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Abstract

TNFa overexpression has been associated with several chronic inflammatory diseases, including psoriasis, lichen planus,
rheumatoid arthritis, and inflammatory bowel disease. Paradoxically, numerous studies have reported new-onset psoriasis
and lichen planus following TNFa antagonist therapy. Here, we show that genetic inhibition of Tnfa and Tnfr2 in zebrafish
results in the mobilization of neutrophils to the skin. Using combinations of fluorescent reporter transgenes, fluorescence
microscopy, and flow cytometry, we identified the local production of dual oxidase 1 (Duox1)-derived H2O2 by Tnfa- and
Tnfr2-deficient keratinocytes as a trigger for the activation of the master inflammation transcription factor NF-kB, which
then promotes the induction of genes encoding pro-inflammatory molecules. In addition, pharmacological inhibition of
Duox1 completely abrogated skin inflammation, placing Duox1-derived H2O2 upstream of this positive feedback
inflammatory loop. Strikingly, DUOX1 was drastically induced in the skin lesions of psoriasis and lichen planus patients.
These results reveal a crucial role for TNFa/TNFR2 axis in the protection of the skin against DUOX1-mediated oxidative stress
and could establish new therapeutic targets for skin inflammatory disorders.
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Introduction

Tumor necrosis factor a (TNFa) is a multifunctional cytokine

that mediates key roles in acute and chronic inflammation,

antitumor responses, and infection. TNFa binds TNF receptor 1

(TNFR1, also known as TNFRSF1A or P55) and TNFR2 (also

known as TNFRSF1B or P75) for stimulation of two opposing

signaling events [1]. In general, TNFR1 signaling results in the

trigger of a cascade that can result in apoptosis [2]. This is

dependent upon the cell type, the state of activation of the cell, and

the cell cycle. In contrast, a TNFR2 signal induces cell survival

pathways that can result in cell proliferation [2].

Enhanced TNFa synthesis is associated with the development of

autoimmune/chronic inflammatory diseases, including psoriasis,

lichen planus, rheumatoid arthritis, and inflammatory bowel

disease (IBD). The inhibition of TNFa activities in these diseases

has been remarkably successful [3,4]. Paradoxically, however,

numerous studies have reported new-onset psoriasis and lichen

planus, or worsening of existing psoriasis, following TNFa
antagonist therapy in adult patients [5–10]. Despite these clinical

data pointing to an ambiguous function of TNFa in psoriasis and

lichen planus, the role of TNFa, and in particular the contribution

of each TNFR, in the regulation of skin inflammation has been

scarcely studied. An earlier study using gene-targeted mutant mice

lacking either TNFR1 or TNFR2 showed that skin inflammation

induced indirectly by irritant chemicals or directly by intradermal

administration of TNFa was greatly attenuated in TNFR1-

deficient mice, whereas TNFR2-deficient siblings responded

normally [11]. In addition, mice with an arrested canonical

NF-kB activation pathway in the keratinocytes develop a severe

PLOS Biology | www.plosbiology.org 1 May 2014 | Volume 12 | Issue 5 | e1001855

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1001855&domain=pdf


inflammatory skin disease shortly after birth, which is caused by

TNFa- and macrophage-mediated, but T-cell–independent,

mechanisms [12–16]. The characteristics of this complex disorder

are strikingly similar to those associated with the human X-linked

genodermatosis incontinentia pigmenti (IP) [17]. To the best of

our knowledge, however, the role played by TNFa in the

homeostasis of healthy skin has never been studied.

TNFa and TNFRs are conserved in all vertebrates. Recent

studies have shown that in the zebrafish (Danio rerio) Tnfa functions

as a pro-inflammatory cytokine [18] and Tnfr signaling plays an

important role in the homeostasis of endothelial cells [19]. In the

present study, we have taken advantage of the strengths of the

zebrafish embryo model to study the impact of Tnfa, Tnfr1, and

Tnfr2 deficiencies in a whole vertebrate organism. We found that

Tnfa and Tnfr2 are both crucial, whereas Tnfr1 is dispensable, for

the homeostasis of the skin. Genetic inhibition of Tnfa and Tnfr2

promotes H2O2-mediated skin infiltration by neutrophils, in-

creased keratinocyte proliferation, and the local activation of the

master inflammation transcription factor NF-kB, which then

promotes the induction of genes encoding pro-inflammatory

molecules. In addition, DUOX1 was strongly induced in

keratinocytes of human psoriasis and lichen planus patients.

Results

Tnfa or Tnfr2 Deficiency Results in Neutrophil
Mobilization to the Skin

In wild-type larvae, most neutrophils (approximately 90%) were

located in the caudal hematopoietic tissue (CHT) [20] by 3 d

postfertilization (dpf) (Figure 1A–C), which is consistent with

neutrophil localization patterns described previously [21,22].

However, in Tnfa- and Tnfr2-deficient larvae, approximately

40% of neutrophils were located outside the CHT (Figure 1A–C).

In addition, Tnfr1-deficient animals showed a normal neutrophil

distribution, whereas their double deficient siblings for both Tnfr1

and Tnfr2 showed also a distribution pattern more similar to single

Tnfr2-deficient fish (Figure 1A–C). The specificity of this

phenotype was confirmed with a dominant negative (DN) Tnfr2,

which is lacking the entire intracellular signaling domain, but is

identical to full-length Tnfr2 in its transmembrane and

extracellular domains, and therefore, its trimerization with

endogenous Tnfr2 extinguishes Tnfr2 signaling [19]. The results

showed that the altered neutrophil distribution of Tnfr2

morphants was phenocopied by overexpression of DN-Tnfr2

(Figure S1A). In addition, the scattered distribution of Tnfa- and

Tnfr2-deficient larvae was partially rescued by overexpression of

wild-type Tnfa and Tnfr2 RNAs, respectively (Figure S1B).

These results prompted us to examine the distribution of

macrophages in TNFa- and TNFR2-deficient fish, and surpris-

ingly, macrophage distribution was apparently normal in all

cases (Figure S2).

