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1  |  INTRODUC TION

Peripheral artery disease (PAD) is a vascular disease caused by ab-
normal narrowing of peripheral arteries, restricting blood flow to 
peripheral tissues, causing pain, ulceration and gangrene. The PAD 
patient population is estimated to include more than 200 million 
worldwide. These patients' symptoms usually progress to criti-
cal limb ischaemia (CLI) eventually requiring limb amputation.1,2 
Treatment options for CLI patients are limited primarily to surgi-
cal and endovascular procedures. Novel, more effective treatment 

strategies, including revascularization or therapeutic angiogenesis, 
are being actively pursued.

Recently, stem and/or progenitor cells have been shown to 
contribute to therapeutic angiogenesis through paracrine effects 
(transdifferentiation).3,4 Several studies have demonstrated that 
mesenchymal stem cells (MSCs) can robustly stimulate angiogenesis 
by secreting angiogenic factors, facilitating favourable therapeutic 
outcomes.5,6 However, the remaining uncertainty in therapeutic 
outcomes of procedures using stem cells is a major obstacle to their 
use for damaged tissue regeneration. One interesting angiogenic 
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Abstract
Although stem cells have extensively been studied as a novel vehicle for tissue repair, 
their sustained efficacy remains controversial. In this study, we aimed to investigate 
the angiogenic potency over time of stromal cell-derived factor-1 (SDF-1) gene-edited 
amniotic mesenchymal stem cells (AMM/S) in a hindlimb ischaemia model. An SDF-1 
transgene was inserted into the AMM cell genome via transcription activator-like ef-
fector nuclease (TALEN) mediated knock-in, and cell migration, Matrigel tube forma-
tion, and in vivo Matrigel plug assays were performed. AMM/S were also transplanted 
into hindlimb ischaemia model mice. Blood perfusion, therapeutic potential, histology, 
capillary density and in vivo angiogenic assays were performed. AMM/S exhibited 
high expression of the SDF-1 gene, and robustly promoted migration, proliferation 
and microvascular formation. AMM/S transplantation significantly increased blood 
perfusion and limb loss prevention compared with AMM. AMM/S also significantly in-
hibited increased capillary density and expression of angiogenic factors in the ischae-
mic hindlimb. Our study demonstrated that AMM/S provides a significant therapeutic 
effect in ischaemic hindlimbs by enhancing angiogenesis.
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factor, stromal cell-derived factor-1 (SDF-1), also known as C-X-C 
motif chemokine 12, has been reported to exert potent angiogenic 
effects. SDF-1 signals to fibroblasts, osteoblasts and endothelial 
cells, and plays a key role in cell trafficking and homing of haema-
topoietic progenitor cells.7 SDF-1 overexpressing rat MSCs promote 
angiogenesis in a rat model of myocardial infarction.8 Thus, SDF-1 
introduction by tissue engineering or transplantation of SDF-1-
overexpressing cells has been successfully applied to regenerate 
damaged tissues and organs.9

Recently, genome-editing technologies have been applied to 
generate functionally improved stem cells.10 Such technologies 
can target specific genomic sites,11 and artificial restriction en-
zymes allow genome modification via homology-directed repair for 
knock-in construction.12

In this study, we generated long-term SDF-1 secreting human 
amniotic mesenchymal stem cells (AMM/S) via TALEN-mediated ed-
iting and investigated to determine whether gene-edited AMM/S are 
novel angio-vasculogenic cell population in experimental ischaemia.

2  |  MATERIAL S AND METHODS

2.1  |  Cell culture

Human AMMs were obtained from Thermo Fisher Scientific, Inc. 
and cultured in low-glucose Dulbecco's modified Eagle medium 
(DMEM), supplemented with 10% foetal bovine serum (FBS), 100 U/
ml penicillin and 100 μg/ml streptomycin (Gibco). The characteristics 
of AMMs were described in Figure S1.

2.2  |  Donor construction

SDF-1 was synthesized and inserted into the AAVS1 genome site 
targeting donor vector (System Biosciences).

2.3  |  Transfection and selection

Transfection and selection were conducted as described in a previ-
ous study.13,14 AMMs (1 × 105) were suspended with 0.6 μg of AAVS1 
left, right TALE-Nuclease vector (System Biosciences) and AAVS1 
HR Donor (System Biosciences) in 10 μl electroporation buffer, and 
electroporated using a Neon Transfection System (Thermo Fisher 
Scientific). Four days after, SDF-1 knock-in cells were selected by 
incubating them in 5 μg/ml puromycin for 7 days.

