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ABSTRACT: There is a need to develop robust computational models for mesoscale
simulation of the structure of peptides over large length scales toward the discovery of novel
peptides for medical applications to address the issues of peptide aggregation, enzymatic
degradation, and short half-life. The primary objective was to predict the structure and
conformation of peptides whose native structures are not known. This work presents a new
model for computation of interaction parameters between the beads in coarse-grained dissipative
particle dynamics (DPD) simulation that is properly calibrated for amino acids, supports
compressibility requirement of water molecules, and accounts for subtle differences in the
structure of amino acids and the charge in the side chain of charged amino acids. This new
model is referred to as Structure Independent Molecular Fragment Interfuse Model, abbreviated
as SIMFIM, because it accounts for specific interactions between different beads, which
represent molecular fragments of the amino acids, in calculating nonbonded interaction
parameters in the absence of knowing the actual peptide structure. The electrostatic interactions
are incorporated in this model by using a normal distribution of charges around the center of the beads to prevent the collapse of
oppositely charged soft beads. The uniquely parameterized DPD force field in the SIMFIM model is optimized for a given peptide
with respect to the degree of coarse-grained graining for simulating the peptide over long times and length scales. The SIMFIM
model was tested in this work using four peptides, namely, TrpZip2, Rubrivinodin, Lihuanodin, and IC3-CB1/Gai peptides, whose
structures were sourced from the Protein Data Bank. The SIMFIM model predicted radius of gyration (Rg) values for the peptides
closer to the actual structures as compared to the conventional model, and there was less deviation between the predicted and actual
structures of the peptides.

■ INTRODUCTION
Peptides have a wide range of applications in medicine, drug
delivery, and tissue engineering.1−3 These include, among
others, peptides as antimicrobial, anticancer, and cell penetrat-
ing agents, as vaccines and biosensors, as self-assembly agents to
form hierarchical multiscale structures, and as interference
peptides in precision medicine.4−10 Recently, peptides based on
the recognition sites of morphogenetic proteins have received
attention as an alternative to protein therapy in tissue
engineering to guide differentiation and maturation of trans-
planted cells to the desired lineage to reduce side effects like
immunogenic response and tumorigenicity.11−15 However,
peptides derived from morphogenetic and other proteins have
orders of magnitude lower biological activity.16,17 This lower
activity is attributed tomisfolding in the absence of other protein
sequences (conformational differences between the peptide as a
part of the protein versus a free molecule), which further causes
peptide aggregation and micelle formation.17 Furthermore,
natural peptides are susceptible to degradation by proteolytic
enzymes and their function is limited by short half-life in
physiological medium.18 Therefore, there is a need to redesign
peptides that are based on active receptor-binding domains of
proteins to address the issues of misfolding, aggregation,
enzymatic degradation, and short half-life.19

Morphogenetic peptide sequences are, in general, 10−30
amino acids in length. As there are 20 different amino acids,
there is an enormous number of 10−30 sequences to be studied
for identifying possible sequences with morphogenetic activity.
Currently, structure−property data on morphogenetic peptides
exist only for a limited number of peptides,20,21 which is
insufficient to make a database for predicting the bioactivity of
unknown peptides using machine learning algorithms. Exper-
imental methods like electron microscopy and light scattering
are limited by the number of peptide sequences that can be
studied in a reasonable time and the complexities of measuring
structural properties at the molecular scale.22 Classical
molecular dynamics (MD) or all-atom (AA) simulations can
predict the physicochemical properties of peptides with
unknown structures, but they are limited by length scales and
require long computational times.23 Therefore, there is a need to
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develop robust computational models to simulate the
conformation of unknown peptides of different sequences
toward the creation of a database for the physicochemical
properties of morphogenetic peptides.

Peptides, unlike synthetic polymers, exhibit diverse chemical
groups for energetic interaction including nonpolar, polar,
neutral, hydrophobic, hydrophilic, amphipathic, charged, hydro-
phobic−charged, and hydrophilic−charged groups. Coarse-
grained andmesoscopic simulations have been used to study the
structure and conformation of peptides in aqueous solution over
large times and length scales within computationally practical
time scales.17,24−31 As short-range interactions dominate
between the beads in coarse-grained models, they have the
benefit of smoothing the potential energy function of the
system.32,33 However, coarse-grained simulations require robust
models to account for secondary interactions between the beads,
as the interplay among these interactions significantly influences
the structure and conformation of the simulated peptides.
Among mesoscale methods, the stochastic dissipative particle
dynamics (DPD) simulation, commonly used for modeling the
self-assembly of macromolecular systems,34 uses soft dynamics
of spherical beads that interact to form secondary bonds via
pairwise additive force fields. TheDPDmethod has been used to
simulate dynamics and structure of macromolecular systems
after Groot and Warren related the conservative force terms to
the Flory−Huggins interaction parameter for pairwise inter-
action between the beads, hereafter referred to as χij for beads i
and j.35

Peptides have been studied extensively by computational
methods using different force fields to account for bead
interactions.17,22,24,28−31,36 Marrink et al. introduced the
MARTINI force field as a computational tool for conducting
coarse-grained molecular dynamics simulations of large
molecules. This approach was developed by computing the
partition free energies between distinct polar and apolar
molecular fragments.37 Subsequently, it was expanded to
encompass amino acids, peptides, and proteins as well.30,31 In
this framework, the amino acid backbone is represented by a
single polar bead in the simulation, whereas the side chain of the
amino acid is represented by one or more beads contingent on
its size and chemical properties. For instance, the amino acid
lysine is represented by three beads: a polar backbone bead, an
apolar bead for the hydrocarbon portion of the side chain, and a
charged bead for the NH3

+ terminal group of the side chain. This
strategy entails predefined values for bonded interactions, such
as bond lengths, bond angles, and dihedral angles, that mirror
the actual conformations of the peptide. These constants are
determined via molecular dynamics simulation from the lowest-
energy conformation of the peptide in the equilibrium state.
Nonbonded interactions in the peptide are defined by a
Lennard-Jones potential functional form. Bond stretching and
bond angles follow a harmonic potential model, while dihedral
angle potentials adopt a shifted dihedral functional form.
However, some amino acids are not distinguishable within the
MARTINI approach. For example, leucine and isoleucine, as
well as serine and threonine, share the same coarse-grained
model and bead types in the MARTINI force field. As the types
of bead−bead interactions in the MARTINI force field are
limited to charged, polar, apolar, and nonpolar interactions, this
model fails to accurately capture subtle differences between
certain amino acids with partial similarities. Furthermore, the
use of hard spheres with hard-core potential functions makes the
MARTINI model computationally time-consuming. It has been

noted that the MARTINI model hinders proper protein folding,
attributing this effect to the limited types of bead−bead
interactions as well as other aspects of the model.38,39