To ascertain the precise localization of neutrophils in Tnfa/

Tnfr2-deficient larvae, we knocked down Tnfr2 in transgenic

mpx:eGFP animals followed by whole mount immunohistochemis-

try (WIHC) against p63 (basal keratinocyte marker) to visualize

neutrophils (GFP+) and skin keratinocytes (p63+) at the same time

in whole larvae. The results revealed that although neutrophils

from wild-type animals were mainly located in the CHT, a high

proportion of neutrophils were seen in close contact with

keratinocytes in Tnfr2-deficient animals (Figure 1D and Videos

S1 and S2). Collectively, these results indicate that deficiency of

either Tnfa or Tnfr2 specifically promotes neutrophil infiltration

into the skin of zebrafish during early development.

Tnfa or Tnfr2 Deficiency Triggers the Induction of Genes
Encoding Pro-Inflammatory Mediators in Keratinocytes

The phenotype of Tnfa- and Tnfr2-deficient fish is reminiscent

of that of spint1a and clint1 mutant fish, which show chronic skin

inflammation characterized by increased interleukin-1b (IL-1b)

production and neutrophil infiltration [23–25]. This led us to

examine the expression of three genes encoding major pro-

inflammatory molecules, namely Tnfa itself, IL-1b, and prosta-

glandin-endoperoxide synthase 2b (PTGS2b, also known as

COX2b), in whole wild-type and Tnfr2-deficient larvae at 3 dpf

as well as in sorted mpx:eGFP+ cells—that is, neutrophils. It was

found that Tnfr2 deficiency triggered the expression of tnfa, il1b,

and ptgs2b genes (Figure 2A). Although neutrophils highly

expressed the genes encoding Tnfa and Il1b as well as both

Tnfrs, they did not mediate the induction of il1b observed in

Tnfr2-deficient fish (Figures 2B, S3A, and S4A). Nevertheless, the

transcript levels of tnfa were higher in neutrophils from Tnfr2-

deficient fish than in neutrophils from their wild-type siblings

(Figure 2B), but this might reflect a positive feedback loop in

response to Tnfr2 deficiency [19]. In addition, Tnfr2-deficient

embryos showed higher transcript levels of il1b at 24 hpf (Figure

S5), soon after the development of the first neutrophils in the

zebrafish embryo [21,22,26] and before hatching. We then sorted

krt18+ cells from Tnfa- and Tnfr2-deficient animals at 3 dpf and

found that they show much higher transcript levels of il1b and

ptgs2b than krt18+ cells from wild-type animals (Figures 2C and

S3B). Notably, krt18+ cells expressed both Tnf receptors (Figure

S4B) and the specific marker of basal keratinocytes p63 (Figure

S3B).

We next wondered whether knockdown of Il1b using a specific

morpholino (MO) [27] might rescue the neutrophil dispersion of

Tnfr2-deficient animals. As shown in Figure 2D, genetic inhibition

of Il1b failed to rescue the neutrophil dispersion observed in Tnfr2

morphants. These results taken together indicate that the Tnfa/

Tnfr2 axis is required for skin homeostasis in zebrafish and that

the deficiency of either ligand or receptor triggers an inflammatory

response characterized by the induction of pro-inflammatory

mediators and neutrophil infiltration.

Author Summary

Psoriasis and lichen planus are chronic, debilitating skin
diseases that affect millions of people worldwide. TNFa is a
multifunctional cytokine that mediates acute and chronic
inflammation. While TNFa antagonist therapy is used for
autoimmune or chronic inflammatory diseases, such as
inflammatory bowel disease (IBD), numerous studies have
reported new-onset psoriasis and lichen planus following
such therapy. We have used the unique advantages of the
zebrafish embryo to identify a novel phenotype that
mirrors this unexplained and paradoxical onset of psoriasis
and lichen planus. We found that depletion of Tnfa or its
receptor Tnfr2 caused skin inflammation and hyperproli-
feration of keratinocytes through the activation of a
Duox1/H2O2/NF-kB positive feedback inflammatory loop.
Strikingly, DUOX1 was drastically induced in the skin
lesions of psoriasis and lichen planus patients, and
pharmacological inhibition of Duox1 abrogated skin
inflammation, placing Duox1-derived H2O2 upstream of
this inflammatory loop. Our results suggest that therapies
targeting DUOX1 and H2O2 could provide innovative
approaches to the management of skin inflammatory
disorders.

Tnfa/Tnfr2 Axis Regulates Skin Homeostasis
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Tnfa and Tnfr2 Deficiencies Induce NF-kB Activation in
the Skin

The master regulator of inflammation NF-kB plays an essential

role in the homeostasis of skin. Thus, genetic inhibition of the NF-

kB pathway in keratinocytes triggers a severe inflammatory skin

disease in newborn mice, which is completely rescued by Tnfa and

Tnfr1 depletion [12–16]. We therefore use a NF-kB reporter line

[28] to visualize the dynamics of NF-kB in whole Tnfr2-deficient

larvae. Injection of bacterial DNA, which activated TLR9,

resulted in a drastic activation of NF-kB in the whole larvae

Figure 1. TNFa and Tnfr2 deficiencies result in neutrophil mobilization to the skin. Zebrafish one-cell mpx:eGFP and/or krt18:RFP embryos
were injected with standard control (Std), Tnfr1, Tnfr2, Tnfa, or Tnfr1+Tnfr2 MOs. (A) Representative images, bright field and green channels, of the
morphants at 3 dpf showing the differences in the neutrophils distribution. (B) Fluorescence intensity was measured for all the groups in the area
indicated (A), which includes the CHT, where most neutrophils are located in wild-type larvae at 3 dpf. The images were converted to a fluorescence
value matrix where the value obtained for each pixel transversally was the mean 6 S.E.M. for all the pixels for each row (15 larvae per treatment from
3 different experiments). The area corresponding to the CHT has been labeled and highlighted. The notochord (nt) location has been indicated to
facilitate the larval orientation. auf, arbitrary units of fluorescence. (C) The neutrophil mobilization from the CHT in Tnfa- and Tnfr2-deficient larvae
was quantified as the percentage of neutrophils outside the CHT in 20 larvae per group from 3 different experiments. The mean 6 S.E.M. for each
group is shown. (D) Representative frontal (xy) and lateral (yz) views of tridimensional reconstructions from confocal microscopy images of WIHC of
mpx:eGFP larvae stained at 3 dpf with anti-p63 antibodies (basal keratinocyte marker, red) showing the neutrophils’ distribution in the CHT area of
control and Tnfr2-deficient larvae. Note that most neutrophils (eGFP, green) are located in the CHT in control larvae (white arrowheads), while many
of them infiltrate the skin (blue arrowheads) of Tnfr2-deficient larvae, whereas they are mainly located in the CHT in their wild-type siblings. Scale
bars, 100 mm. ns, not significant. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pbio.1001855.g001
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(Figure 3A–B), as expected from previous results [29,30].