2.4  |  Fluorescence-activated cell sorting

After puromycin selection, the cells were washed once with 
phosphate-buffered saline (PBS) following the 0.05% trypsin/EDTA 

treatment for cell detachment. The cells were resuspended in PBS 
for sorting. AMM/S were sorted on FACSAria™ III Cell Sorter (BD 
Biosciences).

2.5  |  Genomic DNA extraction and junction 
polymerase chain reaction

Genomic DNA from cells was extracted using a G-spin™ Total DNA 
Extraction Mini Kit (Intron Biotechnology), and 120 ng of genomic 
DNA was amplified by touch-down polymerase chain reaction 
(PCR) (36 cycles) as described in a previous study.14 PCR primer was 
used as following; Forward (J212): aactctgccctctaacgctg, (J195): 
cgaggccagaggccacttgtgta.

2.6  |  Quantitative reverse transcriptase–PCR 
(qRT-PCR) and reverse transcriptase–PCR (RT-
PCR) analyses

qRT-PCR or RT-PCR analysis was conducted as described in a previ-
ous study.15–17 Briefly, the total RNA was isolated from cells using 
RNA-stat (Iso-Tex Diagnostics), and RNA was reverse-transcribed 
using Taqman Reverse Transcription Reagents (Applied Biosystems). 
The synthesized cDNA was subjected to qRT-PCR using human-
specific primers and probes. RNA levels were quantitatively as-
sessed using the ABI PRISM 7000 Sequence Detection System 
(Applied Biosystems).14 The relative mRNA expression normalized 
to GAPDH expression was calculated as described previously.18

2.7  |  qPCR primer

The primers used in qRT-PCR were for human SDF-1 (Hs00171022_
m1) and GAPDH (Hs99999905_m1) and for mouse fibroblast 
growth factor-2 (FGF-2) (Mm01285715_m1), hepatocyte growth 
factor (HGF) (Mm01135184_m1), insulin growth factor-1 (IGF-1) 
(Mm00439561_m1), vascular endothelial growth factor A (VEGF-A) 
(Mm01281448_g1) and GAPDH (Mm99999915_g1). All of the 
primer/probe sets were purchased from Applied Biosystems.

2.8  |  Conditioned media preparation

Conditioned media (CM) was prepared as described in previous 
literature.19 Briefly, AMMs, AMM/sh-S or AMM/S (each 1  × 106) 
were seeded into T-75 cell culture flasks and grown in normal me-
dium or low-glucose DMEM (Gibco) containing 10% FBS, 100 U/
ml penicillin and 100 mg/ml streptomycin (Gibco) for 48 h until the 
cells reached approximately 90% confluence. Each of CM was then 
centrifuged, and the supernatants were collected and used for this 
study.

https://www.sciencedirect.com/topics/medicine-and-dentistry/eagles-minimal-essential-medium
https://www.sciencedirect.com/topics/medicine-and-dentistry/eagles-minimal-essential-medium
https://www.sciencedirect.com/topics/medicine-and-dentistry/eagles-minimal-essential-medium
https://www.sciencedirect.com/topics/medicine-and-dentistry/eagles-minimal-essential-medium
https://www.sciencedirect.com/topics/medicine-and-dentistry/fetal-bovine-serum
https://www.sciencedirect.com/topics/medicine-and-dentistry/gene-knockin
https://www.sciencedirect.com/topics/medicine-and-dentistry/gene-knockin
https://www.sciencedirect.com/topics/medicine-and-dentistry/cell-culture
https://www.sciencedirect.com/topics/medicine-and-dentistry/polymerase-chain-reaction
https://www.thermofisher.com/taqman-gene-expression/product/Mm01285715_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00439561_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm01281448_g1?CID=&ICID=&subtype=
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2.9  |  Scratch migration assay

Scratch wound assays were performed by a method established in 
previous literature19 with modifications. Human dermal fibroblast 
(1 × 105) were seeded in 24-well culture plates coated with type I 
collagen (0.2 mg/ml) and incubated at 37°C in 5% CO2 to produce 
confluent monolayers. Monolayers were scratched using a sterile 
pipette tip and incubated with each CM groups (AMMs, AMM/sh-S 
or AMM/S), which had been cultured for 5 days. To measure cell 
mobility, images were obtained at 5 random fields after scratching. 
Wound areas were examined, using the NIH Image program (http://
rsb.info.nih.gov/nih-image/).19

2.10  |  Matrigel tube formation assay

Each type of AMMs, AMM/sh-S or AMM/S was seeded with en-
dothelial growth medium (EGM)-2 (Lonza Inc.) at a concentration 
of 1.5 × 104 cells/well in basement membrane matrix gel (Matrigel, 
BD)-coated 12-well culture plate. After 12 h of incubation, cul-
ture plates were randomly photographed using microscopy. Tube 
length and the number of branching point from each sample were 
measured.