In an earlier investigation, Vishnyakov et al. developed a
simplified framework for DPD simulation of polypeptides in
solution.25 This framework replicated the hydrogen-bonding
interaction, which is pivotal for stabilizing α-helical and β-
structural elements by employing detachable Morse bond
potentials.25 However, this approach led to nonrealistic
conformations of the peptides as a consequence of the spherical
symmetry stemming from the involvement of multiple Morse
bonds.25 Peter et al. introduced an electrostatic polarizable
coarse-grained protein for DPD.29 The polarizability in the
amino acids was described by massless drude particles
representing two opposite charges, which were transparent to
other coarse-grained beads. Being a polarizable force field, the
computational process in the Peter et al. model was time-
intensive and the explicit water self-interaction parameter in the
model did not support the property of compressibility of liquid
water.29 Vaiwala et al. recently used three peptides with known
conformations to determine the parameters of his generic force
field and used these parameters to simulate the structure of other
peptides and proteins with unknown structures.39 However, his
force field required a priori knowledge of the secondary structure
of the peptide under simulation. In another study, Choudhury et
al. simulated peptides having an α-helical secondary structure
using DPD by imposing dihedral angle constraints on the
peptide chain.40 Periole et al. used an elastic network as a
structural scaffold to describe and maintain the overall shape of a
protein and a physics-based coarse-grained model, like the
MARTINI model, to describe the interaction between
molecular fragments in the system.41 As elastic networks need
a priori knowledge of the peptide structure to establish the
constraints, it is not applicable to the simulation of peptides with
unknown structures. Jumper et al. developed a neural network
model for predicting the structure of unknown peptides and
proteins, but the model could not predict the dynamics of the
peptide structure for studying properties like critical micelle
concentration (CMC) or peptide self-assembly.42 There is a
need for new models to determine the pairwise interaction
parameter between the beads in coarse-grained DPD
simulations that do not require a priori knowledge of the
secondary structure of the peptide, account for subtle differences
in the structure of amino acids, support compressibility of water
molecules, account for the charge in the side chain of charged
amino acids, and are properly calibrated for amino acids. Such a
model should have the capability to simulate many peptide
sequences with unknown structures to determine their
physicochemical and biological properties for the creation of a
database for machine learning.

This work presents a new model named the Structure
Independent Molecular Fragment Interfuse Model, hereafter
abbreviated as SIMFIM, for DPD simulation of peptides that
addresses the above limitations. The novelty of our model is that
the matrix of χij values for nonbonded pairwise bead interactions
of the peptide is determined using the energy of mixing of the
molecular fragments, as opposed to using bead−bead solubility
parameters in the conventional model. Our model predicts both
positive and negative (repulsive and attractive) values for χij as
opposed to the conventional method, which predicts only
positive (repulsive) values, and the model is independent of the
knowledge of the actual peptide structure. Moreover, electro-
static interactions are incorporated into our model by using a

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c09534
ACS Omega 2024, 9, 18001−18022

18002

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c09534?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


normal distribution of charges around the center of the beads to
prevent the collapse of oppositely charged soft beads.
Furthermore, our uniquely parameterized DPD force field
model is optimized for a given peptide with respect to the degree
of coarse graining to simulate a given peptide over long times
and length scales. The model is tested using four peptides with
known structures, namely, TrpZip2, Rubrivinodin, Lihuanodin,
and IC3-CB1/Gai, whose structures were sourced from the
Protein Data Bank. TrpZip2 sequence has a β-hairpin;43
Rubrivinodin, which is a lasso peptide, has four residues that
participate in a β sheet;44 Lihuanodin is a random coil lasso
peptide;45 and IC3-CB1/Gai is an α helical peptide.46 These
four peptides contain amino acids with negative or positive
charges and amino acids with hydrogen bonding, polar, or
hydrophobic groups; thus, these peptides have diverse
physicochemical properties for validating our model. The
primary objective of this computational model is not to perfectly
simulate the secondary structure of peptides but to create a
database of peptides’ physicochemical properties, whose native
structures are not known, for use in machine learning
algorithms. It should be noted that the experimental structures
of the four peptides were used to compare the simulated
backbone coordinates with the experimental coordinates, but a
priori knowledge of the structure of peptides was not required in
the simulations and no information from the experimental
structures was used in running the simulations.

■ METHODS AND THEORY
Model Peptides. Four peptides with known structures and

different numbers of amino acids were used to evaluate the
proposed simulation methodology. These peptides were 12-mer
TrpZip2 with amino acid sequence (SWTWENGKWTWK),
18-mer Rubrivinodin with sequence (GAPSLINSEDN-
PAFPQRD), 15-mer Lihuanodin with sequence (GSKYSDTA-

DESSYRW), and 9-mer third cytoplasmic loop (IC3) of the
cannabinoid receptor-1 (CB1) bound to G(alphai1), hereafter
abbreviated by IC3-CB1/Gai, with sequence (DIRLAKTLV).
The Protein Data Bank identification numbers (PDB ID) for
TrpZip2, Rubrivinodin, Lihuanodin, and IC3-CB1/Gai were
6H7Q, 5OQZ, 7LCW, and 1LVQ, respectively. Information on
their structures, acquired by nuclear magnetic resonance
(NMR) spectroscopy, is available at the Protein Data Bank
(https://www.rcsb.org/). The data for the coordinates of all
atoms in the structure of the peptide sequences and the
experimental conditions for acquisition of their NMR spectra
were extracted from the PDF file using MATLAB. The database
had 20 structures each for TrpZip2 and Lihuanodin and one
structure each for Rubrivinodin and IC3-CB1/Gai. The
structures of these peptides in their lowest-energy states are
shown in Figure 1. The NMR-acquired structures of the
peptides in their lowest-energy state are hereafter referred to as
the “actual” structures for comparison with the simulated
structures. The lowest-energy state of the peptides was
determined from the chemical shifts in the NMR spectra by
fragment density functional theory (DFT) as previously
described.47 Briefly, DFTwas used to determine the distribution
of electrons in different molecular orbitals of the system by
solving the Schrodinger equation. Accurate electronic energy
levels were obtained by using an exchange−correlation func-
tional in DFT to account for the correlation and exchange
interactions between the electrons. The total energy of the
system was obtained as the summation of the kinetic energy of
electrons, the potential energy of electron−nucleus interactions,
and the potential energy of electron−electron interactions.47

Coarse Graining. To simulate larger simulation boxes,
groups of atoms or molecular fragments in the simulation box
were coarse-grained or mapped into different beads. These
atoms were part of one molecule or multiple molecules in the

Figure 1. Images of TrpZip2 (A), Rubrivinodin (B), Lihuanodin (C), and IC3-CB1/Gai (D) peptides generated from the PDB coordinates.
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simulation box. For example, multiple water molecules as the
solvents in the box were mapped into one bead. For the peptides
in the box, multiple neighboring atoms in the amino acid
sequence were mapped into the beads. Coarse graining of amino
acids of the peptide was done as described previously in the
MARTINI model by Monticelli et al. and de Jong et al.30,31

Briefly, each amino acid was coarse-grained into one backbone
bead and one or multiple side-chain beads depending on the
molecular size of the side chain. Figure 2 shows mapping of the
amino acids into the corresponding coarse-grained beads. The
mass and size of the beads, time, and length scales of the
simulation depended on the mapping. Table S1 shows the
molecular fragments in the amino acids that are represented by
the beads.

DPD Equations of Motion. The positions and velocities of
the soft beads are governed by Newton’s equations of motion of
the beads in the simulation box as follows
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where ri,mi, vi, and f i represent the position vector, mass, velocity
vector, and total force acting on the ith bead, respectively. The
total force f i and its components in a cutoff radius RC around the
ith bead are given by the following set of equations
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where f ijD, f ijR, and f ijC represent the dissipative, random, and
conservative components of the force vector joining ith and jth
beads, respectively; parameters rij and eij represent the

magnitude and unit vector joining ith and jth beads, respectively;
and the parameter αij is the interaction parameter that describes
the maximum repulsion between the interacting ith and jth
beads. The parameter αij, which is assumed to be independent of
the properties of the mixture, quantifies the extent of the
interaction between different beads in the DPD simulation. It is
assumed that the conservative force vanishes when the distance
between ith and jth beads is more than the cutoff radius RC.

