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Abstract
In eukaryotic organisms, chromosomes are spatially organized within the nucleus. Such nuclear
architecture provides a physical framework for the genetic activities of chromosomes, and changes
its functional organization as the cell moves through the phases of the cell cycle. The fission yeast
Schizosaccharomyces pombe provides a striking example of nuclear reorganization during the
transition from mitosis to meiosis. In this organism, centromeres remain clustered at the spindle-
pole body (SPB; a centrosome-equivalent structure in fungi) during mitotic interphase. In contrast,
during meiotic prophase, centromeres dissociate from the SPB and telomeres cluster to the SPB.
Recent studies revealed that this repositioning of chromosomes is regulated by mating pheromone
signaling. Some centromere proteins disappear from the centromere in response to mating
pheromone, leading to dissociation of centromeres from the SPB. Interestingly, mating pheromone
signaling is also required for monopolar orientation of the kinetochore which is crucial for proper
segregation of sister chromatids during meiosis. When meiosis is induced in the absence of mating
pheromone signaling, aberrant chromosome behaviors are observed: the centromere proteins
remain at the centromere; the centromere remains associated with the SPB; and sister chromatids
segregate precociously in the first meiotic division. These aberrant chromosome behaviors are all
normalized by activating the mating pheromone signaling pathway. Thus, action of mating
pheromone on the centromere is important for coherent behavior of chromosomes in meiosis.
Here we discuss repositioning and reconstruction of the centromere during the transition from
mitosis to meiosis, and highlight its significance for proper progression of meiosis.

Background
Eukaryotic chromosomes are spatially organized within
the nucleus. While such nuclear architecture provides a
physical framework for the genetic activities of chromo-
somes, this framework however is dynamic, able to
change its functional organization during the cell cycle or
developmental stages. Local chromatin structures change
as chromosomes undergo processes such as replication,
transcription, recombination and repair. During chromo-
some segregation, a specialized structure called kineto-

chore is formed on the centromeric DNA. Global
organization of chromosomes within the nucleus can also
change in association with their activities. A prominent
example of reconstruction of the nuclear and chromo-
somal frameworks is observed during the transition from
mitosis to meiosis.

Meiosis is a process that produces haploid gametes from
parental diploid germ cells in sexually reproducing organ-
isms. In this process, a single round of chromosome rep-
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lication is followed by two rounds of chromosome
segregation. A characteristic feature of meiosis is the
behavior of sister chromatids in the first division (meiosis
I). In meiosis I, homologous chromosomes segregate
while sister chromatids remain held together. Sister chro-
matids then segregate in the second division (meiosis II).
Reductional segregation of homologous chromosomes in
meiosis I requires a recombination-mediated physical
link between a pair of homologous chromosomes. This
regulated segregation of homologous chromosomes and
sister chromatids is achieved by selective use of monopo-
lar and bipolar structures of the kinetochore, which pro-
vide a structural basis for monopolar and bipolar
attachment of the spindle, respectively. Monopolar
attachment of the spindle to sister kinetochores leads to
movement of sister chromatids to the same pole in meio-
sis I. Bipolar attachment of the spindle to sister kineto-
chores causes segregation to the opposite poles in meiosis
II (as well as in mitosis).

Meiotic reorganization of the chromosome is associated
with assembly of the meiotic chromatin proteins that
replace the mitotic counterparts. Cohesin proteins are
among such proteins, and affect structures and segrega-
tion patterns of chromosomes [1,2]. The position of cen-
tromeres in the nucleus also changes during the transition
from mitosis to meiosis. In mitotic interphase, chromo-
somes are organized in a polarized orientation, with cen-
tromeres confined near the centrosome and telomeres
positioned at the opposite side of the nucleus (often
called the Rabl orientation). In contrast, in meiotic
prophase, telomeres become clustered beneath the
nuclear envelope near the centrosome; this arrangement
of chromosomes bundled at the telomeres is often called
the bouquet arrangement because of its shape (reviewed
in [3]). The fission yeast Schizosaccharomyces pombe pro-
vides a striking example of the repositioning of centro-
meres and telomeres upon entering meiosis. Studies on
regulatory mechanisms of this phenomenon have eluci-
dated important aspects of centromere reconstruction that
may influence the progression of meiosis.