2.11  |  In vivo Matrigel plug assay

AMMs or AMM/S with 500 μl of Matrigel were subcutaneously 
transplanted in Male athymic nude mice (Joongang Laboratory 
Animal Inc.), aged between 7 and 9 weeks. After 2 weeks, Matrigel 
plugs were harvested, and the haemoglobin content was measured 
as previously reported.20

2.12  |  Transplantation of cells in the ischaemic hind 
limb mouse model

All procedures were performed in accordance with the Guide 
for the Care and Use of Laboratory Animals published by the US 
National Institutes of Health (NIH Publication No. 85–23, revised 
1996). Experimental protocols of animal were approved by the 
Catholic Kwandong University Institutional Animal Care and Use 
Committee. Female athymic nude mice (Joongang Laboratory 
Animal Inc., Seoul, South Korea) aged between 6 and 9 weeks and 
weighing between 19 and 22 g were used. To induce hind limb is-
chaemia, the mice were anaesthetised with 2% isoflurane, and their 
right femoral artery was surgically ligated. 1,1’dioctadecyl-3,3,3′,3′-
tetramethylindocarbocyanine (Dil)-labelled 1  × 106 AMM, AMM/S 
or PBS were intramuscularly injected into the hind limb area after 
surgery (n  =  7 for each group).21 Immediately before euthanasia, 
an overdose of pentobarbital (200 mg/kg) was injected into each 
mouse. We used a laser Doppler perfusion image (LDPI) analyser 

(Moor Instrument) to measure the serial blood flow in the hind limb 
after cell injection.

2.13  |  Histological analysis

Mice hind limbs were harvested and fixed for 4  h in 4% para-
formaldehyde and incubated overnight in 15% sucrose solution. 
The tissues were embedded in OCT compound (Sakura Finetek, 
Torrance, CA, USA), snap-frozen in liquid nitrogen and sec-
tioned (thickness, 10–20  μm).22 Nuclei were counterstained with 
4′,6-diamidino-2-phenylindole (1:5000; Sigma Aldrich). For capil-
lary density measurement, five frozen sections of tissue from each 
group were stained with primary biotinylated ILB4 (1:250; Vector 
Laboratory Inc.) and secondary strepta-avidin Alexafluor 488 (1:400; 
Invitrogen).21 Five fields from four tissue sections were randomly 
selected, and the number of capillaries was counted in each field.21 
Sections were also labelled with primary antibody to SDF-1 (Santa 
Cruz Biotechnology, Inc.) and detected by Cy3 conjugated antibody 
(Jackson ImmunoResearch Laboratories). Photographs were taken 
using confocal microscopy (Zeiss LSM 510; Carl Zeiss Inc.).

2.14  |  Statistical analysis

All data were presented as mean ± standard deviation. Statistical 
analyses were performed with Student's t test for comparisons be-
tween two groups, and analysis of variance followed by Bonferroni's 
correction was performed for more than two groups using SPSS 
version 11.0 (IBM Corp.).16,17 A p value <0.05 was considered sta-
tistically significant. Graphs were drawn using MedCalc software® 
(Mariakerke, Belgium).

3  |  RESULTS

3.1  |  Targeted SDF-1 knock-in into the AMMs cell 
genome

To generate a stable stem cell line expressing SDF-1 using the 
TALEN integration method, we chose a safe locus on chromosome 
19 (AAVS1) as the target site. The donor plasmid was designed to 
carry the PGK promoter, SDF-1 and EF1α promoters, and GFP-T2A-
puromycin (Figure  1A). The donor plasmid was transfected into 
human AMMs using TALEN. Only 4%–5% of cells were GFP-positive 
after transfection. Purity of SDF-1 knock-in cells was enriched to ap-
proximately 99.1% of GFP-positive cells by puromycin treatment fol-
lowed by fluorescence-activated cell sorting (Figure 1B). To confirm 
integration of the donor plasmid into the AMM genome, we con-
ducted genomic DNA PCR. Correct insertion of the donor plasmid 
was confirmed. (Figure 1C). Next, we confirmed SDF-1 expression in 
transfected AMMs by RT-qPCR. We found that transfected AMMs 

http://rsb.info.nih.gov/nih-image/
http://rsb.info.nih.gov/nih-image/
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expressed high levels of SDF-1 compared to control AMMs, suggest-
ing successful establishment of an SDF-1 expressing AMM/S cell line 
(Figure 1D).