48 RC
is defined as the side of a cube enclosing three beads for all
mappings as described previously.49 The parameter αii, which is
dependent on the chosen mapping, is the self-repulsion
parameter, and it is adjusted to mimic the compressibility of
the system. The soft molecular fragments or beads in DPD
occupy a certain volume, which is accounted for by adjusting the
corresponding αii values at each mapping. The parameter αii is
adjusted to achieve the desired compressibility in response to
changes in the thermodynamic properties of the system.
Increasing αii values makes it more difficult to compress the
beads, thus decreasing the compressibility and vice versa. The
previously reported values of αii were used in the simulations.48

The parameters f ijD and f ijR are weight functions that are
dependent on the radius. The parameter f ijD models the viscous
drag on a bead due to interaction with the surrounding beads,
while f ijR represents the force exerted on a bead due to thermal
noise in the system.50 The constants γ and σ are the magnitudes
of dissipative and random forces, respectively. The parameter θij
is a random variable with a Gaussian probability distribution to
account for the inherent random Brownian motion of the beads
in the system. The parameter eij is the unit vector joining the
centers of beads i and j. The parameters ωR and ωD are the
weight functions of the random and dissipative forces to provide
the range of interactions, respectively.51 The above parameters
and functions satisfy the fluctuation dissipation theorem,35,51

which ensures that the random and dissipative forces act as a
thermostat for the simulation to maintain a constant temper-
ature. The cutoff radius RC, which is dependent on the mapping,
was calculated as described previously.48,49

Force Field Parameterization. The interaction parameter
for nonbonded interactions, αij, is calculated by relating it to χij

Figure 2. Color-based representation of the coarse-grained beads for the main and side chains of all simulated amino acids and the water bead. See
Table S1 in the Supporting Information for the molecular fragments in the amino acids that are represented by the beads.
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by the following relation derived from the equation of state of
the system by Groot and Warren35

= + 3.27ij ii ij (6)

In the conventional model, χij is calculated from the solubility
parameters of the molecular fragments representing beads i and j
by the following equation24,27

= v
RT

( )ij i j
2

(7)

where δi and δj represent the solubility parameters of beads i and
j, respectively, υ is the molar volume of each bead, R is the
universal gas constant, and T is temperature. The solubility
parameters of the fragments are then determined using
molecular dynamics simulation as previously described.52 In
the conventional model of calculating χij, the interaction
between the molecular fragments representing ith and jth
beads is not realistically taken into account, as the solubility
parameters are independent of the interacting molecular
fragments of the beads. In this work, we propose a new
approach to calculate χij using a model based on interfused
molecular fragments that is independent of the knowledge of the
actual peptide structure. This newmodel for the calculation of χij
is hereafter referred to as the SIMFIM model. The χij for mixing
two molecular fragments, representing two beads in the
simulation, was calculated by the blends module of the materials
studio software (BIOVIA, Dassault System̀es, Materials Studio,
23.1.0.3829, San Diego: Dassault System̀es, 2023).53,54 The
blends module is used to predict the physical and chemical
properties of multicomponent systems like, among others,
thermal conductivity, diffusion coefficient, and energy of mixing
using the COMPASS force field. The COMPASS force field
accounts for all energetic interactions including nonpolar, polar,
neutral, hydrophobic, hydrophilic, amphipathic, charged, hydro-
phobic−charged, and hydrophilic−charged groups. The molec-
ular fragments represented by different types of beads are shown
in Table S1 of the Supporting Information File. As the blends
module accepts fragments where all atoms in the fragments
satisfy their valency, the head and tail atoms in the fragments
were identified for valency to bemaintained and for the fragment
to be treated by the blends module as a monomer on a longer
molecule. Next, the molecular fragments were mixed and the
change in the energy of mixing was determined.55 The
interactions between these molecular fragments were assumed
to be governed by the COMPASS force field.56 The χij was
determined by dividing the energy of mixing by RT.

The bond length D, bond angle θ, and dihedral angle ϕ of the
bonded interactions were defined through different functional
forms. Bond stretching between two beads i and j was defined as
a soft harmonic potential Ebs. Bond angles between three beads i,

j, and k had a cosine harmonic potential Eba. The dihedral angle
formed by four beads i, j, k, and l, which is the angle between the
planes that contained the first three (i, j, k) and the second three
(j, k, l) beads, was defined through a shifted dihedral potential
Eda. The force constant k0, the equilibrium bond length D0, the
equilibrium bond angle θ0, and the equilibrium dihedral angle ϕ0
were taken from the values mentioned in the MARTINI model.
These values were determined through molecular dynamics
simulation and used in the following equations30,31

=E
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D D
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k
2
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Assigning point charges to charged soft beads is a limitation as
it leads to the collapse of two oppositely charged beads into the
same point in the simulation box, which results in the unphysical
stretching of the bonds and the release of excessive amounts of
energy. This effect was avoided in the simulation by spreading
the charge within a specified volume using a normal distribution
around the center of the bead. The following functional form
proposed byWarren et al., known as the ERFR form, was used to
describe the electrostatic interaction in systems with distributed
charges57

=
( )

E c
q q

R

erfi j
R

ij
E

ij

(11)

where qi and qj are the charges on beads i and j, respectively; C is
a conversion factor; ϵ is the relative dielectric constant; Rij is the
distance between beads i and j; and β is a parameter related to
the length scale of the simulation, which depends on the
mapping.

Mesomolecule Construction. For a given mapping, all
beads were defined with the same mass and size. Considering
that the conservative force vanishes when the distance between
ith and jth beads is more than the cutoff radius RC

48 and defining
RC as the side of a cube enclosing three beads for all mappings,49

the values of mass and size of the beads were calculated as
previously described using the following approach.49 As an
example of 3−1 mapping, three water molecules were mapped
into a bead. With the volume occupied by one water molecule
equal to 30 Å3, the volume occupied by one bead is 90 Å3, and
the volume occupied by three such beads is 270 Å3. If the three
beads are enclosed within a cube with sides equal to RC, then RC

3

is 270 Å3, and as a result, RC = 6.46 Å. RC was similarly calculated

Figure 3. Bead representations of the coarse-grained molecular structures of TrpZip2 (A), Rubrivinodin (B), Lihuanodin (C), and IC3-CB1/Gai (D)
peptide mesomolecules.
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for the other mappings. The radius of the beads was taken to be
equal to half of the RC, and the bead mass depended on the
number of water molecules mapped into one bead (for 3−1
mapping, the bead mass was 3 × 18 amu = 54 amu). The
backbone of the peptide was constructed first, followed by the
addition of side-chain beads based on the amino acid sequence.
The side chain of amino acids with a closed-ring structure like
tryptophan and phenylalanine was constructed by a simple perl
script.58 A negative or positive charge was assigned to certain
beads based on the actual charge on the amino acid at the pH of
the experimental conditions of the NMR spectroscopy of the
peptide. The constructed mesomolecules of the four simulated
peptides are shown in Figure 3.

