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Abstract

Rare variant association tests (RVAT) have been developed to study the contribution of rare

variants widely accessible through high-throughput sequencing technologies. RVAT require

to aggregate rare variants in testing units and to filter variants to retain only the most likely

causal ones. In the exome, genes are natural testing units and variants are usually filtered

based on their functional consequences. However, when dealing with whole-genome

sequence (WGS) data, both steps are challenging. No natural biological unit is available for

aggregating rare variants. Sliding windows procedures have been proposed to circumvent

this difficulty, however they are blind to biological information and result in a large number of

tests. We propose a new strategy to perform RVAT on WGS data: “RAVA-FIRST” (RAre

Variant Association using Functionally-InfoRmed STeps) comprising three steps. (1) New

testing units are defined genome-wide based on functionally-adjusted Combined Annotation

Dependent Depletion (CADD) scores of variants observed in the gnomAD populations,

which are referred to as “CADD regions”. (2) A region-dependent filtering of rare variants is

applied in each CADD region. (3) A functionally-informed burden test is performed with sub-

scores computed for each genomic category within each CADD region. Both on simulations

and real data, RAVA-FIRST was found to outperform other WGS-based RVAT. Applied to a

WGS dataset of venous thromboembolism patients, we identified an intergenic region on

chromosome 18 enriched for rare variants in early-onset patients. This region that was

missed by standard sliding windows procedures is included in a TAD region that contains a
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strong candidate gene. RAVA-FIRST enables new investigations of rare non-coding vari-

ants in complex diseases, facilitated by its implementation in the R package Ravages.

Author summary

Technological progresses have made possible whole-genome sequencing at an unprece-

dented scale, opening up the possibility to explore the role of genetic variants of low fre-

quency in common diseases. The challenge is now methodological and requires the

development of novel methods and strategies to analyse sequencing data that are not lim-

ited to assessing the role of coding variants. With RAVA-FIRST, we propose a novel strat-

egy to investigate the role of rare variants in the whole-genome that takes benefit from

biological information. Especially, RAVA-FIRST relies on testing units that go beyond

genes to gather rare variants in the association tests. In this work, we show that this new

strategy presents several advantages compared to existing methods. RAVA-FIRST offers

an easy and straightforward analysis of genome-wide rare variants, especially the inter-

genic ones which are frequently left behind, making it a promising tool to get a better

understanding of the biology of complex diseases.

Introduction

With advance in sequencing technologies, it is now possible to explore the role of rare genetic

variants in complex diseases. Rare variant association tests (RVAT) have been developed that

gather rare variants into testing units and compare their rare variant content between cases

and controls [1–3]. While the impact of rare variants has already been shown in several com-

plex diseases [4–6], RVAT face two key challenges: (i) the definition of the testing units and

(ii) the selection of the qualifying rare variants to include in these units. The proportion of

causal variants in the testing units being a major driver of power, especially for burden tests, it

is indeed important to ensure that qualifying variants are enriched in variants likely to have

some functional impact [3, 7]. When exome analyses are undertaken, rare variants are most

often grouped by genes and included in the analysis depending on their impact on the corre-

sponding protein [8, 9]. Nevertheless, the gene definition is not always optimal as differences

in rare variants burden between cases and controls could sometimes only be found in a sub-

region of a gene. This is for example the case in the RNF213 gene where an enrichment in rare

variants located in the C-terminal region was found in Moyamoya cases [10]. Defining testing

units and qualifying variants is much more challenging in the non-coding genome due to the

lack of defined genomic elements and the higher difficulty to predict the functional impact of

non-coding variants [11]. It is yet a question of interest as several studies have shown the

importance of rare non-coding variants in the development of complex diseases [12–14].

Functional elements such as enhancers or promoters can be used as testing units [5,15,16].

However, these elements only cover a small portion of the non-coding genome and their size

is often too small to gather a sufficient number of rare variants. On the other hand, sliding win-

dows procedures such as SCAN-G [17] or WGSCAN [18] can be used to test for association

over the whole-genome. Nevertheless, they present several limits including the window defini-

tion that is arbitrary and blind to biological information, the high number of tests and the asso-

ciated computation time. With overlapping windows, there is also a strong correlation

between the different testing units that requires permutation procedures to account for
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are available at https://lysine.univ-brest.fr/RAVA-

FIRST/. All the functions needed for RAVA-FIRST to

annotate, group, filter and analyse rare variants

have been implemented in the R package Ravages

(https://cran.r-project.org/web/packages/Ravages/,

https://github.com/genostats/Ravages) which

directly downloads the files from https://lysine.

univ-brest.fr/RAVA-FIRST/. Information about the

CADD region R126442 that was found associated

with VTE age at first event is available in the S3 File.

Information about individuals (WSS score, age and

sex) and variants (position, adjusted CADD score

and weight in WSS) are given. Data from the

MARTHA study contain potentially identifying

information. They are only available on reasonable

request from the Biological Resource Center of the

Assistance-Publique Hôpitaux de Marseille (AP-

HM). For inquiries, please contact CRB.Timone.

