odds Ratio Lower CL Upper CL p-Value

Univariable Logistic Regression
Age (years) 1.062 1.027 1.104 <0.001

HSP27 (ng/mL) 1.101 0.993 1.22 0.063
sST2 (ng/mL) 1.697 1.316 2.253 <0.001

TNFR1 (ng/mL) 1.079 0.963 1.2 0.16
cCK18 (1000 U/L) 0.291 0.019 1.957 0.298

20S proteasome (µg/mL) 1.044 1.008 1.085 0.019
Multivariable Logistic Regression

Age (years) 1.068 1.029 1.114 0.001
sST2 (ng/mL) 1.631 1.245 2.21 <0.001

20S proteasome (µg/mL) 1.041 1.003 1.085 0.033

CL, confidence-limit; sST2, soluble suppression of tumorigenicity 2; HSP27, heat shock protein 27; cCK18, caspase cleaved cytokeratin 18;
TNFR1, tumor necrosis factor receptor 1.

Figure 4. Comparison of serum contents of (A) sST2 and (C) 20S proteasome showed significant elevations in patients who
died in the hospital when compared to surviving hospital patients. (sST2: p < 0.001, 20S proteasome: p = 0.001). Comparison
of HSP27 serum content (B) showed no significant difference between these two groups (p = ns).

3.5. Serum Content of sST2, HSP27, and 20S Proteasome Might Predict Risk of Intubation and
Requirement of Oxygen Therapy

We further evaluated the impact of inflammatory markers on endpoints such as the
requirement of invasive ventilation or oxygen therapy. In our study cohort, 43 patients
required invasive ventilation during hospitalization and oxygen therapy at hospital admis-
sion was needed in 179 cases. HSP27, sST2 and 20S proteasome serum levels were elevated
in patients requiring invasive ventilation or oxygen therapy.

HSP27 (OR = 1.218, p < 0.001), sST2 (OR = 1.258, p = 0.003) and 20S proteasome
(OR = 1.177, p < 0.001) were significantly associated with the requirement of oxygen therapy
at hospital admission in the univariable analysis. Increased values of these molecules were
also significantly associated with the need for oxygen therapy in the multivariable analysis
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(OR = 1.134, 1.175 and 1.147, p = 0.037, 0.046 and 0.004, respectively) (Table 9). Serum levels
of these inflammatory molecules were also significantly increased in patients requiring
oxygen therapy at hospital admission (Figure 5).

Table 9. Univariable and multivariable logistic regression in association with requirement of oxygen therapy (n = 245).

Prognostic Markers Odds Ratio Lower CL Upper CL p-Value

Univariable Logistic Regression
Age (years) 0.995 0.974 1.016 0.662

HSP27 (ng/mL) 1.218 1.091 1.374 <0.001
sST2 (ng/mL) 1.258 1.082 1.475 0.003

TNFR1 (ng/mL) 1.107 0.98 1.289 0.146
cCK18 (1000 U/L) 0.747 0.213 2.985 0.651

20S proteasome (µg/mL) 1.177 1.084 1.3 <0.001
Multivariable Logistic Regression

HSP27 (ng/mL) 1.134 1.012 1.282 0.037
sST2 (ng/mL) 1.175 1.003 1.38 0.046

20S proteasome (µg/mL) 1.147 1.054 1.269 0.004

CL, confidence-limit; sST2, soluble suppression of tumorigenicity 2; HSP27, heat shock protein 27; cCK18, caspase cleaved cytokeratin 18;
TNFR1, tumor necrosis factor receptor 1.

Figure 5. Serum levels of (A) sST2, (B) HSP27 and (C) 20S proteasome showed significant elevations of investigated
parameters in the event group. (sST2: p < 0.001, HSP27: p < 0.001, 20S proteasome: p < 0.001).