The fission yeast meiosis: an overview
The fission yeast S. pombe is a unicellular eukaryotic
organism. This yeast usually grows as haploid cells with a
genome of three chromosomes. Meiotic processes of S.
pombe are summarized in Figure 1. When cells are starved
for nitrogen sources, they arrest their cell cycle in G1
phase and secrete mating pheromone. Cells of the oppo-
site mating type (h+ and h-) exchange mating pheromones,
and subsequently conjugate to form a diploid zygote. In
the diploid zygote, h+ and h- haploid nuclei fuse to form a
diploid nucleus. Immediately after nuclear fusion the
nucleus elongates and moves back and forth between the
cell poles. The elongated nucleus is often called the

"horsetail" nucleus because of its shape. Meiotic DNA
synthesis and recombination occur in this horsetail
nucleus. After nuclear movement, the cell undergoes mei-
otic divisions, and the nucleus is divided into four hap-
loid nuclei. Each nucleus is encapsulated within a spore
after meiosis II.

Significantly, centromeres and telomeres switch their
positions in the nucleus upon entering meiosis [4,5].
Before meiosis, centromeres are clustered at the spindle-
pole body (SPB, an equivalent structure to the animal cen-
trosome), and telomeres are attached to the nuclear mem-

The meiotic process in S. pombeFigure 1
The meiotic process in S. pombe. When starved of nitro-
gen sources, haploid cells of the h+ and h- mating type are 
arrested in G1, and secrete the mating pheromone to the 
opposite mating type cells. Upon sensing the pheromone, the 
cell elongates toward the opposite mating type cell and the 
cells fuse with each other (conjugation), followed by fusion of 
the haploid nuclei. The fused diploid nucleus then elongates 
(known as the horsetail nucleus), and moves back and forth 
between the cell ends (meiotic prophase). Meiotic DNA rep-
lication occurs at the beginning of this period, yielding a 
nucleus with 4C DNA contents. After movement ceases, the 
horsetail nucleus becomes rounded at the center of the cell, 
and proceeds with the first and second meiotic divisions to 
create four 1C nuclei.
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brane, showing a typical Rabl orientation. In contrast,
upon entering meiosis, telomeres cluster to the SPB and
centromeres become dissociated from the SPB, showing
the bouquet configuration (Figure 2). In nuclear fusion,
haploid nuclei approach each other, with the telomere-
SPB cluster located at the leading edge of each nucleus.
After nuclear fusion, telomeres remain clustered at the
SPB located at the leading edge of the elongated nucleus
moving between the poles. Repositioning of centromeres
and telomeres is observed in meiotic cells in many eukary-
otes from yeasts to plants and animals including humans
[6-9].

Telomeres are clustered in response to mating 
pheromone signaling
While telomere clustering in meiotic prophase has been
observed in a wide variety of organisms, and its role in
meiosis has been inferred (reviewed in [10]), analyses in
S. pombe have demonstrated that telomere clustering and
nuclear movement promote homologous chromosome
pairing [11,12]. In S. pombe, telomere clustering is known
to take place in response to mating pheromone [13], and
recently the underlying molecular mechanism has been
revealed[14]. S. pombe Taz1 (an ortholog of the human
TRF1 and TRF2) binds directly to telomeric DNA, and
Rap1 binds to the telomere through interaction with Taz1

[15-17]. During the mating pheromone response, meio-
sis-specific proteins Bqt1 and Bqt2 are expressed and the
Bqt1/Bqt2 complex recruits Sad1 (an SPB component) to
Rap1 at the telomere [14]. In the presence of Bqt1 and
Bqt2, Sad1, which is usually localized at the SPB, becomes
accumulated at the scattered telomeres to form multiple
foci on the nuclear envelope, and subsequently the Sad1
foci converge to the SPB together with telomeres. In this
process, Sad1 binds to another SPB component Kms1,
which interacts with the dynein motor protein [18,19],
and Sad1-bound telomeres are then clustered to the SPB
through interaction with the dynein motor complex along
microtubules. Horsetail nuclear movement is also medi-
ated by cytoplasmic microtubules and the dynein motor
complex [19-21]. Thus, telomeres are clustered to the SPB
via the meiosis-specific connector proteins Bqt1 and Bqt2
in response to mating pheromone signaling, and remain
connected to the SPB throughout the horsetail nuclear
movement.