Marseille@ap-hm.fr.
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multiple testing. Finally, to filter rare variants in the testing units, pathogenicity scores are

often used but without guidelines on which score to use and which threshold to apply.

In this paper, we propose RAVA-FIRST (RAre Variant Association using Functionally

InfoRmed STeps), a new strategy for analysing rare variants in the coding and the non-coding

genome that addresses the previous issues. First, we provide pre-defined testing units in the

whole genome called “CADD regions” based on the Combined Annotation Dependent Deple-

tion (CADD) scores of deleteriousness of variants observed in the gnomAD general popula-

tion. Second, we propose a filtering approach based on CADD scores with region-dependant

thresholds to represent the genetic context of each CADD region and avoid the use of a fixed

threshold along the genome. Finally, we integrate functional information into the burden test

to detect an accumulation of rare variants in specific genomic categories within CADD

regions. Through a statistical description of these CADD regions, we show that they preserve

the integrity of the majority of functional elements in the genome. We also show that the

RAVA-FIRST filtering strategy enables a better discrimination between functional and non-

functional variants. We applied RAVA-FIRST to real whole-genome sequencing data from

individuals with venous thromboembolism (VTE) and detected an intergenic association sig-

nal that would have been missed with sliding windows and a classical filtering of rare variants.

RAVA-FIRST is implemented in the R package Ravages available on the CRAN and main-

tained on Github [19,20].

Description of the method

Ethics statement

The MARTHA study was approved by its institutional ethics committee and informed written

consent was obtained in accordance with the Declaration of Helsinki. Ethics approval were

obtained from the “Departement santé de la direction générale de la recherche et de l’innova-

tion du ministère” (Projects DC: 2008–880 and 09.576).

RAVA-FIRST is developed to test for association with rare variants in the whole genome. It

deals with all steps from the definition of testing units and the filtering of rare variants, to the

association test accounting for functional information. The main steps are described here and

represented in Fig 1 and further details are provided in S1 File and S1 Fig.

Testing units in RAVA-FIRST: The CADD regions

To define testing units for association tests, we took inspiration from the work of Havrilla et al.

(2019) [21]. They defined “constrained coding regions” (CCR) as exonic regions where no

important functional variation (defined as being at least missense) was found in the general

population of gnomAD [22]. Those regions could be of interest in RVAT as we can expect that

an accumulation of rare variants within them would lead to an increased risk of developing a

disease. However, in our experience, two limits prevent the direct use of CCR as testing units

in the whole genome: they are too small to gather a sufficient number of rare variants (224 bp

being the maximum length of a CCR) and their definition relies on the consequence of the var-

iants on the translated protein, not available in the non-coding genome. To define regions in

the non-coding genome using the same underlying hypothesis, we therefore decided to expand

the proposed approach by estimating the functionality of variants through CADD scores [23].

CADD scores were chosen because of their availability for every substitution in the genome

and because they rank well in the comparison test of functional annotation tools [24]. The goal

here is to split the genome into regions according to the distribution of functional variation

observed in gnomAD and not to detect the most constrained regions as aimed by Havrilla et al

(2019) [21].
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Coding variants tend to present higher CADD values than non-coding variants [23]. A

selection based on a CADD threshold would therefore result in a majority of coding variants

selected. In order to avoid this pattern, we adjusted the RAW CADD scores of all possible

SNVs and of a set of 48,000,000 Indels on a PHRED scale within each of three genomic catego-

ries: “coding”, “regulatory” and “intergenic” regions to obtain an “adjusted CADD score” also

called “ACS”. Coding regions correspond to CCDS [25] and represent 1.2% of the genome.

Regulatory regions represent 44.3% of the genome and gather introns, 5’ and 3’ UTR, promot-

ers and enhancers, all being involved in gene regulation [26]. Enhancers and promoters have

been obtained with the SCREEN tool from ENCODE which enables the definition of a

large number of regulatory elements in diverse cell types [27]. Finally, intergenic regions corre-

spond to all other regions and represent 54.5% of the genome. More details are given in the

S1 File.

ACS were used to select the variants that will bound the “CADD regions” based on criteria

defined from a fine tuning to ensure that CADD regions had sizes compatible with RVAT; i.e.,

not too small to contain enough rare causal variants in cases and not too large to avoid pollu-

tion by too many rare neutral variants. First, we selected the variants with an ACS greater than

20, which is the top 1% of variants with the highest predicted functional impact within each of

the three genomic categories. Then, among those variants, only the ones observed at least two

times in gnomAD r2.0.1 genomes were used as boundaries of CADD regions. The choice of

excluding gnomAD singletons was made to avoid splitting CADD regions because of sequenc-

ing errors. Contiguous small regions of less than 10 kb were grouped together. All genomic

regions where CADD scores are not available (such as centromeres and telomeres among oth-

ers) were excluded, as well as regions that are not sequenced or are low-covered in gnomAD

but contain genomic sites where predicted ACS exceeds 20 for at least one of the possible

alleles. This creates gaps within CADD regions that are sometimes of only one base pair but

avoids keeping artificially long CADD regions due to a lack of observed variants in gnomAD.