In the univariable analysis HSP27 (OR = 1.108, p = 0.041), sST2 (OR = 1.79, p < 0.001)
and 20S proteasome (OR = 1.039, p = 0.031) were identified as significant predictors for
the risk of intubation. In the multivariable analysis, only sST2 (OR = 1.709, p < 0.001)
remained significantly associated with the outcome (Table 10). Comparing the median
concentrations of sST2, HSP27 and 20S proteasome, patients requiring invasive ventilations
showed significant increment of these inflammatory molecules (Figure 6).

Table 10. Univariable and multivariable logistic regression in association with requirement of invasive ventilation (n = 245).

Prognostic Markers Odds Ratio Lower CL Upper CL p-Value

Univariable Logistic Regression
Age (years) 1.053 1.021 1.09 0.002

HSP27 (ng/mL) 1.108 1.003 1.225 0.041
sST2 (ng/mL) 1.79 1.39 2.373 <0.001

TNFR1 (ng/mL) 1.065 0.951 1.182 0.24
cCK18 (1000 U/L) 0.806 0.112 3.45 0.799

20S proteasome (µg/mL) 1.039 1.004 1.079 0.031
Multivariable Logistic Regression

Age (years) 1.055 1.02 1.096 0.003
HSP27 (ng/mL) 1.028 0.915 1.155 0.635
sST2 (ng/mL) 1.709 1.306 2.31 <0.001

20S proteasome (µg/mL) 1.032 0.993 1.074 0.094

CL, confidence-limit; sST2, soluble suppression of tumorigenicity 2; HSP27, heat shock protein 27; cCK18, caspase cleaved cytokeratin 18;
TNFR1, tumor necrosis factor receptor 1.
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Figure 6. Serum levels of (A) sST2, (B) HSP27 and (C) 20S proteasome showed significant elevations of investigated
parameters in the event group. (sST2: p < 0.001, HSP27: p = 0.034, 20S proteasome: p = 0.016).

3.6. Correlations between sST2 with 20S Proteasome, HSP27, and TNFR1

To identify potential correlations between the investigated biomarkers, we performed
the Spearman rank correlation analyses. We found that ST2 was positively correlated
with 20S proteasome, HSP27, and TNFR1 and that HSP27 was positively correlated with
20S proteasome (Figure 7). ROC curves and Area under the curve (AUC) are depicted in
Figure 8.

Figure 7. Serum levels of (A) sST2 and HSP27, (B) sST2 and 20S proteasome, (C) sST2 and TNFR1 and (D) HSP27 and 20S
proteasome showed significant correlations using Spearman’s rank correlation.
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Figure 8. ROCs for binary endpoints were computed and AUC with 95% CI were analyzed to determine diagnostic accuracy.
This figure shows ROCs for (A) 30-day mortality, (B) 60-day mortality, (C) 90-day mortality and (D) in-hospital mortality.

4. Discussion

In this study, we examined the presence of soluble HSP27, sST2, TNFR1, cCK18,
and 20S proteasome in serum samples obtained at hospital admission from patients with
COVID-19. We confirmed previous studies which showed elevated sST2 levels in severe
and fatal COVID-19 cases [25,28,29]. We also identified sST2 as a potential prognostic
marker of overall mortality, 30-,60- and 90-day mortality, and in-hospital mortality. Serum
sST2, 20S proteasome and HSP27 were also associated with the need of oxygen therapy or
invasive ventilation. To our knowledge, this study was the first to examine HSP27 and 20S
proteasome concentrations in SARS-CoV-2 positive patients. Moreover, we showed that
elevated serum sST2 and 20S proteasome levels at hospital admission were significantly
associated with increased risk of in-hospital mortality in uni- and multivariable logistic
regression.