Mesostructure Construction. A mesostructure template
or simulation box with dimensions of 200 Å × 200 Å × 200 Å
was constructed. These dimensions were chosen to avoid the
finite size effect, which arises when the number of beads in a
simulation box is insufficient to provide a statistically
appropriate depiction of the conditions of the actual physical
system.59 The box size was at least an order of magnitude larger
than the actual radius of gyration of the simulated peptide.60 The
box was filled with water beads and the peptide mesomolecule,
and a periodic boundary condition was applied to the simulation
box. The concentration of the peptide in the aqueous solution
was adjusted so that there was only one peptide in the box. To
avoid any bias, initially, the peptide was randomly positioned
inside the simulation box in a randomly selected three-
dimensional (3D) conformation. As certain amino acids in the
peptide were charged in aqueous solution at the simulation pH
corresponding to the experimental conditions in NMR spec-
troscopy, oppositely charged water beads were placed in
proximity to the charged beads to maintain electrical neutrality.

DPD Simulation. The energy of the mesostructure was
initially too high, as it was created with a random initial
conformation. Therefore, the mesostructure was geometrically
optimized by removing any discrepancy between the force field
and the random structure by adjusting the bond lengths, bond
angles, and dihedral angles. The optimization was done using the
geometry optimization task in the mesocite module of Materials
Studio (BIOVIA, Dassault System̀es) by an iterative procedure
in which the geometry of the systemwas refined at each iteration
to minimize the overall system’s energy. The iterative process
was terminated when the threshold value in energy between two
iterations had been reached.

The refined mesostructure was simulated using the
Dissipative Particle Dynamics simulation task in the mesocite
module of Materials Studio (BIOVIA, Dassault System̀es).
Mesocite DPD simulations were performed in the NVT
ensemble with the temperature set at 298 K, and the simulation
algorithm acted as a thermostat such that the dissipative and
random forces satisfied the fluctuation−dissipation theorem.48

The mesostructure underwent a DPD run for 10,000 ps, which
was sufficiently longer than the time for equilibration of the
system. The simulation reached equilibrium when the mean
square displacement of the water beads increased linearly
monotonically with the simulation time.61 A time step was
chosen that was not too small to unnecessarily increase the
computational time and not too large to sacrifice accuracy. This
optimum time step, which depended on mapping, was
approximately 0.005*τ, where τ was the simulation time scale.
The position and velocity of each bead, determined using the
velocity-Verlet algorithm,62 are defined by the following
equations

+ = + +r t t r t tv t f t t( ) ( ) ( )
1
2

( )i i i i
2

(12)

+ = +v t t v t tf t( ) ( ) ( )i i i (13)

where ri, vi, and f i are the position, velocity, and force vectors
acting on bead i at time t, respectively. The tuning parameter λ
was set at the optimum value of 0.65 as defined by Groot and
Warren.35,48

Simulation Study, Design, and Analysis. For each
peptide, simulations were performed for 5 different mappings
of 2, 3, 4, 5, and 6 water molecules into one bead. The mass and
radius of the beads, and the length scale of the simulation were
adjusted based on the mapping as previously described.48 Two
models were used to calculate the interaction parameter, αij,
from the energy of mixing as described in the Force Field
Parameterization section, namely, the conventional and
SIMFIMmodels. Two different functional forms of electrostatic
interactions were used, namely, beads with their point charge at
their center of mass (Coulombic) and beads with their charge
distributed normally around their center of mass (ERFR). The
reference group for each peptide in the simulations was beads
with no charges (None). The coordinates of the beads at
different time points were obtained using a perl script.58 Data
were collected at time points after equilibration of the
mesostructure in the simulation box. At each time point, the
coordinates of the beads after equilibration were used to
determine the biophysical dynamic properties of the peptide
using in-house codes in MATLAB as described below.

Radius of Gyration of Simulated Peptides. The
coordinates of the backbone beads were used to calculate the
radius of gyration (Rg) of the simulated peptide at different time
points using the following equation63

=
+ +=R

x x y y z z

N

(( ) ( ) ( ) )i
N

i i i
g

1
2 2 2

(14)

where xi, yi, and zi are the coordinates of the backbone beads of
the simulated peptide at any time point; x̅, y̅, and z ̅ were the
coordinates of the center of mass of the backbone beads in the
simulated structure; and N was the total number of amino acids
in the peptide sequence. It should be noted that the simulated Rg
of the peptide at each time point is denoted by “Rg” and the
average simulated Rg over all time points is denoted by “⟨Rg⟩”.

Root-Mean-Square Deviation of Simulated Peptides.
The root-mean-square deviation (RMSD) is a measure of the
deviation of the coordinates of the beads of the simulated
peptide from their actual (experimentally acquired by NMR)
coordinates as reported in the PDB database. The RMSD of the
peptide was determined using the following steps as shown in
Figure S1 of the Supporting Information File. First, the
coordinates of the α-carbons in the backbone of the simulated
(red) and actual (blue) peptide structures were determined.
Next, the centers of the coordinate systems of the actual/
simulated peptide structures were shifted so that one end of the
backbone of both peptide structures had coordinates (0,0,0).
Then, the first backbone−backbone bond of the simulated
peptide structure was rotated to align with the line joining the
two α-carbons of the backbone of the actual peptide structure.
Based on the rotation for alignment, the Euler angles ψ, θ, and φ,
which were the components of the rotation about the x, y, and z
axes, were calculated. Finally, the coordinates of any point P on
the peptide were multiplied by the rotation matrix RotXYZ(ψ, θ,
φ) to obtain the transformed coordinates P′.64 The trans-
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formation of point P to P′ is given by P′ = RotXYZ(ψ, θ, φ) × P,

where RotXYZ(ψ, θ, φ) is given by the following matrix
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The RMSD of the simulated peptide was calculated using the

following equation

=
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where xi, yi, and zi are the transformed coordinates of the
backbone beads of the simulated peptide structure at any time
point; x′i, y′i, and z′i are the coordinates of the α-carbons of the
backbone of the actual peptide structure; and N is the total
number of amino acids in the peptide sequence.

Statistical Analysis. Data are expressed as means ±
standard deviation (SD). Significant differences between Rg
values obtained at different time points were analyzed for
statistical significance with respect to mapping using a one-way
ANOVA test followed by a Tukey post hoc test.

■ RESULTS AND DISCUSSION
Mesostructure Equilibration. Once the mesostructure

reached equilibrium, the distribution of end-to-end distance
vectors in each direction for the simulated peptide in aqueous
solution collected at different simulation times should be
normally distributed.65 The normal distribution function in the

Figure 4. (A) Box plot of Rg ranges for the TrpZip2 peptide simulated at different mappings using SIMFIM model and ERFR functional form for
electrostatic interaction; the blue box encloses points that are within the 25th and 75th percentiles of the data, with a red line showing themedian value;
the black whiskers show the maximum and minimum values in the data set that are not considered as outliers, and outliers appear as red “+” signs; the
actual Rg values from the PDB database are shown as a light green horizontal line, with thickness indicating the range. The Rg versus RMSD contour
plots simulated at (B) 2−1, (C) 3−1, (D) 4−1, (E) 5−1, and (F) 6−1 mappings.
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x-direction is given by the following equation, where the mean is
at zero
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The forms of the normal distribution function in the y and z
directions should be the same as the above equation. The
coordinates of the backbone beads at 100,000 different time
points during the simulation were collected using a perl script.
Figures S2−S4 in the Supporting Information File show the
normalized distribution of end-to-end vectors for the TrpZip2
peptide in x, y, and z directions, respectively, based on the
coordinates of the backbone beads at different simulation time
points. The directional end-to-end distributions from the
simulation (blue) showed a good fit to the normal distribution
function (red) by MATLAB. Figures S2−S4 show that the
simulated normalized distribution of end-to-end vectors for the
TrpZip2 peptide was the same in the x, y, and z directions. The
simulated values of the mean and SD in each direction were μx =
1.00 × 10−2, σx = 8.24, μy = −9.95 × 10−2, σy = 8.18, μz = 6.26 ×
10−2, and σz = 8.27, which showed that the mean values of the

distributions were close to zero in all directions. The distribution
of the data from the simulation was narrower than the normal
distribution, which was attributed to the finite, small length of
the peptide sequences with constraints in their geometries
unlike infinitely long chains with a normal distribution of end-to-
end vectors.