Fig 1. Steps performed in RAVA-FIRST: definition of ACS, CADD regions, region-specific thresholds and functionally-informed burden tests.

https://doi.org/10.1371/journal.pgen.1009923.g001
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More details about the steps and parameters used for the definition of CADD regions are pre-

sented in the S1 File.

The RAVA-FIRST filtering strategy

In addition to the definition of new testing units in the whole genome, we propose a new filter-

ing strategy in RAVA-FIRST to select qualifying variants based on thresholds that are specific

to each CADD region. The idea is similar to the gene-specific CADD thresholds proposed by

Itan et al (27) to improve variant deleteriousness prediction. To define region-specific thresh-

olds, we computed the median of ACS of all the variants (SNPs and InDels) observed at least

two times in gnomAD in each CADD region. This value is expected to represent the median

score level that is tolerated in the general population within each CADD region. Qualifying

variants are then defined as rare variants with an ACS above the threshold specific to their

region. We chose to include InDels in this median so that they can be analysed using the

RAVA-FIRST strategy as they represent an important source of genetic variation.

Burden test in RAVA-FIRST: Taking into account functional information

Several of the CADD regions overlap different genomic categories (coding, regulatory or inter-

genic, Figs 1 and S2). As the effects of variants belonging to these different genomic categories

may not be the same, we extended the burden test by integrating a sub-score for each genomic

category into the regression model, similarly to the analysis of rare and frequent variants pro-

posed by Li and Leal (2008) [7]:

ln
PðYj ¼ 1Þ

PðYj ¼ 0Þ
¼ b0 þ bCovXCov þ

X

G¼fcod;reg;interg

bGXG

Yj is the vector of phenotypes for the n individuals: 0 for the group of controls and 1 for the

group of cases. β0 represents the intercept of the model and XCov the matrix of covariates (if

any) with their associated effect, βCov. βG corresponds to the estimated effect of the burden XG

within each genomic category within the tested CADD region. It can be computed for example

using WSS [1], which corresponds to a weighted sum of rare alleles based on their frequency,

the rarest alleles having the highest weights.

Sub-scores XG are thus constructed for each genomic category within a CADD region, with

at most three sub-scores (coding, regulatory or intergenic). The p-value can be determined

using a likelihood ratio test comparing this model to the null model where the sub-scores are

not included. This sub-score analysis, referred to as RAVA-FIRST burden test, is also available

for continuous and for categorical phenotypes using the extension of burden tests developed

in Bocher et al. (2019) [19]. The RAVA-FIRST burden test coupled with the region-specific fil-

tering on the ACS enables to perform only one test by CADD region while keeping the most

important functional variants within each genomic category and accounting for those catego-

ries in the association test.

Verification and comparison

Statistics on CADD regions and comparison with genomic elements

A total of 135,224 CADD regions were defined covering 93.2% of the genome (in build

GRCh37), of which 106,251 CADD regions are larger than 1kb (covering 93% of the genome).

Overall, 42.1% of CADD regions span only one type of genomic category, 47.5% span two of

the three types of genomic categories, and 10.4% overlap the three genomic categories (S2 Fig).

Some CADD regions are extremely large, mainly in the regions close to the centromeres
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(Table 1). Care should be taken when interpreting results obtained in these regions. Indeed,

only few high-quality genomes covering these genomic regions are currently available and

CADD scores may not be as reliable as in other parts of the genome. About 70% of CADD

regions have a size between 1 and 50 kb with a mean of 20 kb, making them completely com-

patible with the size of genes commonly used as testing units in RVAT.

We then compared the position of genomic elements relative to the defined CADD regions

(see S1 Table for the definition of genomic elements). A large majority of genomic elements

are entirely included into a single CADD region and thus their integrity is preserved (see S2

Table). This is expected as all these genomic elements are substantially smaller than the

CADD. For larger elements such as introns or lncRNA, the percentage decreases but remains

high (more than 80% of lncRNA are overlapped by at most two CADD regions). The genomic

elements spanning more than one CADD region are on average longer than the ones being

entirely included into a single CADD region. However, when comparing CCR and CADD

regions, it is interesting to note that the CCRs entirely encompassed within a single CADD

region are the longest ones that also represent the most constrained regions.

Performance of RAVA-FIRST filtering based on ACS

To assess the performance of the ACS and the RAVA-FIRST filtering, we evaluated its capacity

in discriminating rare pathogenic SNVs defined in the Clinvar database [28] from rare SNVs

polymorphisms observed in the 1000Genomes project [29]. We computed true positive rate

(TPR), true negative rate (TNR) and precision for the RAVA-FIRST filtering and compared

the results to the ones obtained by applying a fixed CADD threshold of 10, 15 or 20 on variants

annotated with CADD scores v1.4. A total of 82,811 variants (44,566 benign and 38,245 patho-

genic), both coding and non-coding, were included in this analysis (see S1 and S2 Files for

more details on the selection of variants).