4.1. sST2

ST2 is a member of the IL-1 receptor family. It is expressed in two main isoforms: a
transmembrane cellular (ST2L) and a soluble (sST2) form. ST2 is the receptor for IL-33,
which is secreted by living cells in response to cell damage [30]. Alveolar epithelial cells
in the lung and cardiac myocytes were previously identified as main sources of sST2 [22].
Because sST2 is inducible by inflammatory stimuli, it is elevated in a large number of
diseases, including sepsis, trauma, burns, and heart failure [21,25,31–33]. Another study
assessed serum sST2 levels in patients with chronic heart failure [31] and showed that
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the median sST2 concentration was 3.631ng/mL. In contrast, serum sST2 levels were
greater than 400 ng/mL in patients on day 1 after a left ventricular assist device (LVAD)
implantation, and subsequently, levels normalized by the end of the first postoperative
week [34]. In comparison, the median sST2 value in our study cohort was 7.853 ng/mL
(IQR: 6.584–8.935). Therefore, the median serum sST2 levels in patients with COVID-19
were twice as high as the levels found in patients with chronic heart failure. Hacker
et al. [32] and Brunner et al. [21] detected a median serum level of 99–316 pg/mL in
healthy controls. This finding suggested that patients with COVID-19 infections had
undergone a remarkable production of inflammatory molecules by the time they were
admitted to the hospital. We also found a correlation of patients suffering from heart failure
and worse outcome in all endpoints investigated, which may be re related to a two-hit
hypothesis: already elevated levels of sST, such as in chronic heart failure patients [31]
plus the inflammatory secretion during COVID-19 as seen in our results lead to massive
increment of sST2-mediated pathways resulting in worse outcome. This is underlined by
the fact that we found sST2 as a potential prognostic factor for in-hospital mortality, 30-,
60- and 90-day mortality. This finding supported the hypothesis that patients with severe
COVID-19 exhibited strong inflammatory activation [5,6,8], and it confirmed previous
findings from Abers et al. [25] that identified sST2 as a marker that clearly distinguished
between patients with increased risk and patients with low risk of mortality.

4.2. HSP27

HSP27 acts as an intracellular chaperone to maintain normal cell functions, but it
is also active extracellularly. HSPs are involved in apoptosis inhibition, cytoprotection,
and immunomodulation [35–38]. Moreover, HSP27 may play a major role in platelet
aggregation by modifying actin polymerization [38,39]. Tian et al. [39] found an associ-
ation between a high thrombus burden and elevated HSP27 levels in patients with ST
elevation myocardial infarctions. In addition, recently, HSP27 was identified as prognostic
marker in inflammatory diseases, such as COPD and trauma-related ARDS [23,24,37,40,41].
Therefore, we hypothesized that, in patients with COVID-19, elevated HSP27 might be
associated with lung injury. Furthermore, the increase in HSP27 might have been related to
thromboinflammation, which is the coordinated activation of inflammatory and thrombotic
responses [38]. Indeed, this condition might explain some of the key aspects of morbidity
and mortality observed in patients with COVID-19 [42].

HSP27 serum levels were previously assessed in healthy volunteers, who exhibited a
median concentration of 1.482 ng/mL [43]. In our study cohort, the median HSP27 level at
hospital admission was 5.839 ng/mL (IQR: 4.070–8.316), which was about four-fold higher
than the levels found in healthy controls. In our study cohort, HSP27 was significantly
associated with increased risk for invasive ventilation or the need of oxygen therapy, which
could indicate an extensive damage of the lung in these patients.

4.3. 20S Proteasome

Roth et al. [19] previously described elevated core 20S proteasome levels in critically
ill patients, particularly those with sepsis. Core 20S proteasome is a marker of increased
apoptotic turnover. Therefore, we investigated whether 20S proteasome levels could act
as a prognostic marker for overall and in-hospital mortality. Surprisingly, we found that
increased 20S proteasome levels were not significantly associated with overall-, 30-,60- and
90-day mortality, but we found that 20S proteasome was a significant predictor for the risk
of invasive ventilation or the need of oxygen therapy. Increased 20S serum proteasome was
also significantly associated with higher in-hospital mortality risk. Elevated 20S proteasome
was found in several other pathological conditions such as carcinoma [44], burn injuries [45]
and autoimmune diseases [46] Lately, the therapeutic potential of proteasome inhibitors
have been discussed and several studies showed increased 20S proteasome levels in the
alveolar space during ARDS in an active configuration [47–50]. In our patient cohort the
median serum level of 20S proteasome was 2.2 µg/mL whereas serum levels of healthy
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controls were assessed 1.1 ± 0.26 µg/mL in a study from Hetz et al. [51]. These observations
confirm our findings that patients in our study cohort with elevated 20S proteasome levels
suffer from severe tissue damage and hyper-activated immune system, whereas these
factors together lead to increased apoptosis and thus probably higher risk of invasive
ventilation or higher in-hospital mortality [52].