Interestingly, Tnfr2 deficiency promoted a restricted activation

of NF-kB in the skin (Figure 3A–E and Videos S3 and S4).

Furthermore, although skin integrity was unaffected up to 5 dpf in

Tnfr2-deficient larvae, as assayed by histology (Figure S6), they

showed increased keratinocyte proliferation, as assayed in double

transgenic NF-kB:eGFP; krt18:RFP animals and double WIHC

with anti-RFP and anti-phosphorylated H3 (Figure 4).

Tnfa and Tnfr2 Deficiencies Trigger H2O2 Production in
the Skin

Hydrogen peroxide gradients were recently shown to contribute

to the early influx of neutrophils in wound [31] and tumor [32].

Interestingly, however, H2O2 is not required for neutrophil

detection of localized infection [33]. These gradients are created

by the dual oxidase 1 (Duox1) [31] and sensed by neutrophils

through the tyrosine kinase Lyn [34]. Although identified and best

studied in the zebrafish, H2O2 is likely to play the same function in

human neutrophils [34]. We first analyzed the expression of the

gene encoding Duox1 and found that Tnfr2-deficient keratino-

cytes showed higher transcript levels of duox1 than wild-type

animals (Figure 5A). Next, using an H2O2-detecting fluorescence

probe, we observed that Tnfr2-deficient larvae also produced

H2O2 in the skin (Figure 5B,C). We observed similar levels of

labeling with the H2O2 probe in Tnfr2-deficient keratinocytes and

in local keratinocytes after wounding (Figure S7). Notably, H2O2

production by Tnfr2-deficient keratinocytes preceded the activa-

tion of NF-kB (Figure S8). Consistent with these observations,

genetic inhibition of Duox1 with a specific MO [31] was able to

partially prevent the infiltration of neutrophils into the skin of

Tnfr2-deficient larvae (Figure 5D,E). To further confirm this

result, we designed a DN form of Duox1 [35], and notably,

overexpression of DN-Duox1 was also able to partially prevent

neutrophil infiltration in Tnfr2-deficient larvae (Figure S9A,B).

Furthermore, we knocked down the H2O2 sensor of neutrophils,

Lyn [34], and found full prevention of neutrophil infiltration in

both Tnfr2- and Tnfa-deficient animals (Figure 5F,G).

Pharmacological Inhibition of Duox1 Restores Skin
Homeostasis in Tnfa- and Tnfr2-Deficient Animals

The above results prompted us to evaluate whether pharma-

cological inhibition of Duox1 using the NADPH oxidase inhibitor

dibenziodolium chloride (DPI), which has been shown to inhibit

Duox1 and H2O2 gradient formation in zebrafish [31,34], may

Figure 2. TNFa and Tnfr2 deficiencies trigger skin inflammation. Zebrafish one-cell mpx:eGFP or krt18:RFP embryos were injected with
standard control (Std), Tnfr2, Il1b, and/or Tnfa MOs. The expression of tnfa, il1b, and ptgs2b genes was measured by RT-qPCR in whole body (A), FACS-
sorted neutrophils (B), and FACS-sorted keratinocytes (C) from Std and Tnfr2 morphants at 3 dpf. (D) The phenotype of 3 dpf morphant larvae was
classified as neutrophils grouped in the CHT or scattered, as described in Figure 1. Note that IL-1b knockdown failed to rescue the neutrophil
mobilization in Tnfr2-deficient larvae. ns, not significant. *p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pbio.1001855.g002

Tnfa/Tnfr2 Axis Regulates Skin Homeostasis
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restore skin homeostasis in Tnfa- and Tnfr2-deficient larvae. The

results showed that DPI treatment completely inhibited the

generation of H2O2 in the skin (Figure 5B,C), the infiltration of

neutrophils (Figure 6A–C) into this tissue, and more importantly,

skin NF-kB activation (Figure 6D–F) in both Tnfa- and Tnfr2-

deficient animals. Collectively, these results demonstrate that the

Tnfa/Tnfr2 axis is indispensable for skin homeostasis and its

inhibition results in the release of Duox1-derived H2O2, local

activation of NF-kB, induction of genes encoding Duox1 and pro-

inflammatory mediators, and neutrophil infiltration.