3.2  |  Culture Media (CM) from AMM/S promotes 
endothelial cell proliferation and migration

To examine whether protein factors secreted from AMM/S promote 
endothelial cell proliferation and migration, we measured rates of cell 
proliferation, and performed a scratch migration assay. In addition, 
to further confirm the function of SDF-1 in AMMs, we also gener-
ated SDF-1 silencing AMMs using shRNA lentiviral construct (AMM/
sh-S) and AMD3100 (CXCR4 inhibitor) treated AMM/sh-S used as 
an another control group. The cell proliferation assay showed that 
AMM/S CM (333 ± 30%, p  =  0.001, 0.002) significantly increased 
rates of HUVEC proliferation compared with control AMMs CM 
(206 ± 21%) or AMM/sh-S CM (188 ± 19%) (Figure 2A and B). Scratch 

closure assay also showed that AMM/S CM (66.3 ± 11%, p = 0.001, 
0.002) significantly increased rates of wound closure compared with 
those under exposure to control AMMs (24.3 ± 4%) or AMM/sh-S 
CM (24.6 ± 5%) (Figure 2C and D).

3.3  |  AMM/S display angiogenic and 
vasculogenic properties

To investigate vasculogenic potential of AMM/S in vitro, we per-
formed a Matrigel tube formation assay. AMM/S displayed sig-
nificantly higher tube lengths (8.9  ± 3 mm, p  =  0.007, 0.006) and 
branching points (16.6 ± 4, p = 0.002, 0.002) than in AMMs (1.8 ± 0.3, 
3.2 ± 0.2), or AMM/sh-S (1.8 ± 0.2, 2.7 ± 0.2) (Figure 3A and B).

To measure the vasculogenic potential of AMM/S in vivo, we 
performed a Matrigel plug assay. After 2 weeks, Matrigel plugs 
were harvested, and their haemoglobin content was examined. 
Interestingly, Matrigel plugs containing AMM/S (4.1 ± 1.5, p = 0.02) 

F I G U R E  1  Generation of the AMM/S stable cell line. (A) Schematic of the donor vector carrying SDF-1 and donor plasmid DNA targeting 
the AAVS1 locus in the host genome. Primers F and R indicate primer locations for junction detection. Abbreviations: HA-L, left homology 
arm; HA-R, right homology arm; PGK, phosphoglycerate kinase promoter; EF1α, elongation factor-1 alpha promoter; Puro, puromycin. (B) 
GFP expression in AMM/S. Transfected cells were selected by incubating with puromycin and then purified by fluorescence-activated cell 
sorting. (C) Confirmation of correct knock-in of donor plasmid into the AAVS1 locus by junction PCR. (D) SDF-1 expression levels in the 
AMM/S cell line assessed by RT-qPCR. **p < 0.01, n = 4 in each group
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contained significantly higher levels of red blood cells compared 
with plugs containing AMMs (1.5 ± 0.6), indicating high potential for 
inducing formation of vasculature (Figure 3C and D).

3.4  |  AMM/S transplantation exerts 
strong therapeutic effects in response to 
hindlimb ischaemia

We induced hind limb ischaemia in nude mice to examine the thera-
peutic effects of AMM/S. AMM/S, AMM or PBS were injected in-
tramuscularly into the hind limb. Laser Doppler perfusion image 
analysis revealed that AMM/S (47 ± 7.1, p = 0.03, 0.0006) injection 
remarkably increased blood perfusion on Day 5 compared with 
limbs injected with AMM (32 ± 8.6) or PBS (12 ± 3.0) (Figure 4A and 

B). In addition, the AMM/S-injected group demonstrated a higher 
limb function salvage ratio than the AMM and PBS control groups 
(Figure 4C and D).