Effect of Mapping. The beads were coarse-grained at
different levels of mapping from 2−1 to 6−1 to determine the
optimum mapping for each peptide. Figures 4−7 show the
simulated range of Rg and RMSD values of TrpZip2,
Rubrivinodin, Lihuanodin, and IC3-CB1/Gai peptides, respec-
tively, using box plots and probability histograms as a function of
mapping using SIMFIMmodel and ERFR functional form of the
electrostatic interaction for charged amino acids. For TrpZip2
and Lihuanodin peptides, the 20 NMR-acquired structures of
each peptide were used to determine their actual range of Rg
values, and the range is shown in Figures 4A or 6A as a light
green horizontal line with thickness showing the range. For
Rubrivinodin and IC3-CB1/Gai peptides, the single NMR-
acquired structure of each peptide was used to determine the
actual Rg and the value is shown in Figures 5A or 7A as a thin
light green horizontal line. The Rg values of the simulated

Figure 5. (A) Box plots of Rg ranges for Rubrivinodin peptide simulated at different mappings using SIMFIM model and ERFR functional form for
electrostatic interaction; the blue box encloses points that are within the 25th and 75th percentiles of the data, with a red line showing themedian value;
the black whiskers show the maximum and minimum values in the data set that are not considered as outliers and outliers appear as red “+” signs; the
actualRg value from the PDB database is shown as a thin light green horizontal line. The Rg versus RMSD contour plots at (B) 2−1, (C) 3−1, (D) 4−1,
(E) 5−1, and (F) 6−1 mappings.
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peptides were determined using the coordinates of the backbone
beads, whereas the Rg values of the actual peptide structures
were calculated from the coordinates of the α-carbons of the
peptide backbone from PDB data. Data from the simulations
were collected for 2000 different time points after the
equilibration of the mesostructures. The box plots in Figures
4−7 show that the 2−1 and 3−1mappings predicted ⟨Rg⟩ values
closer to the actual values for all four peptides. At 3−1 mapping,
the predicted values of ⟨Rg⟩ for TrpZip2, Rubrivinodin,
Lihuanodin, and IC3-CB1/Gai peptides were 6.10, 6.51, 5.59,
and 4.68 Å, respectively, compared to the actual values of 5.83,
5.87, 5.17, and 4.37 Å.

The contour plots for the joint probability distributions of Rg
and RMSD for the four peptides are also shown in Figures 4−7.
The color bar scales to the right show the probability depth of Rg
and RMSD, and the numbers next to the color bars are
dimensionless probability values. For 2−1 and 3−1 mappings,
RMSD and Rg values corresponding to the maximum
probability, hereafter abbreviated as mpRMSD and mpRg,
were in the lower ranges of RMSD and Rg values. Furthermore,
the distributions of RMSD and Rg were narrower for the lower

mappings of 2−1 and 3−1 as compared to those for higher
mappings. As the mapping increased, ⟨Rg⟩ values increased
(Figures 4A,5A, 6A, and 7A) for all peptides. For the TrpZip2
peptide (Figure 4) with 2−1 mapping, mpRMSD and mpRg
ranges were 4.12−5.14 and 4.85−5.67 Å, respectively (Figure
4B), and for 3−1 mapping, the ranges were 4.38−5.38 and
5.25−5.80 Å with the actual Rg of 5.83 Å close to the simulated
upper bound for both mappings (Figure 4C); for higher
mappings, mpRg and mpRMSD ranges were significantly above
those of 2−1 or 3−1 mappings (Figure 4D−F). For example, at
6−1 mapping, mpRMSD and mpRg ranges were 4.33−6.56 and
6.14−7.11 Å, respectively (Figure 4F). The simulated maximum
probabilities were larger for 2−1 and 3−1 mappings as
compared to those for higher mappings.

For the Rubrivinodin peptide (Figure 5), the simulated ⟨Rg⟩
was at a minimum for 3−1 mapping. The simulated ⟨Rg⟩ was
6.71 Å at 2−1 mapping, decreased to 6.51 Å at 3−1, and then
increased to 6.75, 6.89, and 7.24 Å for 4−1, 5−1, and 6−1
mappings, respectively. For 2−1 mapping (Figure 5B),
mpRMSD and mpRg ranges were 3.95−4.90 and 5.91−6.68
Å, respectively, and for 3−1 mapping (Figure 5C), the ranges

Figure 6. (A) Box plots of Rg ranges for Lihuanodin peptide simulated at different mappings using SIMFIM model and ERFR functional form for
electrostatic interaction; the blue box encloses points that are within the 25th and 75th percentiles of the data, with a red line showing themedian value;
the black whiskers show the maximum and minimum values in the data set that are not considered as outliers and outliers appear as red “+” signs; the
actualRg values from the PDB database are shown as a light green horizontal line, with thickness indicating range. TheRg versus RMSD contour plots at
(B) 2−1, (C) 3−1, (D) 4−1, (E) 5−1, and (F) 6−1 mappings.
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were 3.78−4.70 and 5.75−6.82 Å, with the actual Rg of 5.87 Å
close to the simulated lower bound for both mappings. At a
highermapping of 6−1, mpRMSD andmpRg ranges were 3.90−
4.59 and 6.03−6.89 Å, respectively (Figure 5F). The actual Rg of
Rubrivinodin was outside the simulated Rg range for higher 4−1,
5−1, and 6−1 mappings.

For the Lihuanodin peptide (Figure 6), the 2−1 and 3−1
mappings predicted ⟨Rg⟩ values closer to the actual value of 5.17
Å (Figure 6A). For 2−1 mapping (Figure 6B), mpRMSD and
mpRg ranges were 3.29−4.06 and 5.12−5.72 Å, respectively,
and for 3−1 mapping (Figure 6C), the ranges were 3.23−4.32
and 4.95−5.71 Å, with the actual Rg of 5.17 Å within the
simulated range for both mappings; for higher mappings, mpRg

ranges were outside the actual ⟨Rg⟩, and mpRMSD ranges were
slightly higher than the lower mappings (Figure 6D−F). For
example, at 6−1 mapping, the mpRg range was 5.18−5.89 Å,
which did not contain the actual ⟨Rg⟩ of Lihuanodin, and the
mpRMSD range was 3.34−4.11 Å (Figure 6F).