DUOX1 Is Induced in Human Psoriasis and Lichen Planus
Lesions

The crucial role of Duox1-generated H2O2 in the infiltration of

neutrophils into the skin and the induction of NF-kB prompted us

to investigate if this inflammatory signal may also play a role in

human psoriasis and lichen planus. We analyzed by immunohis-

tochemistry 10 healthy skins and 8 lichen planus and 15 psoriasis

lesions using an antibody to human DUOX1 (Figure 7). The

results showed that although DUOX1 was expressed at low levels

in healthy epidermis, mainly in the granular layer, a drastic

Figure 3. Tnfa and Tnfr2 deficiencies result in skin NF-kB activation. Zebrafish one-cell NF-kB:eGFP (A, B, D, E) or NF-kB:eGFP; krt18:RFP (C)
embryos were injected with standard control (Std) or Tnfr2 MOs alone or in the presence of 2.3 ng/egg of V. anguillarum genomic DNA (VaDNA), as a
positive control for NF-kB activation. (A) Representative pictures showing the induction of NF-kB activation in the skin (red arrowheads) of Tnfr2-
deficient larvae at 72 hpf and the ubiquitous, strong induction in their VaDNA-injected siblings. Note the strong expression of NF-kB in neuromasts of
control larvae (white arrowheads). (B) The mean GFP fluorescence was quantified in whole larvae, and no significant differences between Tnfr2-
morphants and control larvae were observed. Each dot represents the mean GFP fluorescence per single larva. The mean 6 S.E.M. of the whole GFP
fluorescence for each group of larvae is also shown. (C) Representative frontal (xy) and lateral (yz) views of tridimensional reconstructions from
confocal microscopy images of WIHC of NF-kB:eGFP; krt18:RFP larvae stained at 3 dpf with anti-RFP antibodies (keratinocytes, blue) showing the
induction of NF-kB in the skin (eGFP, green) of Tnfr2-deficient larvae. (D, E) Quantification of NF-kB activation in the skin of Tnfr2-deficient larvae at 72
hpf. (D) Fluorescence intensity was measured in the area indicated of wild-type and Tnfr2-deficient larvae, as explained in the legend to Figure 1 (15
larvae per treatment from 3 different experiments). The skin and the neuromasts have been labeled to facilitate the larval orientation. Note the
activation of NF-kB in the skin of Tnfr2-deficient larvae. (E) The skin NF-kB activation index was defined as the fluorescence in the skin (a+b) relative to
the total fluorescence of the whole larvae (c). Each dot represents the skin NF-kB activation index per single larva. The mean 6 S.E.M. of the skin NF-
kB activation index for each group of larvae is also shown. Scale bars, 100 mm. ns, not significant; auf, arbitrary units of fluorescence. *p,0.05;
**p,0.01; ***p,0.001.
doi:10.1371/journal.pbio.1001855.g003
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induction of this enzyme was obvious in the keratinocytes of the

spinous layer of the epidermis from both psoriasis and lichen

planus lesions. In some patients, the induction was obvious in all

keratinocytes of the spinous layer, whereas in others it was

observed only in the upper layers of this stratum. It was noticeable

the localization of DUOX1 in the plasma membrane of psoriasis

and lichen planus keratinocytes and also in their cytoplasm, where

it was accumulated in the upper side of these cells—that is, facing

the cornified layer. Although this particular distribution deserves

further investigation, these results strongly suggest a role for

DUOX1 in psoriasis and lichen planus.

Discussion

Increased production of TNFa is associated with the develop-

ment of autoimmune/chronic inflammatory diseases, including

psoriasis, lichen planus, rheumatoid arthritis, and IBD. We have

used the unique advantages of the zebrafish embryo for in vivo

imaging and cell tracking to demonstrate that the genetic depletion

of Tnfa or Tnfr2, but not Tnfr1, caused the infiltration of

neutrophils into the skin and hyperproliferation of keratinocytes

through the activation of an H2O2/NF-kB/Duox1 positive

feedback inflammatory loop (Figure 8). Strikingly, neutrophils,

but not macrophages, are rapidly attracted to the skin. However,

the activation of NF-kB and the induction of the gene encoding

Il1b in the skin occurred before the appearance of the first

neutrophils in the developing embryo. More importantly,

DUOX1 was also strongly induced in the skin lesions of psoriasis

and lichen planus patients. Collectively, these results (i) indicate a

critical role of TNFa/TNFR2 signaling in the protection of the

skin against oxidative stress, (ii) might explain the appearance of

psoriasis and lichen planus in patients treated with anti-TNFa

therapies [5–10], and (iii) support the idea that specific inhibition

of the TNFa/TNFR1 signaling axis while leaving TNFa/TNFR2

signaling unaffected would inhibit the pathological effects of TNFa
and reduce the side effects associated with this therapy [19,36].

This apparent discrepancy with TNFa-deficient mice, which do

not show skin inflammation, may be due to developmental and/or

physiological compensations, which probably do not exist in

humans [37–39].

One of the most intriguing observations from this study is that

impaired Tnfr2 signaling led to the induction of duox1 and the

production of H2O2 by keratinocytes. H2O2 gradient was recently

shown to contribute to the early influx of neutrophils in wound

[31] and tumor [32], although it seems to be dispensable for

neutrophil detection of localized infection [33]. To the best of our

knowledge, this is the first study showing a role for Duox1-derived

H2O2 in the induction of NF-kB in the skin in vivo, suggesting that

H2O2 might play a critical role in the initiation and maintenance

of chronic inflammatory diseases in both zebrafish and human.

These observations suggest that antioxidants or inhibition of

Duox1 might be therapeutic for the treatment of patients suffering

from psoriasis, lichen planus, and other inflammatory diseases.

Supporting this notion, several studies using psoriasis and IBD

mouse models have shown that transgenic overexpression of

endogenous antioxidant genes promotes protection, while antiox-

idant gene knockout promotes sensitization (reviewed by [40,41]).

Even more importantly, the antioxidant levels and the oxidative

stress biomarkers are usually correlated with the disease severity

and the extent of inflammation in the psoriasis and IBD patients

[40–42]. Therefore, all these results taken together suggest that

antioxidants should be considered as part of a more specific and

effective therapy for the treatment of inflammatory skin diseases,

including psoriasis and lichen planus. The ability of Duox1

Figure 4. Tnfr2 deficiency results in increased proliferation of skin keratinocytes. Zebrafish one-cell krt18:RFP embryos were injected with
standard control (Std) or Tnfr2 MOs. (A) Representative frontal (xy) and lateral (yz) tridimensional reconstructions from confocal microscopy images of
WIHC of krt18:RFP larvae stained at 3 dpf with anti-RFP (keratinocytes, blue) and anti-phosphorylated H3 (pH 3, proliferation marker) antibodies. (B)
Quantification of the number of pH3/RFP+ (i.e., proliferating keratinocytes) cells in the CHT area. Each dot represents one single larva, and the mean
6 S.E.M. for each group of larvae is also shown. Scale bars, 100 mm. *p,0.05.
doi:10.1371/journal.pbio.1001855.g004
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inhibition by pharmacological approaches, but not of IL-1b, to

restore skin homeostasis in Tnfa- and Tnfr2-deficient zebrafish

embryos further supports this conclusion.