For coding variants, all filtering strategies based on CADD scores (fixed threshold or ACS)

show a very high TPR (Fig 2A), meaning that the majority of pathogenic variants would be

selected as qualifying variants for RVAT. The TNR increases with the increasing CADD score

threshold which is expected as less variants, and therefore less benign variants, are included in

the analysis. The RAVA-FIRST filtering shows the highest TNR and the highest precision.

While the TPR value is extremely important to select the most probable causal variants in

RVAT, it is also important to have a high TNR value, otherwise the signal will be diluted by a

high proportion of non-causal variants. The precision value summarises the TPR and TNR

parameters and is representative, to a certain extent, of the percentage of causal variants

among selected variants. Therefore, we show that the RAVA-FIRST filtering strategy is the

most accurate to select qualifying rare variants for RVAT. Focusing on the coding genome, we

also compared the performance of RAVA-FIRST filtering approach against two others proce-

dures classically applied on genes as testing units: (1) filter for variants with a functional impact

expected to change the protein (“missense_variant", "missense_variant&splice_region_var-

iant", "splice_acceptor_variant", "splice_donor_variant", "start_lost", "start_lost&splice_re-

gion_variant", "stop_gained", "stop_gained&splice_region_variant", "stop_lost",

"stop_lost&splice_region_variant" and "stop_retained_variant”), and (2) filter on the MSC

Table 1. Summary statistics of the lengths of CADD regions.

Quantiles Mean

0% 25% 50% 75% 100%

Length (kb) 0.002 2.576 13.006 24.323 1,731.228 19.852

https://doi.org/10.1371/journal.pgen.1009923.t001
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value, a gene-specific CADD threshold [30]. These two filtering approaches resulted in a

slightly higher TPR than our proposed strategy but lower TNR and lower precision (Fig 2A).

Therefore, even in an exome analysis, the RAVA-FIRST filtering would outperform classical

filtering strategies to select qualifying rare variants for RVAT.

For non-coding variants, performances are lower than for coding variants. This is true

when using both fixed CADD thresholds and the ACS median (Fig 2B) but the TPR is much

lower when a fixed CADD threshold is used. This is explained by the fact that CADD values

are lower in the non-coding genome. The best CADD threshold among hard-threshold filter-

ing is indeed 10 in the non-coding genome while it is 20 in the coding genome. It is thus diffi-

cult to use a single fixed CADD value to select rare variants in testing units in the whole

genome and the proposed ACS thresholds may therefore be preferred. Note however that,

because of a bias towards coding variants in ClinVar pathogenic variants, the number of non-

coding variants included in this analysis is rather low (2,980) compared to coding variants

(79,831) and results should therefore be interpreted with caution.

Fig 2. TPR, TNR and precision of different filtering strategies on the Clinvar coding or non-coding variants pathogenic variants compared to rare 1000Genome

polymorphisms.

https://doi.org/10.1371/journal.pgen.1009923.g002
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In summary, compared to classical filtering strategies, the RAVA-FIRST approach based on

ACS is expected to improve rare variant selection for RVAT in both the coding and the non-

coding parts of the genome.

RAVA-FIRST burden test–Simulations

To validate the RAVA-FIRST burden test, we performed simulations under the null hypothesis

and under different scenarios of association using data from the 1000 Genomes European pop-

ulations [29] in the LCT gene. We simulated 1,000 controls and 1,000 cases using the simula-

tions based on haplotypes implemented in the R package Ravages [19]. A total of 201 variants

was considered in the LCT gene. These variants were polymorphic in the European popula-

tions with a MAF lower than 1%. Two CADD regions overlap the LCT gene, R019233 and

R019234, containing respectively 75 and 126 variants, both regions overlap coding and regula-

tory categories.

Type I error

We first simulated data under the null hypothesis to verify that the RAVA-FIRST burden test

maintains appropriate type I errors. We simulated two groups of 1,000 individuals in the

R019234 CADD region without any genetic effect and we applied the classical WSS and the

RAVA-FIRST WSS. Type I errors were computed using 5�106 simulations at three significance

levels: 5�10−2, 10−3 and 2.5�10−6 (the usual threshold for whole exome rare variant association

tests). The RAVA-FIRST WSS maintains good type I error levels at these different significance

thresholds, similar to the ones obtained with the classical WSS (S3 Table).