4.4. Survival

Our population comprised patients primarily hospitalized in a non-intensive care
unit (ICU) setting. Patients with severe diseases, up to WHO scale 5 (high-flow oxygen
therapy), could be treated outside the ICU. Patients that required non-invasive or invasive
ventilation had to be transferred to the ICU. Our cohort had a mortality of 19.91% after
30 days. However, the mortality of our study cohort increased to 23.64% after 90 days,
respectively. Additionally, the fact that after discharge from the hospital, nearly 8% of
patients died after initially surviving COVID-19, reflect the possibly longer-term effects of
the SARS-CoV-2 infection.

4.5. Limitations

The main limitation of this study was the lack of a matched reference group without
a COVID-19 history, for survival estimations in this vulnerable group of older patients
(median age 76 years) and the performance in a single-center setting. However, our
survival results suggested that COVID-19 also had an impact on survival after successful
treatment of the acute infection and clearance of the virological disease. Also, the lack
of patients receiving ECMO in our study population due to transfer to another hospital
may underestimate the prognostic value for severe or critical disease of our parameters
investigated.

Additionally, as a result of its retrospective character, laboratory parameters such
as d-dimer, fibrinogen, lymphocyte and leukocyte count at hospital admission were not
available for all patients and could therefore not be used for our analysis. Although
our parameters investigated don’t have sufficient accuracy to be used in clinics as such
the association of sST2, HSP27 and 20S proteasome in combination with the previously
mentioned laboratory parameters with disease outcome may be a great avenue for further
investigations. The study of Janik et al. [53], where they showed a prognostic and diagnostic
impact of fibrinogen, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte
(PLR) ratio on thymic epithelial tumors outcome could act as an example for further
COVID-19 biomarker investigations.

5. Conclusions

With this study, we evidenced that a high level of sST2 could serve as prognostic
marker for disease severity and overall survival. We demonstrated that serum sST2 was an
early prognostic marker for overall mortality, 30-, 60-, and 90-day mortality and in-hospital
mortality, and the need for invasive ventilation or oxygen therapy. Moreover, we showed
that besides sST2, also 20S proteasome, and HSP27 were significantly associated with a
subsequent requirement for invasive ventilation during hospitalization. In addition, we
evidenced that the augmented release of these inflammatory molecules was associated
with the need for oxygen therapy at hospital admission. We also detected a significant
increment in 20S proteasome and sST2 levels in patients that died during the hospital stay.
Even if the parameters don’t have sufficient accuracy to be used in clinics as such, our
analysis provided a fundament for further investigations such as combination of sST2,
HSP27, and 20S proteasome with commonly measured laboratory parameters such as
fibrinogen and d-dimer. Our findings also contributed to a broader understanding of the
systemic inflammation response in patients with COVID-19 and might help identify high
risk patients at admission.
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cytokeratin 18; TNFR1, tumor necrosis factor receptor 1, Figure S6: Serum content of CK18 and
TNFR1 revealed no significant difference between the event and event-free group. CK18, cytokeratin
18; TNFR1, tumor necrosis factor receptor 1, Table S1: WHO-Outcome Classification.

Author Contributions: H.J.A.: conceptualization; R.W., M.-T.L. and H.J.A.: design and manuscript
writing; S.K. and C.L.: patient care; R.W.: serum sample collection; R.W., M.-T.L., M.L., M.M., B.M.,
K.H., S.K., C.L., J.B., H.J.A., P.K., A.G., D.T.: manuscript revision. P.K., A.G.: statistical analyses. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by FOLAB (Clinic of Thoracic Surgery). M.-T.L. and H.J.A. were
supported by the Vienna Business Agency “APOSEC to clinic,” (Funding ID 2343727, 2018–2020),
and by the Aposcience AG under group leader H.J.A.