It is known that different reactive oxygen species (ROS) act as

second messengers, influencing various cellular signal transduction

pathways, including NF-kB. However, there are still many

inconsistencies concerning the influence of oxidative stress on

NF-kB activity [43], and unfortunately, most studies have been

performed in vitro using H2O2 and cultured cells [44,45]. Such

studies have shown that H2O2 can act as an activator of IkB

kinases (IKKs) [46] or can inactivate these proteins [47], probably

depending on the cell type. More recently, it has been found that

the same prolyl hydroxylases that confer oxygen sensitivity to the

hypoxia-inducible factor (HIF) pathway, namely PHD1 and

PHD2, seem to act as repressors of the canonical NF-kB pathway

through mechanisms that could include direct hydroxylation of

IKKb [48]. Our epistasis study in zebrafish demonstrates for the

first time that the absence of Tnfa/Tnfr2 signaling led to the

production of H2O2 by keratinocytes, which, in turn, resulted in

NF-kB activation and the induction of genes encoding pro-

inflammatory mediators. This self-perpetuating cycle may be of

clinical importance in view of the presumably key role played by

oxidative stress [40–42], HIF [49,50], and NF-kB in psoriasis and

IBD. It is tempting to speculate that the Tnfa/Tnfr2 axis would be

required to prevent skin oxidative stress through the regulation of

ROS-detoxifying enzymes, as it has been reported for oligoden-

drocyte progenitor cells in vitro [51]. The model reported here

might contribute to clarify the mechanisms involved in the

regulation of oxidative stress by TNFa, the regulation of NF-kB

activity by ROS, and the crosstalk between oxidative stress and

inflammation in vivo.

The essential role played by NF-kB in the homeostasis of the

skin is evidenced by the human X-linked genodermatosis IP,

which affects the regulatory subunit of IKK (IKKc, NEMO) [17].

Humans suffering from this genetic disease exhibit severe skin

inflammation, paradoxically due to impaired NF-kB activation

Figure 5. Tnfa and Tnfr2 deficiencies result in the Duox1-derived H2O2 production by keratinocytes. Zebrafish one-cell krt18:RFP (A),
wild-type (B, C), or mpx:eGFP (D–G) embryos were injected with standard control (Std), Tnfr2, Tnfa, Duox1/p53, and/or Lyn MOs. (A) The expression of
the duox1 gene was measured by RT-qPCR in FACS-sorted keratinocytes from 72 hpf wild-type and Tnfr2-deficient larvae. (B, C) Wild-type and Tnfr2-
deficient larvae were dechorionated at 24 hpf and treated by immersion in 100 mM DPI or vehicle alone (DMSO) for 24 h and then labeled with 50 mM
acetyl-pentafluorobenzene sulphonyl fluorescein. Representative images of green channels of Std and Tnfr2 morphants are shown. Note that single
keratinocytes are labeled with the H2O2 probe in Tnfr2-deficient larvae (inset). (D–G) Rescues with Duox1 (D, E) and Lyn (F, G) MOs at 72 hpf. The
differences in the neutrophil distribution (D, F) and quantification of neutrophil mobilization from the CHT to the skin in the indicated number of
larvae per group from three different experiments (E, G) are shown. The mean 6 S.E.M. for each group is shown. Scale bars, 100 mm. ns, not
significant. ***p,0.001.
doi:10.1371/journal.pbio.1001855.g005
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and reduced resistance to TNFa/TNFR1-mediated apoptosis

[52,53]. Similarly, although NF-kB actively participates in the

excessive inflammatory response observed in IBD patients [54,55],

recent studies with mice defective in NF-kB activation have

revealed that epithelial NF-kB activation is essential to preserve

intestinal homeostasis [56,57]. Therefore, a critical NF-kB

signaling balance is required for skin and gut homeostasis, as

both excessive and defective epithelial NF-kB activation can result

in inflammation. Similarly, although the TNFa/TNFR1 axis was

earlier appreciated to be involved in the apoptosis of both

keratinocytes and enterocytes in the absence of NF-kB signaling

[52,53,56,57], our results show that TNFa signaling through

TNFR2 is also critically required for skin homeostasis. Whether

the TNFa/TNFR2 axis is also required for gut homeostasis will

require further investigation using germ-free and gnotobiotic

zebrafish larvae, as host–microbe interactions have a profound

impact in gut physiology and are usually involved in IBD.

In conclusion, we have found that Tnfa signaling through Tnfr2

is indispensably required for the protection of the skin against

oxidative stress-induced inflammation in the zebrafish. Thus, the

absence of this signal triggers the local production of H2O2 by

Duox1, which, in turn, activates NF-kB and results in the up-

regulation of genes encoding pro-inflammatory mediators and

neutrophil infiltration. These results, together with the induction

of DUOX1 in the skin lesions of psoriasis and lichen planus

patients, reveal a crucial role of H2O2 and DUOX1 in skin

inflammation and suggest that pharmacologic and genetic

therapies that target these two key factors could provide innovative

approaches to the management of psoriasis, lichen planus, and

other chronic inflammatory diseases.

Materials and Methods

Ethics Statement
The experiments performed comply with the Guidelines of the

European Union Council (86/609/EU). Experiments and proce-

dures were performed as approved by the Bioethical Committee of

the University of Murcia (approval no. 537/2011) and the Ethical

Clinical Research Committee of the University Hospital Virgen de

la Arrixaca (approval no. 8/13).

Animals
Zebrafish (Danio rerio H.) were obtained from the Zebrafish

International Resource Center and mated, staged, raised, and

processed as described [58]. The lines Tg(mpx:eGFP)i114 [59],

Tg(lyz:dsRED)nz50 [60], Tg(mpeg1:eGFP)gl22 [61], and Tg(krt18:RFP)