Power analysis

We then performed a power study with causal variants located either in the R019234 CADD

region only or in the entire LCT gene in any of the two CADD regions. We simulated 50% of

causal variants randomly spread in the whole unit (scenarios S1 and S3), in the coding regions

(scenarios S2A and S4A) or in the regulatory regions (scenarios S2B and S4B). All the scenarios

are summarised in Table 2. We compared the classical WSS to the RAVA-FIRST WSS using

the gene or the two CADD regions as testing units. When CADD regions were used as testing

units, analyses were performed for each of the two CADD regions and the minimum p-value

was taken and multiplied by two to correct for multiple testing. A total of 1,000 replicates were

simulated for each scenario and power was assessed at a genome-wide significance threshold

of 2.5�10−6.

Table 2. Scenarios of association simulated to assess the performance of the RAVA-FIRST burden test.

LCT gene

R019233 R019234

Coding Regulatory Coding Regulatory

S1 50%

S2A 50% 0%

S2B 0% 50%

S3 50%

S4A 50% 0% 50% 0%

S4B 0% 50% 0% 50%

https://doi.org/10.1371/journal.pgen.1009923.t002
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Table 3 presents the power results obtained from this simulation study for both the classical

WSS and the RAVA-FIRST WSS. Similar trends were observed between the two analyses,

regardless if the simulations are performed at the scale of CADD regions or at the scale of the

gene. When the causal variants were randomly sampled across the entire region (scenarios S1

and S3), the classical WSS with only one score for the entire region slightly outperformed the

RAVA-FIRST method with sub-scores. Nevertheless, the loss of power for the latter was mod-

est (less than 10%). By contrast, when causal variants were present only in the coding catego-

ries (scenarios S2A and S4A), which represent a small proportion of the entire region

(approximately 15%), the RAVA-FIRST strategy was much more powerful than the classical

WSS (approximately 50% gain in power). When causal variants were present in the regulatory

categories only (scenarios S2B and S4B), both strategies showed similar power. All these results

highlight the gain of power using the RAVA-FIRST WSS when a cluster of causal variants is

present within a functional category of the CADD region while maintaining good power levels

when causal variants are spread across the entire region. When comparing the simulations

with causal variants sampled at the gene level or at the CADD region level, burden tests gather-

ing variants within the corresponding testing units show, as expected, the highest levels of

power. Nevertheless, the loss of power when using CADD regions as testing units instead of

the entire gene is lower when causal variants are sampled across the entire gene (scenario S3)

than the gain of power they present when causal variants are sampled within a specific CADD

region (scenario S1). This is particularly true for the RAVA-FIRST WSS.

Applications

RAVA-FIRST analysis

RAVA-FIRST was used on whole-genome sequence (WGS) data from patients affected by

venous thromboembolism (VTE). VTE is a multifactorial disease with a strong genetic compo-

nent [31]. There exists a huge heterogeneity between patients in the age at first VTE event. To

study the role of rare variants on VTE age of onset, WGS data were used from 200 individuals

from the MARTHA cohort [32]. These individuals were selected among patients with unpro-

voked VTE event who were previously genotyped for a genome-wide association study [33]

and present no known genetic predisposing factor. Individuals were dichotomized based on

the age at first VTE event either before 50 years of age (early-onset) or after (late-onset). The

threshold of 50 years was chosen based on the results of recent studies [34] that hint toward a

genetic heterogeneity between these two groups. A quality control (QC) of the sequencing data

was performed using the RAVAQ pipeline [35] (https://gitlab.com/gmarenne/ravaq). After

QC, 184 individuals were included for analysis with 127 presenting an early-onset VTE and 57

a late-onset VTE. Only variants passing all QC steps and with a MAF lower than 1% in the

Table 3. Power at the genome-wide significance level of 2.5�10−6 under the different simulation scenarios using either the classical WSS or the RAVA-FIRST WSS

at the scale of either the entire gene or CADD regions.

By gene By CADD regions

Classical WSS RAVA-FIRST WSS Classical WSS RAVA-FIRST WSS

S1 0.409 0.370 0.782 0.701

S2A 0 0.431 0.002 0.602

S2B 0.408 0.404 0.689 0.706

S3 0.751 0.678 0.512 0.433

S4A 0.004 0.564 0.012 0.474

S4B 0.657 0.64 0.39 0.391

https://doi.org/10.1371/journal.pgen.1009923.t003
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sample were considered in the association tests comparing early and late-onset groups. For

these comparisons, rare variants were gathered either by CADD regions or by using the sliding

windows procedure implemented in WGScan [18]. Qualifying variants were selected based on

CADD scores and using two filtering strategies: (1) a fixed CADD threshold of 15 or (2) the

RAVA-FIRST CADD region-specific filtering (applied on ACS). Association was tested using

the WSS burden test. When the RAVA-FIRST filtering was used, the corresponding WSS test

with sub-scores was applied. Table 4 shows the number of testing units and variants kept

under each strategy. For all tests with CADD regions, only testing units containing at least 5

rare variants were kept. WGScan was used with default parameters, i.e. with testing units of 5,

10, 15, 25 or 50 kb.