For the IC3-CB1/Gai peptide (Figure 7), only the 3−1
mapping predicted an ⟨Rg⟩ value close to the actual value of 4.37
Å (Figure 7A). For 2−1 mapping (Figure 7B), mpRMSD and
mpRg ranges were 6.05−7.35 and 4.12−4.58 Å, respectively,
with the actual value of 4.37 Å within the simulatedRg range, and
for 3−1 mapping (Figure 7C), the ranges were 5.78−6.90 and
3.94−4.32 Å, with the actual Rg close to the simulated upper
bound; for higher mappings, the mpRg range was outside the
actual ⟨Rg⟩, and the mpRMSD range was slightly higher than the
3−1 mapping (Figure 7D−F). For example, at 6−1 mapping,
mpRMSD and mpRg ranges were 3.12−8.20 and 4.88−5.86 Å,
respectively (Figure 7F). The actual Rg for IC3-CB1/Gai was
within the simulated range only for the 3−1 mapping.

These simulation results demonstrate that lower mappings of
2−1 and 3−1 provided higher resolution, which implied that the
mass of beads at lower mappings was closer to the average mass

Figure 7. (A) Box plots ofRg ranges for the IC3-CB1/Gai peptide simulated at different mappings using SIMFIMmodel and ERFR functional form for
electrostatic interaction; the blue box encloses points that are within the 25th and 75th percentiles of the data, with a red line showing themedian value;
the black whiskers show the maximum and minimum values in the data set that are not considered as outliers and outliers appear as red “+” signs; the
actualRg value from the PDB database is shown as a thin light green horizontal line. The Rg versus RMSD contour plots at (B) 2−1, (C) 3−1, (D) 4−1,
(E) 5−1, and (F) 6−1 mappings.

Table 1. Comparison of χij Values for Two Molecular
Fragments Calculated by the Conventional and SIMFIM
Models

molecular
fragment i

molecular
fragment j

χij
(conventional)

χij
(SIMFIM)

KA A 24.6 8.2
KB A 11.6 −0.4
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of the molecular fragments represented by the beads. The
simulation times were reduced at higher mappings but at the
expense of less accurate predictions for ⟨Rg⟩ and RMSD of the
peptides. Further, these results show that the predicted ⟨Rg⟩
values for smaller peptides were closer to the actual value. From
one-way ANOVA analysis, a statistically significant difference
was observed in the measured Rg of the four peptides between at
least two mappings at different time points [F(49,996, p < 0.05)
= 424.08 for TrpZip2, F(49,996, p < 0.05) = 86.57 for
Rubrivinodin, F(49,996, p < 0.05] = 74.06 for Lihuanodin,
F(49,996, p < 0.05) = 298.59 for IC3-CB1/Gai). From Tukey’s
post hoc test for multiple comparisons shown in Tables S2−S5
of the Supporting Information File, the ⟨Rg⟩ values were
significantly different for all mappings in TrpZip2 simulations,
whereas significant differences were observed for most of the
mappings, but not all, in Rubrivinodin, Lihuanodin, and IC3-
CB1/Gai simulations. Many of the p-values in Tables S2−S5 are
zero because the size of our data set, which is the number of time
points, was very high (10,000).

The data in Figures 4−7 show that the simulated Rg of the
peptides increased with mapping from 2−1 to 6−1. The coarse-
grained molecular structures of the peptides in Figure 3 indicate
that the mass and radius of these beads depend on the mapping.
For example, at 2−1 mapping, beads in the simulation box had a
mass of 36 amu and a radius of 2.78 Å, whereas at 3−1 mapping,
beads had a mass of 54 amu and a radius of 3.23 Å. As mapping
was increased, the mass of beads increased, which increased the
volume occupied by the beads. Therefore, the larger volume
occupied by individual beads at higher mappings explains the
increase in simulated Rg values of the peptides constructed from
these coarse-grained beads.

Effect of Model for Interaction Parameter Calcula-
tions. Tables S6−S15 in the Supporting Information File show
the matrix of αij values calculated by the conventional model and
our model (SIMFIM) for all mappings. The difference in the
calculated χij values between the two models is demonstrated by
considering the molecular fragments “KA” (CH2−CH2−CH2−
CH2; see Table S1) and “KB” (H−N−H; see Table S1) of lysine

Figure 8. Comparison of (A) ⟨Rg⟩ and (B) ⟨RMSD⟩ values of the TrpZip2 peptide simulated with the conventional and SIMFIM models and ERFR
functional form for electrostatic interaction for 2−1 and 3−1 mappings; the simulated ⟨Rg⟩ and ⟨RMSD⟩ values are compared with the actual value
from the PDB database. The Rg versus RMSD contour plots simulated with (C) the conventional and (D) SIMFIM models for 2−1 mapping. The Rg
versus RMSD contour plots simulated with (E) the conventional and (F) SIMFIMmodels for 3−1mapping. The lowest (5.69 Å) and highest (6.03 Å)
experimentalRg values among the 20 structures from the PDB database are shown as whiskers under the “NMR” column. The error bars show SD forRg
and RMSD.
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interacting with water, which is “A”. The molecular fragment
“KA” is a hydrophobic hydrocarbon, whereas “KB” is a
hydrophilic positively charged amine group. Table 1 shows χij
values for the interaction of KA/A and KB/A pairs calculated by
using the conventional and SIMFIM models. According to
Table 1, the conventional model predicts that KA/A and KB/A
interactions are both hydrophobic (χij > 0), whereas the
SIMFIM model predicts that the KA/A interaction is hydro-
phobic (χij = +11.60) and KB/A is hydrophilic [χij = −0.40].
This is attributed to the fact that the solubility parameter
method is based on differences in occupied volume by the two
molecular fragments, which results in “like” interacting with
“like” and a positive αij for any two interacting fragments.
Conversely, the SIMFIM method is based on specific energetic
interactions like polar−polar, hydrogen-bonding, or charge−
charge interactions between two different fragments, which can
result in a positive (repulsive) or a negative (attractive) χij.

Figures 8−11 compare Rg and RMSD values simulated using
the conventional and SIMFIM models for 2−1 and 3−1
mappings, respectively. Figure 8A,B compares ⟨Rg⟩ and
⟨RMSD⟩ values of the TrpZip2 peptide, respectively, simulated

with the two models. The two models predicted similar ⟨Rg⟩ for
2−1 and 3−1 mappings, and the simulated values were close to
the actual value of 5.83 Å (Figure 8A). SIMFIMmodel predicted
a much lower ⟨RMSD⟩ for both 2−1 and 3−1 mappings as
compared to the conventional model (Figure 8B). mpRMSD
ranges for 2−1 mapping for SIMFIM and the conventional
models were 4.12−5.14 Å (Figure 8C) and 10.60−13.02 Å
(Figure 8D), respectively, whereas for 3−1 mapping, the ranges
were 4.35−5.38 Å (Figure 8E) and 10.27−12.81 Å (Figure 8F).