Figure 6. Pharmacological inhibition of Duox1 prevents skin inflammation in Tnfa- and Tnfr2-deficient zebrafish. Zebrafish one-cell
mpx:eGFP (B, C) and NF-kB:eGFP (D–F) embryos were injected with standard control (Std), Tnfr2, or Tnfa MOs. (A) Scheme showing the experimental
procedure: embryos were dechorionated at 24 hpf and treated by immersion in 100 mM DPI or vehicle alone (DMSO) for 24 h. (B, C) Representative
images of bright field and green channels of the morphants at 48 hpf showing the differences in the neutrophils distribution (B) and quantification of
neutrophil mobilization from the CHT to the skin in the indicated number of larvae per group from three different experiments (C). (D–F)
Quantification of NF-kB activation in the skin of Tnfr2- and Tnfa-deficient larvae at 72 hpf. (E) Fluorescence intensity was measured for all the groups
in the area indicated, as explained in the legend to Figure 1 (15 larvae per treatment from 3 different experiments). The skin and the notochord (nt)
have been labeled to facilitate the larval orientation. Note the activation of NF-kB in the skin (red arrowheads) of Tnfr2-deficient larvae. Note the
strong expression of NF-kB in neuromasts (white arrowheads). (F) Skin NF-kB activation index was defined as the fluorescence in the skin (a+b)
relative to the total fluorescence of the whole larvae (c). Each dot represents the skin NF-kB activation index per single larva. The mean 6 S.E.M. of the
skin NF-kB activation index for each group of larvae is also shown. Scale bars, 100 mm. ns, not significant. ***p,0.001.
doi:10.1371/journal.pbio.1001855.g006
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Figure 7. DUOX1 is induced in human psoriasis and lichen planus lesions. Representative images of sections from two healthy, two
psoriatic, and two lichen planus skin biopsies that have been immunostained with an anti-DUOX1 goat polyclonal antibody and then slightly
counterstained with hematoxilin. Note that DUOX1 is weakly expressed in healthy epidermis, mainly in the granular layer (GL), whereas it is strongly
expressed (red arrowheads) in the spinous layer (SL) of both psoriasis and lichen planus lesions. CL, cornified layer; D, dermis. Scale bars, 100 mm (left
panel) and 30 mm (right panel).
doi:10.1371/journal.pbio.1001855.g007
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[62] were previously described. The Tg(NFkB-RE:eGFP) (NF-

kB:eGFP for simplicity) line was generated with the method and

constructs previously described [28].

MO, RNA Injection, and Chemical Treatments
Specific MOs (Gene Tools) were resuspended in nuclease-free

water to 1 mM (Table S1). In vitro–transcribed RNA was obtained

following the manufacturer’s instructions (mMESSAGE mMA-

CHINE Kit, Ambion). MOs and RNA (200 pg/egg) were mixed

in microinjection buffer (0.56Tango buffer and 0.05% phenol red

solution) and microinjected into the yolk sac of one- to eight-cell-

stage embryos using a microinjector (Narishige) (0.5–1 nl per

embryo). The same amounts of MOs and/or RNA were used in all

experimental groups. The efficiency of the MOS was checked by

RT-PCR as described previously [19,27,31,34].

In some experiments, 1 dpf embryos were manually dechor-

ionated and/or treated for 24 h at 28uC by bath immersion with

the NADPH oxidase inhibitor dibenziodolium chloride (DPI,

Sigma-Aldrich) at a final concentration of 100 mM diluted in egg

water supplemented with 1% DMSO.

Live Imaging of Zebrafish Larvae
At 72 hpf, larvae were anesthetized in tricaine and mounted in

1% (wt/vol) low-melting-point agarose (Sigma-Aldrich) dissolved

in egg water [63]. Images were captured with an epifluorescence

Lumar V12 stereomicroscope equipped with green and red

fluorescent filters while animals were kept in their agar matrixes

at 28.5uC. All images were acquired with the integrated camera on

the stereomicroscope and were used for subsequently counting the

number of neutrophils (mpx:eGFP) and examining their distribu-

Figure 8. Proposed model illustrating the H2O2/NF-kB/Duox1 positive feedback inflammatory loop triggered in the skin of Tnfa- or
Tnfr2-deficient zebrafish. Stage 1 (left panel): Tnfa or Tnfr2 deficiency triggers Duox1-dependent release of H2O2, which in turn promotes Lyn-
mediated neutrophil infiltration. Stage 2 (right panel): H2O2 induces the activation of NF-kB, which is then translocated to the nucleus and induces
the activation of genes encoding pro-inflammatory mediators (Il1b, Ptgs2, and probably Duox1). Pharmacological or genetic inhibition of Duox1
restores skin homeostasis.
doi:10.1371/journal.pbio.1001855.g008
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tion. The activation of NF-kB was visualized and quantified using

the line NF-kB::eGFP. Stacked images were captured using 1 mm

(neutrophil infiltration into the skin) or 25 mm (neutrophil

distribution, NF-kB activation, and H2O2 formation) increments

and deconvolved using Huygens Essential Confocal software (v 4.1

0p6b) by Scientific Volume Imaging. Stacks were processed using

the free source software ImageJ (http://rsbweb.nih.gov/ij) to

obtain a maximum intensity projection of the xy axis of the stack.

For the quantification of neutrophil distribution and NF-kB

activation, the maximum projection for each larva was then

converted to a fluorescence value matrix, where the value obtained

for each pixel transversally was the mean 6 S.E.M. for all the

pixels for each row (15 larvae per treatment from 3 different

experiments). In parallel, the activation of NF-kB in the skin was

also quantified by the skin NF-kB activation index, which was

defined as the fluorescence in the skin (a+b) relative to the total

fluorescence of the larvae (c).

H2O2 imaging using a live cell fluorogenic substrate was

performed essentially as previously described [32]. Briefly, 3-dpf

tnfa and Tnfr2 morphants and their control siblings were loaded

for 30 min with 50 mM acetyl-pentafluorobenzene sulphonyl

fluorescein (Cayman Chemical) in 1% DMSO in egg water and

imaged as above. As a positive control, complete transfection of

the tail of anesthetized 72 hpf larvae was performed with a

disposable sterile scalpel [63].

Flow Cytometry
At 3 dpf, approximately 300 to 500 Tg(mpx:eGFP) and

Tg(krt18:RFP) larvae were anesthetized in tricaine, minced with

a razor blade, incubated at 28uC for 30 min with 0.077 mg/ml

Liberase (Roche), and the resulting cell suspension passed through

a 40 mm cell strainer. Sytox (Life Technologies) was used as a vital

dye to exclude dead cells. Flow cytometric acquisitions were

performed on a FACSCALIBUR (BD), and cell sorting was

performed on a Coulter (Epics Altra). Analyses were performed

using FlowJo software (Treestar).