QQ-plots for the WSS tests using those three strategies are shown in Fig 3. As expected, a

lower significance threshold is required to reach genome-wide significance with the sliding

window procedure due to the higher number of testing units. Accordingly, the computation

time was much lower for the two analyses by CADD regions (6min when filtering based on a

fixed CADD score threshold and 25min when using the region-specific CADD thresholds)

than for the sliding windows procedure (47min). Our dataset contains less than 200 individu-

als, suggesting that the gain in computation time of CADD regions compared to sliding win-

dow procedures would be even greater in larger WGS datasets. No significant result was found

when no functional filter was applied nor when selecting variants with a CADD score greater

than 15. One association reached borderline significance (p = 6.41�10−7) when using the

RAVA-FIRST strategy, i.e. with CADD regions and the corresponding ACS filtering.

This association maps to R126442, a CADD region of 21 kb on chromosome 18:66788277–

66809402 that contains 30 rare variants after RAVA-FIRST filtering. In this region, none of

the variants observed in VTE patients or in gnomAD achieved a CADD score above 15. This

explains why the association could not have been detected by the two other strategies based on

fixed CADD score� 15. The median of ACS observed for gnomAD variants in this region is

1.73 and the ACS of selected variants range from 1.82 to 8.50. These observations emphasize

the need to adapt thresholds depending on the genomic region under analysis. Interestingly,

only early-onset VTE patients carry qualifying rare variants and have non-null WSS scores

(Fig 4 and S3 File). Among early-onset patients, a trend is also observed for WSS scores to

decrease with increasing age of onset. Information about the CADD region R126442 is avail-

able in the S3 File. Information about individuals (WSS score, age and sex) and variants (posi-

tion, adjusted CADD score and weight in WSS) are given.

To make sure that there was indeed an advantage of using CADD regions compared to ran-

dom windows over each chromosome, we shuffled the CADD regions on chromosome 18,

computed new CADD medians in each region and tested for association again. We repeated

this procedure 500 times and looked at the region where the top signal (lowest p-value) is

located in each permutation (S3 Fig). We found an enrichment of top signals around R126442

Table 4. Number of testing units and variants kept under the three strategies.

Testing units Filtering Number of testing units Number of variants

WGScan

Fixed CADD threshold

Sliding windows MAF� 1%

CADD v1.4� 15

377,092 96,347

RAVA-FIRST units (CADD regions)

No CADD filtering

CADD regions MAF� 1% 103,439 9,423,012

RAVA-FIRST units (CADD regions)

Fixed CADD threshold

MAF� 1%

CADD v1.4� 15

10,389 96,294

RAVA-FIRST units (CADD regions)

RAVA-FIRST filtering

MAF� 1%

ACS�median

95,220 3,494,327

https://doi.org/10.1371/journal.pgen.1009923.t004
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and no other region in the chromosome reached the same significance level. Specifically, the

top signal overlaps with R126442 in 34.2% of the replicates and this percentage increases to

62.4% if we consider the top 5 signals. The percentage of CADD regions overlapping with

R126442 is yet smaller than 0.1% when looking at the whole p-value spectrum.

The CADD region R126442 was then tested for association with 20 biological VTE bio-

markers available in MARTHA patients: antithrombin, basophil, eosinophil, Factor VIII,

Fig 3. QQ-plot of WSS analyses on VTE data using the four strategies of analysis. Early-onset patients (<50 years old) were compared to late-onset patients

(�50 years old).

https://doi.org/10.1371/journal.pgen.1009923.g003
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Factor XI, fibrinogen, hematocrit, lymphocytes, mean corpuscular volume, mean platelet vol-

ume, monocytes, neutrophils, PAI-1, platelets count, protein C, protein S, prothrombin time,

red blood cells count, von Willebrand Factor, and white blood cells count. For this, a linear

regression model was used where adjustment was made on age at sampling and sex. At the

Bonferroni threshold of 0.0025, one significant association (p = 7.1�10−4) was observed, VTE

patients with a non-null WSS score exhibiting decreased haematocrit levels, a surrogate

marker of red blood cells (S4 Table). A similar trend (p = 4.6�10−3) was observed with red

blood cell count.

We also investigated the association of the identified region with 376 plasma protein anti-

bodies that were selected to be involved in thrombosis-related processes and that have been

previously profiled in MARTHA [32,36]. Regression analysis were conducted on log trans-

formed values of antibodies and were adjusted for age, sex, and three internal control antibod-

ies. In order to handle the correlation between measured protein antibodies, we used the Li

and Ji method [37] to estimate the number of effective independent tests. This number, calcu-

lated to be 163, was then used to define a Bonferroni threshold for declaring study-wide statis-

tical significance. While not reaching the study-wise significance level of p = 3.1�10−4 after

correction for multiple testing, it is worth noting that the two proteins that exhibited the stron-

gest significance with marginal association at p< 0.001, procalcitonin tagged by the

HPA043700 antibody (p = 7.2�10−4) and PDPK1 tagged by HPA035199 (p = 7.5�10−4), were

both suggested to be involved in red blood cell biology [38,39].