Centromeres are disassembled in response to 
mating pheromone signaling
Centromeres are separated from the SPB during meiotic
prophase in S. pombe. Recent studies have revealed that a
group of proteins disappear from the centromere during
meiotic prophase, regulated by mating pheromone signal-
ing [22,23]. In mitotic interphase, a number of proteins
assemble at the centromere and connect the centromere to
the SPB; when the cell enters mitosis, they form the kine-
tochore as an interface between the centromere and spin-
dle microtubules. As in other eukaryotic organisms, the S.
pombe kinetochore is composed of several subcomplexes
of centromere proteins: three centromere subcomplexes
named Mis6, NMS (Ndc80-Mis12-Spc7), and DASH com-
plexes [24,25]. The Mis6 complex and NMS complex
remain at the centromere throughout the mitotic cell
cycle, while the DASH complex locates to the centromere
shortly before metaphase [23,25] (Figure 3A). These com-
plexes have distinct localization patterns during meiosis.
Upon entering meiosis, the NMS complex disappears
from the centromere, whilst the Mis6 complex keeps its
location at the centromere [22,23] (Figure 3B). Removal
of the NMS complex induces dissociation of centromeres
from the SPB [22]. In late prophase, the NMS complex
reappears at the centromere, and the DASH complex
appears shortly before metaphase of meiosis I. These
observations suggest that the Mis6 complex constitutes
the structural basis of the centromere and that the NMS
and DASH complexes reassemble to establish the func-
tional metaphase kinetochore, together with meiosis-spe-
cific factors [22,23] (Figure 3B, see below). Meiosis-
specific removal and recovery of the NMS complex
implies a role associated with reconstruction of the kine-
tochore. Disassembly and reassembly of the centromere
proteins might be prerequisite events for construction of

Spatial organization of S. pombe chromosomesFigure 2
Spatial organization of S. pombe chromosomes. Loca-
tion of centromeres and telomeres in mitotic interphase (A) 
and meiotic prophase (B) determined by FISH analysis using 
specific probes. The SPB was detected by indirect immun-
ofluorescence. Scale bar, 1 µm. Right figures are schematic 
models of spatial organization of the nucleus. The blue line 
superimposed on the nucleus illustrates a chromosome.
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the meiotic monopolar kinetochore, although this
remains to be proven.

Monopolar sister kinetochore is formed in 
response to mating pheromone signaling
Studies of meiosis in S. pombe have revealed that centro-
mere dissociation from the SPB and formation of the
monopolar sister kinetochore are both regulated by mat-
ing pheromone signaling. This correlation was first sug-
gested by analyses using the pat1 mutant [26,27]. Pat1
kinase is a key negative regulator of meiosis. In wild-type
cells, mating pheromone signaling is required to inacti-
vate Pat1 upon meiosis initiation. This requirement for
mating pheromone signaling can be bypassed by inactiva-
tion of Pat1 by temperature-sensitive mutation. Muta-
tional inactivation of Pat1 induces cells to enter meiosis
even under conditions that the cell normally never enters
meiosis, e.g., in the haploid state [28,29]. In these experi-
ments, cells are arrested in G1 phase by nitrogen starva-
tion prior to induction of meiosis. Interestingly, in cells

induced into meiosis by mutational inactivation of Pat1,
in the absence of meting pheromone signaling, telomeres
are clustered to the SPB, but centromeres often remain at
the SPB in meiotic prophase [27]. In those cells, the NMS
complex localizes to centromeres attached to the SPB
[22,23]. Furthermore, sister chromatids are precociously
segregated to opposite poles in meiosis I, indicating a defi-
ciency in monopolar attachment of the sister kinetochores
[26].

Meiotic defects caused by mutational inactivation of Pat1
are due to the lack of mating pheromone signaling. When
the pat1 mutant cells are induced to meiosis in the pres-
ence of mating pheromone signaling, NMS complex pro-
teins disappear from centromeres and centromeres are
fully dissociated from the SPB [22,23]. Moreover, sister
chromatids correctly moves to the same spindle pole,
indicating the monopolar sister kinetochore has been
established [26]. These findings demonstrate that the
monopolar sister kinetochore is formed in response to the
mating pheromone, causing reorganization of centromere
proteins in meiotic prophase.