Analysis of Gene Expression
Total RNA was extracted from whole embryos/larvae or sorted

cell suspensions with TRIzol reagent (Invitrogen) following the

manufacturer’s instructions and treated with DNase I, amplifica-

tion grade (1 U/mg RNA; Invitrogen). SuperScript III RNase H2

Reverse Transcriptase (Invitrogen) was used to synthesize first-

strand cDNA with oligo(dT)18 primer from 1 mg of total RNA at

50uC for 50 min. Real-time PCR was performed with an ABI

PRISM 7500 instrument (Applied Biosystems) using SYBR Green

PCR Core Reagents (Applied Biosystems). Reaction mixtures were

incubated for 10 min at 95uC, followed by 40 cycles of 15 s at

95uC, 1 min at 60uC, and finally 15 s at 95uC, 1 min 60uC, and

15 s at 95uC. For each mRNA, gene expression was normalized to

the ribosomal protein S11 (rps11) content in each sample using the

Pfaffl method [64]. The primers used are shown in Table S2. In all

cases, each PCR was performed with triplicate samples and

repeated at least with two independent samples.

Histology and WIHC
Larvae were fixed overnight in 4% paraformaldehyde solution

(PFA), embedded in Paraplast Plus (Sherwood Medical), and

sectioned at a thickness of 5 mm. After being dewaxed and

rehydrated, they were stained with haematoxylin and eosin (H&E).

Tg(mpx:eGFP) or Tg(NF-kB:eGFP); Tg(krt18:RFP) 3 dpf larvae

were fixed overnight at 4uC in 4% PFA at room temperature,

dehydrated in methanol/PBS solutions (25, 50, 75, and 100%,

5 min each), and stored in 100% methanol at 220uC. For

staining, larvae were rehydrated in 75, 50, and 25% methanol/

PBT (PBS and 0.1% Tween-20) solutions for 5 min each, washed

three times for 5 min in PBT, incubated for 5 min RT with

150 mM Tris-HCl pH 9, followed by heating at 70uC for 15 min

[65]. After the heating treatment, larvae were directly washed

twice in PBT for 10 min and twice in dH2O for 5 min.

Subsequently, to enhance tissue permeabilization, larvae were

incubated with cold acetone for 20 min at 220uC, washed twice in

dH2O and twice in PBT (5 min each), followed by blocking with

blocking solution (PDT = PBT+1% DMSO) supplemented with

5% FBS and 2 mg/ml BSA) for 2 h at 22uC. After blocking,

embryos were incubated overnight at 4uC with primary antibodies

diluted (1:200) in blocking buffer, washed three times in PDT

(15 min each), and blocked again for 2 h at 22uC. Secondary

antibody staining was done for 2 h RT at 1:500 dilution in

blocking buffer, and larvae were then washed five times in PBT

(5 min each) and stored in Vectashield (Vector Labs) until image

acquisition. The following primary antibodies were used: rabbit

anti-phosphorylated-Histone H3 (Ser 10)-R (#SC8656-R, Santa

Cruz Biotechnology) and rabbit anti-human p63 (#SC8343,

Santa Cruz Biotechnology). Mouse anti-RFP (#MA5-15257,

Thermo Scientific) and Alexa Fluor 594 (#A11032) and Alexa

Fluor 532 (#A11002) Goat Anti-Mouse IgG (H+L) (Life

Technologies) were used as secondary antibodies.

Confocal immunofluorescence images were acquired with a

confocal microscope (LEICA TCS-SP2, Leica) using an NA 0.70/

206 dry objective. Z-series were acquired using a 210–300 mm

pinhole. The 2D and 3D maximum intensity projections and

corresponding animation videos were made using ImageJ (http://

rsb.info.nih.gov/ij/).

Human Skin Samples
Skin biopsies from healthy donors (n = 10) and lichen planus

(n = 8) and psoriasis patients (n = 15) were fixed in 4% PFA,

embedded in Paraplast Plus, and sectioned at a thickness of 5 mm.

After being dewaxed and rehydrated, the sections were incubated

in 50 mM glycine-HCl buffer (pH 3.5) containing 0.01% ethyl-

enediaminetetraacetic acid (EDTA) at 95uC for 5 min and then at

room temperature for 20 min to retrieve the antigen. Afterwards,

they were immunostained with a 1/50 dilution of a goat polyclonal

antibody to human DUOX1 (sc-48858, Santa Cruz Biotechnol-

ogy) followed by ImmunoCruz goat ABC Staining System (sc-

2023, Santa Cruz Biotechnology) following the manufacturer’s

recommendations. The specificity of the staining was confirmed by

pre-incubating a 10-fold excess (in molarity) of a commercial

blocking peptide (sc-48858 P, Santa Cruz Biotechnology) with the

DUOX1 antibody overnight at 4uC. No staining was observed in

these conditions. Sections were finally examined under a Leica

microscope equipped with a digital camera Leica DFC 280, and

the photographs were processed with Leica QWin Pro software.

Statistical Analysis
Data were analyzed by analysis of variance (ANOVA) and a

Tukey multiple range test to determine differences between

groups. The differences between two samples were analyzed by

the Student t test. The contingency graphs were analyzed by the

Chi-square (and Fisher’s exact) test.

Supporting Information

Figure S1 Tnfa and Tnfr2 deficiencies result in neutrophil

mobilization. Zebrafish one-cell mpx:eGFP embryos were injected

with standard control (Std), Tnfr1, Tnfr2, Tnfa, or Tnfr1+Tnfr2

MOs alone or combination with antisense (As), Tnfa, Tnfr2, or

Tnfa/Tnfr2 Axis Regulates Skin Homeostasis

PLOS Biology | www.plosbiology.org 11 May 2014 | Volume 12 | Issue 5 | e1001855

http://rsbweb.nih.gov/ij
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/


DN-Tnfr2 mRNAs. The phenotype of 3 dpf larvae was classified

as neutrophil grouped in the CHT or scattered, as described in

Figure 1. ***p,0.001.

(TIF)

Figure S2 Macrophage distribution is not altered in Tnfa- or

Tnfr2-deficient larvae. Zebrafish one-cell mpeg1:eGFP embryos

were injected with standard control (Std), Tnfr2, and Tnfa MOs.

Representative images showing macrophage distribution in 72 hpf

larvae. Scale bars, 100 mm.

(TIF)

Figure S3 Efficiency of sorting of neutrophils and keratinocytes.