According to ENCODE data, the R1246442 CADD region overlaps “intergenic” and “regu-

latory” categories with one distant enhancer-like signature. To further describe this region, we

looked at TADs positions in https://dna.cs.miami.edu/TADKB/brows.php in HUVEC and

HMEC cell lines, two cell types known to be relevant for VTE pathophysiology. We found that

the CADD region is included into the topological associated domain (TAD) 18:66450000–

68150000. By studying TADs described by Lieberman-Aiden et al. 2009 [40] in other cell lines

Fig 4. WSS scores in the CADD region depending on the age at first VTE event. The dashed line corresponds to the age 50 discriminating early onset from late

onset events.

https://doi.org/10.1371/journal.pgen.1009923.g004

PLOS GENETICS RAVA-FIRST: Testing for association with rare variants in the coding and non-coding genome

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009923 September 16, 2022 12 / 19

https://dna.cs.miami.edu/TADKB/brows.php
https://doi.org/10.1371/journal.pgen.1009923.g004
https://doi.org/10.1371/journal.pgen.1009923


such as KBM7, K562 or GM12878, we retrieved a TAD with similar positions, giving addi-

tional evidence for the presence of this TAD around the CADD region associated with early-

onset patients. We then explored this TAD region for the presence of candidate VTE genes

whose regulation could be influenced by the enhancer region that maps our R1246442 region.

Using the UCSC genome browser [41] integrating information about interactions between

GeneHancer regulatory elements and genes expression (see S4 Fig), we identified CD226 as a

strong biological candidate. CD226 codes for a glycoprotein expressed at the surface of several

types of cells, including blood cell, and several studies have shown that it was associated with

vascular endothelial dysfunction [42–44]. Genetic variants in CD226 have also been found

associated with several blood cell traits including platelets, white blood cells (e.g. neutrophil,

eosinophil) [45] and reticulocyte counts [46], another red blood cell biomarker.

Discussion

Even though whole genome sequencing data are now widely available, rare variant association

tests (RVAT) usually remain restricted to the coding parts of the genome. This is explained by

the lack of tools to explore rare variant associations outside genes [11]. It is especially difficult

to predict the functional consequence of non-coding variants and not currently possible to

analyse them in RVAT without using computationally-intensive sliding window procedures.

In this work, we propose RAVA-FIRST, an entire new strategy of analysis of rare variants in

the coding and the non-coding genome that leverages functional information. RAVA-FIRST

is composed of three steps. First, RAVA-FIRST groups variants observed in cases and controls

into some new testing units, the so-called “CADD regions”. These CADD regions are defined

over the entire genome based on CADD scores of variants observed in gnomAD. They are

large enough to include a sufficient number of rare variants to allow RVAT. They tend to pre-

serve functional elements that, for a majority of them, are not split into several CADD regions.

Second, RAVA-FIRST filters variants based on region-specific adjusted CADD thresholds that

allow the selection of the best candidate variants within each region. This filtering approach

was found to be more efficient than traditional approaches to discriminate between benign

and pathogenic variants within a set of variants. Indeed, our benchmarking study using a set

of Clinvar variants compared to 1000Genomes polymorphisms showed that the other filtering

strategies were good at identifying true causal variants (true positive rates were high) but bad

at finding the non-causal variants (true negative rates were low), especially in the coding

genome. Both true positive and true negative rates are important to achieve a high percentage

of causal variants within testing units, a major driver of power in RVAT, especially in burden

tests [2,3,7]. Thus, the RAVA-FIRST filtering strategy is expected to result in an appreciable

gain of power. Indeed, RAVA-FIRST enables to keep the most important functional variants

within coding, regulatory and intergenic categories of the genome by adapting CADD score

threshold to the genomic context. Third, RAVA-FIRST includes a burden test that integrates

information on genomic categories in the regression model and that, coupled with the region-

specific filtering, leads to a better detection of causal variants, should they cluster in one of

these genomic categories only. We also showed through simulations that good power levels

were maintained using RAVA-FIRST burden test when causal variants were randomly

sampled.

RAVA-FIRST was applied on real WGS data from VTE patients where an accumulation of

rare variants in patients with early-onset events was investigated. We did not detect any signifi-

cant signal using the sliding window procedure or CADD regions when qualifying rare vari-

ants were selected based on a minor allele frequency threshold and/or a fixed CADD

threshold. However, we detected an association signal using both the grouping and filtering of
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rare variants proposed in RAVA-FIRST. The associated CADD region is intergenic, contains a

predicted enhancer and is surrounded by a TAD containing 5 genes including CD226, a strong

candidate for blood cell traits that are now well recognized to be key players in VTE physiopa-

thology [31]. All rare variants in this region present low CADD scores and were not even

included in analyses based on a fix CADD threshold, highlighting the importance of consider-

ing the genomic context to detect the most important predicted functional variants within

each CADD region. These 30 rare variants are exclusively observed in early-onset cases. Four-

teen of these variants are absent from gnomAD, and 10 of the 16 remaining variants have a

lower frequency in gnomAD population than in our sample. This reinforces the value of the

association signal in this CADD region, although it should be further described and validated

using functional experiments. Preliminary investigations that need to be further explored, at

both experimental and epidemiological levels, strongly suggest that this region is associated

with several inflammatory markers impaired in anaemia of inflammation [39,47] and in plate-

lets, both mechanisms being involved in thrombotic processes [48].