As the sister kinetochore is constructed during DNA repli-
cation, it is possible that the timing of DNA replication is
affected by the presence or absence of mating pheromone.
The timing of meiotic DNA synthesis can be determined
in meiosis synchronously induced by temperature shifting
G1 cells of the pat1 mutant. When meiosis is induced by
pat1 mutation without mating pheromone, DNA synthe-
sis occurs after 4 hours; on the other hand, when meiosis
is induced in the presence of mating pheromone signal-
ing, DNA synthesis occurs after 2 hours [26]. Thus the
mating pheromone signaling may also induce meiotic S-
phase earlier. Importantly, in the pat1 mutation-induced
meiosis without mating pheromone, the NMS complex
remains at the centromere, and centromeres often remain
associated with the SPB at the time of meiotic S-phase
[22,23,27]. In contrast, in meiosis induced by the muta-
tional inactivation of Pat1, in the presence of the mating
pheromone signaling, the NMS complex disappears from
the centromere, and centromeres are dissociated from the
SPB before meiotic S-phase like in the normal process of
meiosis [22,23]. These results suggest that formation of
the monopolar kinetochore correlates with removal of the
NMS protein complex and consequent separation of cen-
tromeres from the SPB at the time of DNA replication,
although no evidence has been found to support direct
causality.

Centromere loading of Sgo1, but not of Rec8 or 
Moa1, depends on mating pheromone signaling
Some meiosis-specific proteins are known to play a role in
the monopolar attachment of sister kinetochores in S.
pombe. Meiotic cohesin Rec8 holds sister kinetochores

Dynamics of centromere proteins during meiosisFigure 3
Dynamics of centromere proteins during meiosis. (A) 
S.pombe centromere protein complexes. Three major com-
plexes are located at the inner centromere region during 
mitosis. The NMS complex consists of the Ndc80 complex 
(Ndc80, Nuf2, Spc24, and Spc25), the Mis12 complex (Mis12, 
Mis13, Mis14, and Nnf1), and Spc7. The Ndc80 complex and 
the DASH complex are required for kinetochore-microtu-
bule attachment in mitosis. The DASH complex, forming a 
ring structure, binds to and slides along the spindle microtu-
bules. In mitotic interphase, the DASH complex does not 
localize to the centromere region. (B) Reassembly of centro-
mere proteins during meiotic prophase. In early meiotic 
prophase, the NMS and DASH complex proteins are dissoci-
ated from the centromere while the Mis6 complex remains. 
Meiosis-specific cohesin Rec8 and the Rec8-associated pro-
tein Moa1 are recruited during meiotic DNA replication. In 
late meiotic prophase, Sgo1 and NMS complex proteins are 
assembled onto the centromere. Finally, DASH complex 
associates with the centromere upon metaphase I.
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together until anaphase II [30]. Along with Rec8, Moa1 is
essential in establishing the monopolar kinetochore [31].
During meiotic S-phase, Rec8 is loaded onto the sister
chromatids [32]. Moa1 is loaded to the centromere in an
early stage of horsetail nuclear movement [23], probably
corresponding to S-phase similarly to Rec8 (Figure 3B).
The loading of Rec8 and Moa1 does not require mating
pheromone signaling [23,26]. In addition, Rec8 and
Moa1 can locate to the centromere when ectopically
expressed in mitotic interphase cells [31,33], while the
NMS complex remains bound to the centromere. Thus,
the removal of the NMS complex may be unnecessary for
loading of Rec8 and Moa1 to the centromere. Monopolar
sister kinetochore formation further requires mating phe-
romone signaling, suggesting that centromere loading of
Rec8 and Moa1 is necessary, but not sufficient for forma-
tion of the monopolar kinetochore. Additional alteration
of the kinetochore may occur in response to the mating
pheromone signaling.