3.5  |  AMM/S enhance capillary density in 
ischaemic hind limb muscle

To elucidate the mechanism(s) underlying the therapeutic effects 
of AMM/S treatment, we harvested hind limb muscle and immu-
nostained tissue sections using SDF-1 and isolectin B4 (ILB4) as a 
marker for endothelial cells. The number of ILB4 positive capillar-
ies was significantly higher on Day 7 in the AMM/S-injected hind 
limb (67 ± 1.5, p  =  0.04, 0.003) than in PBS (17.3  ± 5.5) or AMM 
(44.3 ± 9.7) treated control hind limbs (Figure 5A and B). In addition, 

F I G U R E  2  Cell proliferation, migration assays. (A) Representative photograph of HUVEC proliferation after 5 days incubation with CM. (B) 
Comparison of HUVEC cell proliferation rates after 5 days showed that AMM/S CM significantly improved HUVEC proliferation compared 
to control AMM or AMM/sh-S CM. **p < 0.01, n = 4 in each group. (C) Representative photograph of HUVEC migration after incubation with 
CM. (D) An in vitro wound scrach healing assay indicating that AMM/S CM strongly enhanced cells migration compared with control AMM 
or AMM/sh-S CM. **p < 0.01, n = 4 in each group
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immunostaining and Western blot analysis revealed that the expres-
sion of SDF-1(2.8  ± 0.5, p  =  0.001, 0.001) was higher in AMM/S-
injected hind limb than PBS (1.0 ± 0.3) or AMM (0.9 ± 0.2) treated 
control hind limbs (Figure S2A,B).

To further elucidate the mechanisms underlying the enhanced 
recovery of blood perfusion, we examined the expression of angio-
genic factors in hind limb tissues via RT-qPCR analysis. Interestingly, 
AMM/S injection significantly upregulated FGF-2 (p = 0.001, 0.0003), 
HGF (p = 0.02, p = 0.0001), VEGF-A (p = 0.005, p = 0.007) com-
pared to AMM or PBS injection five days after cell transplantation, 

suggesting strong angiogenic stimulation by AMM/S, promoting vas-
cular regeneration (Figure 5C).

3.6  |  Endothelial differentiation potential of 
AMM/S in vivo

The endothelial differentiation potential of AMM/S was investi-
gated in hind limb ischaemia. Dil-labelled AMM/S were directly 
injected into the ischaemic area of the hind limb adductor muscle. 

F I G U R E  3  Matrigel tube formation and Matrigel plug assay. (A) Representative photographs of Matrigel tube formation induced by AMM 
or AMM/S. Bars: 200 μm. (B) Quantification of Matrigel tube formation. Numbers of branching points, and tube lengths were significantly 
higher with AMM/S than AMM or AMM/sh-S. **p < 0.01, n = 5 per group. (C) Representative photograph of Matrigel plugs injected with 
AMM/S, AMM or PBS for 1 week. (D) Quantification of haemoglobin content. **p < 0.01; n = 5 per group
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Hind limb muscle tissues were harvested 4 weeks after cell injec-
tion. Immunohistochemistry was performed, demonstrating that 
AMM/S colocalized with ILB4 in vascular structure, support-
ing their endothelial differentiation in vivo (Figure  6). However, 
we could not find colocalization with ILB4 of AMM in vascular 
structure.

4  |  DISCUSSION

In this study, we first generated a gene-edited AMM/S cell line. We 
also investigated angio-vascuogenic characteristics of AMM/S and 
the possible therapeutic mechanism. These results showed that 
AMM/S injection induced the enhanced recovery of blood flow, 
neovascularization and prevented limb dysfunction in a mice limb 
ischaemia model.

Although stem cell-based cell therapies have emerged as an at-
tractive therapeutic avenue for repair of damaged tissues, the lasting 
efficacy of its therapeutic effects remains in question.23 We initially 
evaluated allogeneic stem cell source candidates, including adult 
stem cells, for some important points, including low immunological 
response, young/unlimited cell proliferation, high transdifferenti-
ation potential and easy accessibility for collection. We identified 
human amnion as an attractive stem cell resource. We evaluated 
isolated tissues from the amnion and found the amnion membrane 
to be an attractive candidate stem cell source. AMM contains 
abundant cells compared with fluid, cord or chorion, and displays 

high/unlimited cell proliferation capacity, as previously reported.24 
Additionally, we tested a strategy to enhance the therapeutic po-
tential of AMMs by genome modification using TALEN gene-editing 
methods. Gene-editing technology can precisely manipulate genes, 
preventing unintended mutations.