Figure 9A,B compares ⟨Rg⟩ and ⟨RMSD⟩ values of the
Rubrivinodin peptide, respectively, simulated with the conven-
tional and SIMFIM models. The two models predicted ⟨Rg⟩
values for Rubrivinodin close to the actual value of 5.87 Å for
both 2−1 and 3−1 mappings (Figure 9A). For 2−1 mapping,
⟨RMSD⟩ simulated with SIMFIM was 4.78 Å, which was much
lower than the value of 11.35 Å for the conventional model
(Figure 9A), and for 3−1 mapping, ⟨RMSD⟩ for SIMFIM and
the conventional models were 4.64 and 11.55 Å, respectively
(Figure 9B). mpRMSD ranges for 2−1 mapping for SIMFIM
and the conventional models were 3.95−4.90 Å (Figure 9C) and
10.05−11.85 Å (Figure 9D), respectively, whereas for 3−1

Figure 9. Comparison of (A) ⟨Rg⟩ and (B) ⟨RMSD⟩ values of the Rubrivinodin peptide simulated with the conventional and SIMFIM models and
ERFR functional form for electrostatic interaction for 2−1 and 3−1 mappings; the simulated ⟨Rg⟩ and ⟨RMSD⟩ values are compared with the actual
value from the PDB database. TheRg versus RMSD contour plots simulated with (C) the conventional and (D) SIMFIMmodels for 2−1mapping; the
Rg versus RMSD contour plots simulated with (E) the conventional and (F) SIMFIM models for 3−1 mapping. The error bars show SD for Rg and
RMSD.
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mapping, the ranges were 3.78−4.70 Å (Figure 9E) and 9.29−
12.27 Å (Figure 9F).

Figure 10A,B compares ⟨Rg⟩ and ⟨RMSD⟩ values of the
Lihuanodin peptide, respectively, simulated with the conven-
tional and SIMFIM models. Like Trpzip2 and Rubrivinodin
peptides, the two models predicted ⟨Rg⟩ values for Lihuanodin
close to the actual value of 5.17 Å for both 2−1 and 3−1
mappings (Figure 10A). For 2−1 mapping, ⟨RMSD⟩ simulated
with SIMFIM was 4.21 Å, which was much lower than the value
of 10.27 Å for the conventional model (Figure 10B), and for 3−1
mapping, ⟨RMSD⟩ for SIMFIM and the conventional models
were 4.13 and 10.33 Å, respectively (Figure 10B). mpRMSD
ranges for 2−1 mapping for SIMFIM and the conventional
models were 3.29−4.06 Å (Figure 10C) and 8.24−9.99 Å
(Figure 10D), respectively, whereas for 3−1 mapping, the
ranges were 3.23−4.32 Å (Figure 10E) and 8.46−10.18 Å
(Figure 10F).

Figure 11A,B compares ⟨Rg⟩ and ⟨RMSD⟩ values of the IC3-
CB1/Gai peptide, respectively, simulated with the conventional
and SIMFIM models. Like the other peptides, the two models
predicted ⟨Rg⟩ values close to the actual value of 4.37 Å for 2−1
and 3−1 mappings (Figure 11A). For 2−1 mapping, ⟨RMSD⟩

simulated using SIMFIM was 7.79 Å, which was lower than the
value of 11.58 Å for the conventional model (Figure 11B), and
for 3−1 mapping, ⟨RMSD⟩ values for SIMFIM and the
conventional models were 7.23 and 10.78 Å, respectively
(Figure 11B). mpRMSD ranges for 2−1 mapping for SIMFIM
and the conventional models were 6.05−7.35 Å (Figure 11C)
and 8.20−10.01 Å (Figure 11D), respectively, whereas for 3−1
mapping, the ranges were 5.78−6.90 Å (Figure 11E) and 8.24−
9.84 Å (Figure 11F).

Statistical analysis of the data in Figures 8−11 revealed that
the Rg and RMSD values of the four peptides simulated with the
SIMFIMmodel were significantly different from those simulated
with the conventional model and they were closer to the actual
Rg of the peptides. These simulation results demonstrate that the
SIMFIM model predicted narrower distributions of RMSD and
Rg values for the four peptides as compared to the conventional
model. Further, ⟨RMSD⟩ values simulated with SIMFIM were
much lower than those simulated with the conventional model,
suggesting that the peptide structures predicted by SIMFIM
were closer to the actual structures.

Effect of the Functional Form of Charge−Charge
Interaction. The effect of the functional form (ERFR versus

Figure 10. Comparison of (A) ⟨Rg⟩ and (B) ⟨RMSD⟩ values of the Lihuanodin peptide simulated with the conventional and SIMFIM models and
ERFR functional form for electrostatic interaction for 2−1 and 3−1 mappings; the simulated ⟨Rg⟩ and ⟨RMSD⟩ values are compared with the actual
value from the PDB database. The Rg versus RMSD contour plots simulated with (C) the conventional and (D) SIMFIM models for 2−1 mapping.
The Rg versus RMSD contour plots simulated with (E) the conventional and (F) SIMFIM models for 3−1 mapping. The lowest (5.04 Å) and highest
(5.32 Å) experimental Rg values among the 20 structures from the PDB database are shown as whiskers under the “NMR” column. The error bars show
SD for Rg and RMSD.
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Coulombic) for electrostatic interaction for charged amino acids
on ⟨RMSD⟩ and ⟨Rg⟩ values of Trpzip2, Rubrivinodin,
Lihuanodin, and IC3-CB1/Gai peptides simulated with
SIMFIM model is shown in Figures 12−15, respectively, for
2−1 and 3−1 mappings. The peptides simulated without the
electrostatic interaction, hereafter referred to as “None”, were
used as the reference group. For the TrpZip2 peptide (Figure
12) with 2−1 mapping, the ⟨Rg⟩ values simulated with ERFR,
Coulombic, and None were 5.74, 9.25, and 7.98 Å, respectively,
and for 3−1 mapping, the values were 6.02, 15.82, and 7.88 Å
(Figure 12A). For 2−1mapping, ⟨RMSD⟩ values simulated with
ERFR, Coulombic, and None were 5.11, 17.95, and 7.98 Å,
respectively, and for 3−1 mapping, the values were 5.28, 26.74,
and 7.88 Å (Figure 12B). For 2−1 mapping, mpRg ranges for
ERFR, Coulombic, and None were 4.85−5.67, 5.44−6.930, and
6.84−8.97 Å, respectively (Figure 12C,E,G), and for 3−1
mapping, the ranges were 5.25−5.80, 35.82−42.24, and 6.86−
8.16 Å (Figure 12D,F,H). For 2−1 mapping, mpRMSD ranges
for ERFR, Coulombic, and None were 4.12−5.14, 10.39−13.05,
and 9.11−13.40 Å, respectively (Figure 12C,E,G), and for 3−1
mapping, the ranges were 4.38−5.38, 35.82−42.24, and 9.56−
13.30 Å (Figure 12D,F,H).

For the Rubrivinodin peptide (Figure 13) with 2−1 mapping,
⟨Rg⟩ values simulated with ERFR, Coulombic, and None were

6.71, 12.53, and 10.14 Å, respectively, and for 3−1 mapping, the
values were 6.51, 15.92, and 10.23 Å (Figure 13A). For 2−1
mapping, ⟨RMSD⟩ values for ERFR, Coulombic, and None
were 4.78, 12.53, and 10.14 Å, respectively, and for 3−1
mapping, the values were 4.64, 26.27, and 10.23 Å (Figure 13B).
For 2−1 mapping, mpRg ranges for ERFR, Coulombic, and
None were 5.91−6.68, 6.73−8.02, and 8.51−10.44 Å,
respectively (Figure 13C,E,G), and for 3−1 mapping, mpRg
ranges were 5.75−6.82, 9.52−10.93, and 8.43−10.38 Å (Figure
13D,F,H). For 2−1 mapping, mpRMSD ranges for ERFR,
Coulombic, and none were 3.95−4.90, 10.35−12.00, and
10.03−13.99 Å, respectively (Figure 13C,E,G), and for 3−1
mapping, mpRMSD ranges were 3.78−4.70, 18.34−21.30, and
10.26−13.47 Å (Figure 13D,F,H).