Localization of another meiosis-specific protein, Sgo1, to
the centromere is regulated by mating pheromone signal-
ing. Sgo1 protects Rec8 at the centromere to maintain
cohesion between sister kinetochores until meiosis II
[34]. Sgo1 appears at the centromere during late-stage
horsetail nuclear movement, as does the NMS complex
[23] (Figure 3B). Importantly, when meiosis is induced by
pat1 mutation in the absence of mating pheromone sign-
aling, loading of Sgo1 to the centromere is severely dimin-
ished [23]. This suggests that loading of Sgo1 is regulated
downstream of mating pheromone signaling. Rec8 is
expressed in pat1 mutation-induced meiosis in the
absence of mating pheromone signaling as well as normal
meiosis in wild type cells. Because Sgo1 is capable of
localizing to centromeres in proliferating cells when
ectopically coexpressed with Rec8 [34], diminished local-
ization of Sgo1 in the pat1 mutant might be due to insuf-
ficient expression. Details of the mechanism of Sgo1
regulation by mating pheromone signaling are yet to be
elucidated.

Regulatory pathways downstream of the mating 
pheromone
The previous sections describe the role of mating pherom-
one signaling in regulation of centromeres during meio-
sis. Moreover, ectopic activation of mating pheromone
signaling can induce the normal process of meiosis. The
mating pheromone signal is transmitted through a MAPK
cascade, which consists of Byr2 (MAPKKK), Byr1
(MAPKK), and Spk1 (MAPK) [35-40]. This pheromone-
responsive MAPK signaling cascade can be activated by
expressing a mutant Byr1 protein that mimics a phospho-
rylated form of the molecule [41], or by expressing a trun-
cated Byr2 lacking the N-terminal regulatory domain [42]
(Figure 4). When the MAPK cascade is ectopically acti-

vated in cells, the chromosomes behave as in the normal
process of meiosis: telomeres cluster to the SPB and cen-
tromeres dissociate from the SPB, one of the NMS com-
plex proteins, Nuf2, is removed from the centromere in
those cells, suggesting the entire NMS complex is proba-
bly removed from centromeres [41] (HA and YH, unpub-
lished result), and while the sister chromatids show
monopolar attachment to the spindle in meiosis I [41].
These facts indicate that chromosomal events proceed
normally in meiosis induced by activated mating pherom-
one signaling [41]. These events require functional MAPK
Spk1, because they do not occur in Spk1 mutant cells
[41,42] (HA and YH, unpublished result). Thus mating
pheromone signaling can induce meiosis with normal
regulated behaviors of chromosomes.

Recently, a transcription factor, Ste11, was reported to
function downstream of Spk1 [42]. Ste11, originally iden-
tified as an HMG family transcription factor, can bind to
a specific sequence upstream of target genes [43]. Ste11 is
primarily expressed upon nitrogen starvation, and expres-
sion is further increased in response to mating pherom-

Mating pheromone signaling pathway in S. pombeFigure 4
Mating pheromone signaling pathway in S. pombe. (A) 
MAP kinase cascade of the S. pombe mating pheromone sign-
aling pathway consists of Byr2 (MAPKKK), Byr1 (MAPKK), 
and Spk1 (MAPK). Spk1 phosphorylates and activates down-
stream transcription factor, Ste11. (B) Induction of meiosis 
by activation of the pheromone-responsive MAPK cascade. 
Expression of a mutant version of Byr1 (an analog form of 
the activated Byr1, in which serine at residue 214 and threo-
nine at residue 218 are substituted to aspartic acids) can 
induce meiosis ectopically via activation of Spk1. Expression 
of a truncated version of Byr2 (residue 340–659) lacking the 
N-terminal regulatory domain can also activate downstream 
Byr1 and induce meiosis.
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one [42]. Spk1 phosphorylates two threonine residues of
Ste11 (residues 305 and 317) in vitro, and phosphoryla-
tion of these residues is required for haploid meiosis
induced by ectopic activation of the MAPK cascade [42].
Thus, factors regulated by Ste11 may be involved in mei-
otic centromere reconstruction. Alternatively, unknown
factors that are directly phosphorylated by Spk1 may be
involved. Recent DNA microarray analyses have identified
more genes whose expression is induced by mating phe-
romone signaling [14,44,45]. A more comprehensive
search of factors downstream of mating pheromone sign-
aling will lead to further understanding of meiotic regula-
tion of the centromere.