Institutional Review Board Statement: The study was approved by the Ethics Committee of the
German-Saxonian Board of Physicians, Dresden, Germany (EK-BR-88/20.1), and it was conducted in
accordance with the current version of the Declaration of Helsinki.

Informed Consent Statement: All patients provided written informed consent prior to blood collec-
tion and participation.

Data Availability Statement: All data and materials support our published claims and comply with
field standards. All data are available upon request.

Acknowledgments: This study was performed as part of a Doctoral thesis (MTL). This research
project was financed in part by the FFG Grant “APOSEC” (852748 and 862068; 2015–2019), by the
Vienna Business Agency “APOSEC to clinic,” (ID 2343727, 2018–2020), and by the Aposcience AG
under group leader HJA. MM was funded by the Sparkling Science Program of the Austrian Federal
Ministry of Education, Science and Research (SPA06/055).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Salzberger, B.; Buder, F.; Lampl, B.; Ehrenstein, B.; Hitzenbichler, F.; Hanses, F. Epidemiology of SARS-CoV-2 Infection and

COVID-19. Der Internist 2020, 61, 782–788. [CrossRef] [PubMed]
2. Koch-Institut, R. Epidemiologisches Bulletin Höhere Letalität, Längere Beatmungsdauer Bei COVID-19 Im Vergleich Zu Schwerer

Influenza. Available online: https://www.rki.de/DE/Content/Infekt/EpidBull/epid_bull_node.html (accessed on 13 July 2021).
3. de Biasi, S.; Meschiari, M.; Gibellini, L.; Bellinazzi, C.; Borella, R.; Fidanza, L.; Gozzi, L.; Iannone, A.; lo Tartaro, D.; Mattioli, M.;

et al. Marked T Cell Activation, Senescence, Exhaustion and Skewing towards TH17 in Patients with COVID-19 Pneumonia. Nat.
Commun. 2020, 11, 3434. [CrossRef] [PubMed]

4. Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and Immunological
Features of Severe and Moderate Coronavirus Disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [CrossRef] [PubMed]

5. Pedersen, S.F.; Ho, Y.C. SARS-CoV-2: A Storm Is Raging. J. Clin. Investig. 2020, 130, 2202–2205. [CrossRef]
6. Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological Findings of

COVID-19 Associated with Acute Respiratory Distress Syndrome. Lancet Respir. Med. 2020, 8, 420–422. [CrossRef]
7. Osuchowski, M.F.; Winkler, M.S.; Skirecki, T.; Cajander, S.; Shankar-Hari, M.; Lachmann, G.; Monneret, G.; Venet, F.; Bauer, M.;

Brunkhorst, F.M.; et al. The COVID-19 Puzzle: Deciphering Pathophysiology and Phenotypes of a New Disease Entity. Lancet
Respir. Med. 2021, 9, 622–642. [CrossRef]

8. Zhang, Y.; Chen, Y.; Meng, Z. Immunomodulation for Severe COVID-19 Pneumonia: The State of the Art. Front. Immunol. 2020,
11, e2782. [CrossRef]

9. Jose, R.J.; Manuel, A. COVID-19 Cytokine Storm: The Interplay between Inflammation and Coagulation. Lancet Respir. Med. 2020,
8, e46–e47. [CrossRef]

https://www.mdpi.com/article/10.3390/biology10111186/s1
https://www.mdpi.com/article/10.3390/biology10111186/s1
http://doi.org/10.1007/s00108-020-00834-9
http://www.ncbi.nlm.nih.gov/pubmed/32548652
https://www.rki.de/DE/Content/Infekt/EpidBull/epid_bull_node.html
http://doi.org/10.1038/s41467-020-17292-4
http://www.ncbi.nlm.nih.gov/pubmed/32632085
http://doi.org/10.1172/JCI137244
http://www.ncbi.nlm.nih.gov/pubmed/32217835
http://doi.org/10.1172/JCI137647
http://doi.org/10.1016/S2213-2600(20)30076-X
http://doi.org/10.1016/S2213-2600(21)00218-6
http://doi.org/10.3389/fimmu.2020.577442
http://doi.org/10.1016/S2213-2600(20)30216-2