We recently reported angiogenic properties in human AMMs, 
and ASC overexpressing a single chemokine gene (GCP-1) displayed 
high angio-vasculogenic capacity.25 In addition, AMM offers great 
advantages as an allogeneic stem cell source due to its low immu-
nogenicity, and unlimited cell proliferation capacity.24,26 Thus, we 
hypothesize that one of the representative chemokine genes (SDF-
1) overexpressed in AMM might enhance their angiogenic potential, 
aiding development of universal stem cell resources. The marginal 
therapeutic effects of stem cells to date are a major limitation facing 
cell therapy. In addition, AMM specifically exhibits low SDF-1 ex-
pression compared to other angiogenic factors such as VEGF-A. In 
fact, SDF-1 overexpressing MSC promote angiogenesis and improve 
heart function.8 In line with this report, gene-edited AMM/S also 
exhibited strong proliferative and migratory properties. In addition, 
AMM/S also showed vasculogenic potential in in vitro and in vivo 
Matrigel assays.

CXC chemokines exert pleiotropic effects on immunity, angiogen-
esis and cancer metastasis.27 In addition, CXC chemokines are a unique 
family of cytokines that contain the ‘ELR’ motif and potently stimulate 
angiogenesis via binding and activating CXCR2 on endothelial cells.27 
SDF-1, also known as C-X-C motif chemokine 12 (CXCL12), induces 
migration of human umbilical vein endothelial cells in vitro28 and 

F I G U R E  4  Recovery of blood flow, 
and therapeutic effects promoted by cell 
injection in a hind limb ischaemia model. 
(A) Representative laser doppler images 
of blood perfusion recovery in ischaemic 
hind limbs after cell transplantation. (B) 
Quantitative analysis of blood perfusion 
ratios. AMM/S injection improved 
blood flow compared with AMM 
treated mice 1 week after cell injection. 
**p < 0.01, *p < 0.05; n = 7 per group. (C) 
Representative images of salvaged limbs 
after AMM/S injection. (D) Quantitative 
analysis of limb salvage ratios
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enhances formation of tube-like structures.29 Consistent with these 
studies, SDF-1 overexpressing AMM/S exhibited strong migration and 
tube formation properties, suggesting enhanced angiogenic potential.

SDF-1 exerts a chemoattractive effect on haematopoietic stem 
cells (HSCs)30 and induces bone marrow-derived c-kit+ progenitor 
cell differentiation towards an endothelial phenotype.31 SDF-1 pre-
treatment during endothelial progenitor cell (EPC) expansion stim-
ulates EPC adhesion to endothelial cells, augmenting cell therapy 
efficacy for ischaemic vascular diseases.32 Based on these numerous 
reports, SDF-1 affect chemotaxis and differentiation in HSCs and 
EPCs, enhancing therapeutic angiogenesis in hind limb ischaemia.8,33 

In addition, MSCs could differentiate into endothelial cells in the 
presence of SDF-1.8 Consistent with these studies, we found that 
AMM/S transdifferentiated into endothelial-like cells with vascular 
structure, suggesting that autocrine SDF-1 action might enhance in 
vivo endothelial cell transdifferentiation in hind limb tissue.

Stem cell therapeutic mechanisms in ischaemic cardiovascular 
disease have mostly been attributed to paracrine effects.34 AMM/S 
cell injection significantly increased vascular density and resulted 
in high levels of the proangiogenic factors FGF-2, HGF, IGF-1 and 
VEGF-A in hind limb tissues. AMM/S injection may stimulate cir-
culating endothelial stem or progenitor cells to home to ischaemic 

F I G U R E  5  Therapeutic mechanism of hind limb ischaemia after cell injection. (A) Representative images of capillary density in ischaemic 
hind limbs 2 weeks after cell injection. (B) Quantification of capillary density in ischaemic hind limb tissues after cell injection. **p < 0.01; 
n = 7 per group. (C) Analysis of levels of angiogenic gene expression in ischaemic hind limb tissues 3 days after cell transplantation. Various 
angiogenic gene expression levels were measured by RT-qPCR. **p < 0.01; *p < 0.05; n = 7 per group
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limbs due to high chemokine levels. In addition, in vivo endothelial-
transdifferentiated AMM/S contributed to neovascularization or 
maintenance of vascular structure in ischaemic limbs.

In conclusion, we demonstrated that SDF-1 overexpressing 
AMMs generated by gene-editing display potent angiogenic and 
vasculogenic properties. Thus, we speculate that AMM/S may rep-
resent a great therapeutic option, as an enhanced stem cell modality 
of allogeneic therapy in ischaemic vascular diseases.
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