Regulation of centromeres in other organisms
Several pieces of evidence for centromere-telomere reposi-
tioning and regulation of centromere proteins in the tran-
sition from mitosis to meiosis have been reported in other
eukaryotes. In the budding yeast Saccharomyces cerevisiae,
repositioning of chromosomes takes place during meio-
sis, although the telomere clustering is less prominent and
shorter in time than that in S. pombe [8,46]. At the time of
repositioning, one of the Ndc80 complex proteins, Nuf2,
disappears from the centromere, suggesting that the repo-
sitioning probably involves reorganization of centromere
proteins as in S. pombe [22]. In S. cerevisiae, proteins cru-
cial for monopolar attachment of sister kinetochores to
the spindle have been identified [47-53], but the correla-
tion with spatial regulation of centromeres has not been
examined. It is unlikely that the mating pheromone
response regulates monopolar sister kinetochore forma-
tion because although the mating pheromone induces cell
fusion, it does not induce meiosis directly in this organ-
ism.

In the nematode Caenorhabditis elegans, spatial reorganiza-
tion of the nucleus occurs at the onset of meiotic
prophase. Chromosomes asymmetrically cluster to one
side of the nucleus, which in turn becomes crescent-
shaped [54], although it is unclear whether reorganization
of chromosomes involves repositioning of centromeres
and telomeres. In C. elegans, several centromere proteins
such as Cenp-C, Him-10 and KNL-1 are localized only
during chromosome segregation both in mitosis and mei-
osis [55-59]. Remarkably, histone H3 variant, Cenp-A,
loses the localization selectively during meiotic prophase,
while it remains at the centromere throughout the mitotic
cell cycle [55,60]. It is not known, however, whether the
disappearance of these proteins is related to meiotic reor-
ganization of the nucleus and monopolar kinetochore
formation in C. elegans.

In higher eukaryotes, reorganization of the nucleus occurs
during meiosis [6]. A large number of kinetochore pro-
teins, including homologues of S. pombe proteins, has

been reported. However, it is largely unknown how the
kinetochore proteins behave during meiosis in higher
eukaryotes.

Conclusion
Regulation of meiosis is diverse among species, but the
establishment of the monopolar sister kinetochore is a
common and essential process in meiosis, as is the repo-
sitioning of chromosomes in meiotic prophase. Reposi-
tioning of chromosomes leading the bouquet formation
promotes homologous chromosome pairing by bundling
telomeres together. Although several studies indicate that
repositioning of centromeres and the construction of
monopolar sister kinetochores are correlated, these proc-
esses can be independently regulated in response to mat-
ing pheromone signaling (Figure 5). Although a signal
pathway may be different in yeasts and higher eukaryotes,
formation of the monopolar sister kinetochore is obvi-
ously crucial for meiotic chromosome segregation. How
meiosis-specific proteins interact with other centromere

Schematic model of nuclear organization in S. pombe meiosisFigure 5
Schematic model of nuclear organization in S. pombe 
meiosis. (A) The nuclear organization induced by the pat1 
mutation. When meiosis is induced by Pat1 inactivation in the 
absence of the mating pheromone signaling, telomeres 
(green) cluster at the SPB (red); however, centromeres 
(blue) remain associated with the SPB, and the sister kineto-
chores are formed in a bipolar orientation. In these cells, the 
NMS complex (yellow) remains at the centromere attached 
to the SPB. (B) Nuclear organization induced by mating phe-
romone signal activation. Pat1 is inactivated downstream in 
the mating pheromone response, leading to telomere clus-
tering. Centromere dissociation from the SPB and formation 
of the monopolar sister kinetochores are regulated, probably 
by independent pathways, downstream of mating pheromone 
signaling. It remains unknown whether centromere recon-
struction and/or repositioning contributes to monopolar 
kinetochore formation (arrow with question mark).
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proteins to establish monopolar sister kinetochores, and
how these proteins are regulated remain to be elucidated.
To address these questions, S. pombe provides a useful
experimental system, as sister kinetochore formation can
be manipulated in the presence or absence of mating phe-
romone signaling. Given that kinetochore components
are highly conserved from yeasts to humans, we expect
that analysis of the kinetochore and chromatin structures
for monopolar attachment to the spindle will provide
fundamental understanding of the mechanisms for ensur-
ing the regulated segregation of homologous chromo-
somes and sister chromatids during meiosis.
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