Biology 2021, 10, 1186 17 of 18

10. Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil
Extracellular Traps in COVID-19. JCI Insight 2020, 5, e138999. [CrossRef]

11. Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel
Coronavirus Pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [CrossRef]

12. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for
Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062.
[CrossRef]

13. Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 Pneumonia: Different
Respiratory Treatments for Different Phenotypes? Intensive Care Med. 2020, 46, e1099. [CrossRef] [PubMed]

14. Gattinoni, L.; Chiumello, D.; Rossi, S. COVID-19 Pneumonia: ARDS or Not? Crit. Care 2020, 24, 154. [CrossRef] [PubMed]
15. Mazzoni, A.; Salvati, L.; Maggi, L.; Capone, M.; Vanni, A.; Spinicci, M.; Mencarini, J.; Caporale, R.; Peruzzi, B.; Antonelli, A.; et al.

Impaired Immune Cell Cytotoxicity in Severe COVID-19 Is IL-6 Dependent. J. Clin. Investig. 2020, 130, 4694–4703. [CrossRef]
16. Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy.

Nat. Rev. Immunol. 2013, 13, 862–874. [CrossRef]
17. Wang, H.; Artigas, A.; Sanitària Parc Taulí, C.; Randy Cron, S.Q.; Polidoro, R.B.; Hagan, R.S.; de Santis Santiago, R.; Schmidt,

N.W. Overview: Systemic Inflammatory Response Derived From Lung Injury Caused by SARS-CoV-2 Infection Explains Severe
Outcomes in COVID-19. Front. Immunol. 2020, 1, e1626. [CrossRef]

18. Roth, G.; Moser, B.; Krenn, C.; Brunner, M.; Haisjackl, M.; Almer, G.; Gerlitz, S.; Wolner, E.; Boltz-Nitulescu, G.; Ankersmit,
H.J. Susceptibility to Programmed Cell Death in T-Lymphocytes from Septic Patients: A Mechanism for Lymphopenia and Th2
Predominance. Biochem. Biophys. Res. Commun. 2003, 308, 840–846. [CrossRef]

19. Roth, G.A.; Moser, B.; Krenn, C.; Roth-Walter, F.; Hetz, H.; Richter, S.; Brunner, M.; Jensen-Jarolim, E.; Wolner, E.; Hoetzenecker, K.;
et al. Heightened Levels of Circulating 20S Proteasome in Critically Ill Patients. Eur. J. Clin. Investig. 2005, 35, 399–403. [CrossRef]

20. Roth, G.A.; Krenn, C.; Brunner, M.; Moser, B.; Ploder, M.; Spittler, A.; Pelinka, L.; Sautner, T.; Wolner, E.; Boltz-Nitulescu, G.; et al.
Elevated Serum Levels of Epithelial Cell Apoptosis-Specific Cytokeratin 18 Neoepitope M30 in Critically Ill Patients. Shock 2004,
22, 218–220. [CrossRef]

21. Brunner, M.; Krenn, C.; Roth, G.; Moser, B.; Dworschak, M.; Jensen-Jarolim, E.; Spittler, A.; Sautner, T.; Bonaros, N.; Wolner, E.;
et al. Increased Levels of Soluble ST2 Protein and IgG1production in Patients with Sepsis and Trauma. Intensive Care Med. 2004,
30, 1468–1473. [CrossRef]