The RAVA-FIRST approach could be improved on different aspects. First, the definition of

CADD regions relies on the gnomAD population and on the adjusted CADD threshold. We

chose to use the whole gnomAD dataset but it could be of interest to select only some of the

populations to detect population-specific associations that could for example be explained by

ancestry-related differential expression patterns [49]. Nevertheless, in classical exome analyses,

rare variants are usually filtered based on the maximum frequency observed among multiple

populations. Furthermore, CADD regions are not defined for low-covered and non-sequenced

genomic regions in gnomAD and their definition could benefit from the inclusion of data

from other large population datasets where these regions are better covered. We also observed

that CADD regions close to the centromeres can be very large, possibly due to less accurate

annotation scores resulting from only few high quality genomes mapping these areas. We

therefore recommend to cautiously interpret association signals that would be detected in

these regions. To define the regulatory regions of the genome as one of the three genomic cate-

gories, we decided to include all genomic elements directly implicated into regulatory func-

tions but we did not include silencers or lncRNA for example. However, the choice of

elements to include as the regulatory category will only impact the adjusted CADD scores that

are similar between regulatory and intergenic regions, and won’t therefore have a huge impact

on CADD regions definition. As an example, the use of DECRES [50] to predict enhancers

and promoters instead of SCREEN results in a very high correlation between the definition of

CADD regions, 80% of them being identical. The choice of focusing on variants seen at least

twice in gnomAD and with an ACS larger than 20 could also be discussed. This decision was

made based on a fine tuning to obtain testing units with sizes that were the most compatible

with rare variant analysis, but this could also be adapted to the genomic context as we have

done by grouping small regions where several variants showed high ACS.

By using CADD scores to define the testing units in RAVA-FIRST, we were able to propose

a general framework to cover the entire genome. Indeed, while several other predictive tools

have been proposed (as for example LINSIGHT [51], JARVIS [52] or ORION [53]), only few

provide a score that is variant specific and defined in both the coding and non-coding parts of

the genome. The use of the same framework to define testing units in the whole genome offers

several advantages, including the region-specific filtering which enables to overcome the ques-

tion of selecting a hard threshold to filter rare variants in RVAT. In addition, the newly defined

CADD regions can be used in existing software that require regions as input parameters [54,55],

enabling to apply a wide variety of RVAT available in those programs to the whole genome.

Especially, Bayesian methods which have been shown to be of great promise in the analysis and

filtering of rare variants [56,57] could be applied beyond genes by using CADD regions.
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CADD regions represent predefined testing units for RVAT that cover the highest propor-

tion of the genome and have been made publicly available. They are part of a whole new strat-

egy of rare variant analysis in the whole genome, RAVA-FIRST, that further benefits from the

integration of functional information both for the filtering of rare variants and their analysis

with burden tests. RAVA-FIRST has been implemented in the R package Ravages available in

the CRAN and on Github, offering an easy and straightforward tool to perform RVAT in the

whole genome. We believe that our developments will help researchers to explore the role of

genome-wide rare variants in complex diseases. Firstly, through the redefinition of testing

units in the coding genome where cluster of causal variants can be found within genes and

retrieved using CADD regions [10]. Secondly, through the study of non-coding variants, espe-

cially intergenic ones, which are currently often excluded from the analysis. Going beyond the

gene and the consequences on proteins, RAVA-FIRST will help for a better understanding of

biological mechanisms behind complex diseases.
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References
1. Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum

statistic. PLoS genetics 5:e1000384 https://doi.org/10.1371/journal.pgen.1000384 PMID: 19214210

2. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X (2011) Rare-variant association testing for sequencing

data with the sequence kernel association test. Am J Hum Genet 89:82–93 https://doi.org/10.1016/j.

ajhg.2011.05.029 PMID: 21737059

3. Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant association analysis: study designs and

statistical tests. Am J Hum Genet 95:5–23 https://doi.org/10.1016/j.ajhg.2014.06.009 PMID: 24995866

4. Bellenguez C, Charbonnier C, Grenier-Boley B, Quenez O, Le Guennec K, Nicolas G, et al (2017) Con-

tribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and

1273 controls. Neurobiol Aging 59:220.e1–220.e9

5. Shaffer JR, LeClair J, Carlson JC, Feingold E, Buxó CJ, Christensen K, et al (2019) Association of low-
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