Zebrafish one-cell mpx:eGFP (A) or krt18:RFP (B) embryos were

injected with standard control (Std) or Tnfr2 MOs. Neutrophils (A)

and keratinocytes (B) were FACS-sorted from 72 hpf larvae, and

the expression of gfp and mpx (A) and krt18 and p63 (B) genes was

measured by RT-qPCR in unsorted and sorted cells. The data are

shown as the mean 6 S.E.M. ns, not significant. *p,0.05;

***p,0.001.

(TIF)

Figure S4 Neutrophils and keratinocytes expressed both Tnf

receptors. Neutrophils (A) and keratinocytes (B) were FACS-sorted

from 72 hpf mpx:eGFP and krt18:RFP larvae, respectively, and the

expression of tnfr1 and tnfr2 genes was measured by RT-qPCR in

unsorted and sorted cells. The data are shown as the mean 6

S.E.M. ns, not significant. **p,0.01; ***p,0.001.

(TIF)

Figure S5 IL-1b is induced in Tnfr2-deficient embryos before

the emergence of neutrophils. Zebrafish one-cell wild-type

embryos were injected with standard control (Std) or Tnfr2

MOs. The expression of il1b gene was measured by RT-qPCR in

whole embryos at 24 and 48 hpf. The data are shown as the mean

6 S.E.M. *p,0.05.

(TIF)

Figure S6 The skin of Tnfr2-deficient larvae does not show

histopathological alterations. Zebrafish one-cell embryos were

injected with standard control (Std) or Tnfr2 MOs. At 3 (A) and 5

(B) dpf, the larvae were fixed, embedded in Paraplast Plus,

sectioned at 5 mm, and stained with H&E. M, muscle. Arrow-

heads, skin. Scale bars, 50 mm.

(TIF)

Figure S7 Pharmacological inhibition of Duox1 inhibits H2O2

production after wounding. Zebrafish one-cell wild-type embryos

were treated at 72 hpf by immersion in 100 mM DPI or vehicle

alone (DMSO) in the presence of 50 mM acetyl-pentafluoroben-

zene sulphonyl fluorescein, and tailfins were then transected.

Representative images of the formation of the H2O2 gradient at

1 h postwounding. Note that DPI treatment completely inhibits

H2O2 formation at the wound. Scale bars, 100 mm.

(TIF)

Figure S8 H2O2 production by Tnfr2-deficient keratinocytes

preceded the activation of NF-kB. Zebrafish one-cell wild-type (A,

B) or lyz:dsRED; NF-kB:eGFP (C, D) embryos were injected with

standard control (Std) or Tnfr2 MOs. (A, B) Larvae were

dechorionated at 24 hpf and then labeled with 50 mM acetyl-

pentafluorobenzene sulphonyl fluorescein at 24, 48, and 72 hpf.

Representative images of green channels of Std and Tnfr2

morphants (A) and quantification of green fluorescence in the

indicated number of larvae (B) are shown. Note that increased

H2O2 production by skin keratinocytes is already observed at 24

hpf. (C) Representative pictures showing NF-kB activation levels

in control and Tnfr2-deficient larvae at 24, 48, and 72 hpf. Note

that NF-kB is induced in the skin (red arrowheads) of Tnfr2-

deficient larvae at 48 h and that neutrophil dispersion is observed

at 72 hpf and, to some extent, at 48 hpf. The neuromasts are

indicated with white arrowheads. (D) Quantification of the

percentage of larvae showing activation of the NF-kB in the skin.

The results are shown as the mean 6 S.E.M. The number of

larvae analyzed is also indicated. Scale bars, 100 mm. ns, not

significant; auf, arbitrary units of fluorescence. *p,0.05; **p,0.01;

***p,0.001.

(TIF)

Figure S9 Genetic inactivation of Duox1 using a DN form

partially prevents neutrophil infiltration into the skin of Tnfa- and

Tnfr2-deficient zebrafish. Zebrafish one-cell mpx:eGFP embryos

were injected with standard control (Std), Tnfr2, or Tnfa MOs

alone or combination with antisense (As) or DN-Duox1 mRNAs.

Representative images of bright field and green channels of

morphants at 72 hpf showing the differences in the neutrophils

distribution (A) and quantification of neutrophil mobilization from

the CHT to the skin in the indicated number of larvae per group

from three different experiments (B). The mean 6 S.E.M. for each

group is shown. Scale bars, 100 mm. ns, not significant. ***p,0.001.

(TIF)

Table S1 MOs used in this study. The gene symbols followed

the Zebrafish Nomenclature Guidelines (http://zfin.org/zf_info/

nomen.html). ENA, European Nucleotide Archive (http://www.

ebi.ac.uk/ena/).

(DOCX)

Table S2 Primers used in this study. The gene symbols followed

the Zebrafish Nomenclature Guidelines (http://zfin.org/zf_info/

nomen.html). ENA, European Nucleotide Archive (http://www.

ebi.ac.uk/ena/).

(DOCX)

Video S1 Neutrophils infiltrate the skin in Tnfr2-deficient

larvae. Animations of tridimensional projections obtained by laser

confocal microscopy of STD morphants showing neutrophils in

green (GFP) and basal keratinocytes in red (p63). See legend to

Figure 1 for details.

(AVI)

Video S2 Neutrophils infiltrate the skin in Tnfr2-deficient

larvae. Animations of tridimensional projections obtained by laser

confocal microscopy of Tnfr2 morphants showing neutrophils in

green (GFP) and basal keratinocytes in red (p63). See legend to

Figure 1 for details.

(AVI)

Video S3 NF-kB is induced in the skin of Tnfr2-deficient larvae.

Animations of tridimensional projections obtained by laser

confocal microscopy of STD morphants showing NF-kB activity

in green (GFP) and basal keratinocytes in blue (RFP). See legend to

Figure 3 for details.

(AVI)

Video S4 NF-kB is induced in the skin of Tnfr2-deficient larvae.

Animations of tridimensional projections obtained by laser

confocal microscopy of Tnfr2 morphants showing NF-kB activity

in green (GFP) and basal keratinocytes in blue (RFP). See legend to

Figure 3 for details.

(AVI)
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