22. Mildner, M.; Storka, A.; Lichtenauer, M.; Mlitz, V.; Ghannadan, M.; Hoetzenecker, K.; Nickl, S.; Dome, B.; Tschachler, E.;
Ankersmit, H.J. Primary Sources and Immunological Prerequisites for SST2 Secretion in Humans. Cardiovasc. Res. 2010, 87,
769–777. [CrossRef] [PubMed]

23. Hacker, S.; Lambers, C.; Hoetzenecker, K.; Pollreisz, A.; Aigner, C.; Lichtenauer, M.; Mangold, A.; Niederpold, T.; Zimmermann,
M.; Taghavi, S.; et al. Elevated HSP27, HSP70 and HSP90α in Chronic Obstructive Pulmonary Disease: Markers for Immune
Activation and Tissue Destruction. Clin. Lab. 2009, 55, 31–40. [PubMed]

24. Ankersmit, H.J.; Nickl, S.; Hoeltl, E.; Toepker, M.; Lambers, C.; Mitterbauer, A.; Kortuem, B.; Zimmermann, M.; Moser, B.; Bekos,
C.; et al. Increased Serum Levels of HSP27 as a Marker for Incipient Chronic Obstructive Pulmonary Disease in Young Smokers.
Respiration 2012, 83, 391–399. [CrossRef] [PubMed]

25. Abers, M.S.; Delmonte, O.M.; Ricotta, E.E.; Fintzi, J.; Fink, D.L.; Almeida de Jesus, A.A.; Zarember, K.A.; Alehashemi, S.;
Oikonomou, V.; Desai, J.v.; et al. An Immune-Based Biomarker Signature Is Associated with Mortality in COVID-19 Patients. JCI
Insight 2021, 6, e144455. [CrossRef]

26. Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay,
M.O.; et al. Rapid Review Cytokine Elevation in Severe and Critical COVID-19: A Rapid Systematic Review, Meta-Analysis, and
Comparison with Other Inflammatory Syndromes. Lancet Respir. Med. 2020, 1233, S2213–S2600. [CrossRef]

27. WHO R&D Blueprint Novel Coronavirus COVID-19 Therapeutic Trial Synopsis. Available online: https://www.who.int/
blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf (ac-
cessed on 12 August 2021).

28. Miftode, R.-S.; Petris, , A.O.; Onofrei Aursulesei, V.; Cianga, C.; Costache, I.-I.; Mitu, O.; Miftode, I.-L.; S, erban, I.-L. The Novel
Perspectives Opened by ST2 in the Pandemic: A Review of Its Role in the Diagnosis and Prognosis of Patients with Heart Failure
and COVID-19. Diagnostics 2021, 11, 175. [CrossRef]

29. Zeng, Z.; Hong, X.Y.; Li, Y.; Chen, W.; Ye, G.; Li, Y.; Luo, Y. Serum-Soluble ST2 as a Novel Biomarker Reflecting Inflammatory
Status and Illness Severity in Patients with COVID-19. Biomark. Med. 2020, 14, 1619–1629. [CrossRef]

30. Pascual-Figal, D.A.; Januzzi, J.L. The Biology of ST2: The International ST2 Consensus Panel. Am. J. Cardiol. 2015, 115, 3B–7B.
[CrossRef]

31. Traxler, D.; Zimmermann, M.; Simader, E.; Veraar, C.M.; Moser, B.; Mueller, T.; Mildner, M.; Dannenberg, V.; Lainscak, M.; Jug, B.;
et al. The Inflammatory Markers SST2, HSP27 and HsCRP as a Prognostic Biomarker Panel in Chronic Heart Failure Patients.
Clin. Chim. Acta 2020, 510, 507–514. [CrossRef]

32. Hacker, S.; Dieplinger, B.; Werba, G.; Nickl, S.; Roth, G.A.; Krenn, C.G.; Mueller, T.; Ankersmit, H.J.; Haider, T. Increased Serum
Concentrations of Soluble ST2 Predict Mortality after Burn Injury. Clin. Chem. Lab. Med. 2018, 56, 2079–2087. [CrossRef]

http://doi.org/10.1172/jci.insight.138999
http://doi.org/10.1111/jth.14768
http://doi.org/10.1016/S0140-6736(20)30566-3
http://doi.org/10.1007/s00134-020-06033-2
http://www.ncbi.nlm.nih.gov/pubmed/32291463
http://doi.org/10.1186/s13054-020-02880-z
http://www.ncbi.nlm.nih.gov/pubmed/32299472
http://doi.org/10.1172/JCI138554
http://doi.org/10.1038/nri3552
http://doi.org/10.3389/fimmu.2020.01626
http://doi.org/10.1016/S0006-291X(03)01482-7
http://doi.org/10.1111/j.1365-2362.2005.01508.x
http://doi.org/10.1097/01.shk.0000136098.49672.0e
http://doi.org/10.1007/s00134-004-2184-x
http://doi.org/10.1093/cvr/cvq104
http://www.ncbi.nlm.nih.gov/pubmed/20363761
http://www.ncbi.nlm.nih.gov/pubmed/19350847
http://doi.org/10.1159/000336557
http://www.ncbi.nlm.nih.gov/pubmed/22469636
http://doi.org/10.1172/jci.insight.144455
http://doi.org/10.1016/S2213-2600(20)30404-5
https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf
https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf
http://doi.org/10.3390/diagnostics11020175
http://doi.org/10.2217/bmm-2020-0410
http://doi.org/10.1016/j.amjcard.2015.01.034
http://doi.org/10.1016/j.cca.2020.07.050
http://doi.org/10.1515/cclm-2018-0042


Biology 2021, 10, 1186 18 of 18

33. Kumar, S.; Tzimas, M.N.; Griswold, D.E.; Young, P.R. Expression of ST2, an Interleukin-1 Receptor Homologue, Is Induced by
Proinflammatory Stimuli. Biochem. Biophys. Res. Commun. 1997, 235, 474–478. [CrossRef] [PubMed]

34. Opfermann, P.; Simader, E.; Felli, A.; Bevilacqua, M.; Holaubek, C.; Dworschak, M.; Mouhieddine, M.; Zimpfer, D.; Ankersmit,
J.H.; Steinlechner, B. Early SST2 Liberation after Implantation of a Left Ventricular Assist Device in Patients with Advanced Heart
Failure. J. Immunol. Res. 2020, 2020, 5826176. [CrossRef] [PubMed]

35. Calderwood, S.K.; Gong, J.; Murshid, A. Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity. Front.
Immunol. 2016, 7, e159. [CrossRef]

36. Salari, S.; Seibert, T.; Chen, Y.-X.; Hu, T.; Shi, C.; Zhao, X.; Cuerrier, C.M.; Raizman, J.E.; O’Brien, E.R. Extracellular HSP27 Acts as
a Signaling Molecule to Activate NF-KB in Macrophages. Cell Stress Chaperones 2013, 18, 53–63. [CrossRef]

37. Haider, T.; Simader, E.; Glück, O.; Ankersmit, H.J.; Heinz, T.; Hajdu, S.; Negrin, L.L. Systemic Release of Heat-Shock Protein 27
and 70 Following Severe Trauma. Sci. Rep. 2019, 9, 9595. [CrossRef] [PubMed]

38. Polanowska-Grabowska, R.; Gear, A.R.L. Heat-Shock Proteins and Platelet Function. Platelets 2000, 11, 6–22. [CrossRef]
39. Tian, M.; Zhu, L.; Lin, H.; Lin, Q.; Huang, P.; Yu, X.; Jing, Y. Hsp-27 Levels and Thrombus Burden Relate to Clinical Outcomes in

Patients with ST-Segment Elevation Myocardial Infarction. Oncotarget 2017, 8, 73733–73744. [CrossRef]
40. Zimmermann, M.; Traxler, D.; Bekos, C.; Simader, E.; Mueller, T.; Graf, A.; Lainscak, M.; Marčun, R.; Košnik, M.; Fležar, M.; et al.
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