For the Lihuanodin peptide (Figure 14) with 2−1 mapping,
⟨Rg⟩ values simulated with ERFR, Coulombic, and None were
5.67, 13.48, and 9.13 Å, respectively, and for 3−1 mapping, the
values were 5.59, 20.00, and 9.01 Å (Figure 14A). For 2−1
mapping, ⟨RMSD⟩ values simulated with ERFR, Coulombic,
andNone were 4.12, 21.96, and 12.85 Å, respectively, and for 3−
1 mapping, ⟨RMSD⟩ values were 4.13, 24.61, and 12.53 Å
(Figure 14B). For 2−1 mapping, mpRg ranges for ERFR,
Coulombic, and None were 5.12−5.72, 6.66−8.18, and 7.29−
9.84 Å, respectively (Figure 14C,E,G), and for 3−1mapping, the

Figure 11. (A) Comparison of (A) ⟨Rg⟩ and (B) ⟨RMSD⟩ values of the IC3-CB1/Gai peptide simulated with the conventional and SIMFIM models
and ERFR functional form for electrostatic interaction for 2−1 and 3−1 mappings; the simulated ⟨Rg⟩ and ⟨RMSD⟩ values are compared with the
actual value from the PDB database. The Rg versus RMSD contour plots simulated with (C) the conventional and (D) SIMFIM models for 2−1
mapping. The Rg versus RMSD contour plots simulated with (E) the conventional and (F) SIMFIMmodels for 3−1mapping. The error bars show SD
for Rg and RMSD.
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values were 4.95−5.71, 8.95−10.43, and 7.29−9.84 Å (Figure
14D,F,H). For 2−1 mapping, mpRMSD ranges for ERFR,
Coulombic, and None were 3.29−4.06, 9.82−11.73, and 8.94−
12.65 Å, respectively (Figure 14C,E,G), and for 3−1 mapping,
the ranges were 3.23−4.32, 9.98−11.73, and 8.24−11.12 Å
(Figure 14D,F,H).

For the IC3-CB1/Gai peptide (Figure 15) with 2−1mapping,
⟨Rg⟩ values simulated with ERFR, Coulombic, and None were
7.79, 13.41, and 10.06 Å, respectively, and for 3−1 mapping, the
values were 7.23, 17.85, and 9.85 Å (Figure 15A). For 2−1
mapping, ⟨RMSD⟩ values simulated with ERFR, Coulombic,
andNone were 7.79, 13.41, and 10.06 Å, respectively, and for 3−
1mapping, the values were 7.23, 17.85, and 9.85 Å (Figure 15B).

Figure 12. Comparison of (A) ⟨Rg⟩ and (B) ⟨RMSD⟩ values of the TrpZip2 peptide simulated with SIMFIM model and ERFR, Coulombic, or no
electrostatic interaction, for 2−1 and 3−1 mappings; the simulated ⟨Rg⟩ and ⟨RMSD⟩ values are compared with the actual Rg from the PDB database.
The Rg versus RMSD contour plots simulated with (C) ERFR, (E) Coulombic, and (G) None for 2−1 mapping. The Rg versus RMSD contour plots
simulated with (D) ERFR, (F) Coulombic, and (H) None for 3−1 mapping. The lowest (5.69 Å) and highest (6.03 Å) experimental Rg values among
the 20 structures from the PDB database are shown as whiskers under the “NMR” column. The error bars show SD for Rg and RMSD.
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For 2−1 mapping, mpRg ranges with ERFR, Coulombic, and
None were 4.12−4.58, 4.91−6.06, and 5.85−7.09 Å, respec-
tively (Figure 15C,E,G), and with 3−1mapping, the ranges were
3.94−4.32, 5.80−7.89, and 6.24−6.98 Å (Figure 15D,F,H). For
2−1 mapping, mpRMSD ranges for ERFR, Coulombic, and
None were 6.05−7.35, 7.54−8.78, and 7.73−10.37 Å (Figure
15C,E,G), and for 3−1 mapping, the ranges were 5.78−6.90,
7.37−10.52, and 7.40−10.57 Å (Figure 15D,F,H).

As charged beads in the Coulombic functional form of
electrostatic interaction are point charges, their overlap in the
DPD simulation of soft beads resulted in the release of large
amounts of energy and overstretching of the peptide chain
beyond the fully stretched limit, which was physically unrealistic.
As the ⟨Rg⟩ and ⟨RMSD⟩ values in the Coulombic form were
skewed to very large positive values by the overstretching, the
minus side of the standard deviations was calculated by

Figure 13.Comparison of (A) ⟨Rg⟩ and (B) ⟨RMSD⟩ values of the Rubrivinodin peptide simulated with the SIMFIMmodel and ERFR, Coulombic, or
no electrostatic interaction, for 2−1 and 3−1 mappings; the simulated ⟨Rg⟩ and ⟨RMSD⟩ values are compared with the actual Rg from the PDB
database. The Rg versus RMSD contour plots simulated with (C) ERFR, (E) Coulombic, and (G) None for 2−1 mapping. The Rg versus RMSD
contour plots simulated with (D) ERFR, (F) Coulombic, and (H) None for 3−1 mapping. The error bars show SD for Rg and RMSD.
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removing the unphysically stretched data points to avoid
negative values falling within the range of standard deviation.

Figure S5 in the Supporting Information File shows snapshots
of the backbone of each peptide simulated using the Coulombic
form at simulation times that the peptide experienced physically
unrealistic overstretching. The Rg and RMSD values of each
peptide were extremely large under overstretching (Figure S5).
Figure 16A−D compares ⟨Rg⟩ values of TrpZip2, Rubrivinodin,

Lihuanodin, and IC3-CB1/Gai peptides, respectively, as a
function of mapping simulated with ERFR, Coulombic, and no
electrostatic interaction. For all peptides, ⟨Rg⟩ values simulated
with ERFR form were closer to the actual ⟨Rg⟩ of the peptides as
compared to Coulombic or None. For all peptides, mpRg values
simulated with ERFR contained the actual ⟨Rg⟩ of the peptide,
implying that the simulated peptides equilibrated closer to the
actual structure with ERFR.

Figure 14.Comparison of (A) ⟨Rg⟩ and (B) ⟨RMSD⟩ values of the Lihuanodin peptide simulated with the SIMFIMmodel and ERFR, Coulombic, or
no electrostatic interaction, for 2−1 and 3−1 mappings; the simulated ⟨Rg⟩ and ⟨RMSD⟩ values are compared with the actual Rg from the PDB
database. The Rg versus RMSD contour plots simulated with (C) ERFR, (E) Coulombic, and (G) None for 2−1 mapping. The Rg versus RMSD
contour plots simulated with (D) ERFR, (F) Coulombic, and (H) None for 3−1 mapping. The lowest (5.04 Å) and highest (5.32 Å) experimental Rg
values among the 20 structures from the PDB database are shown as whiskers under the “NMR” column. The error bars show SD for Rg and RMSD.
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Figure 17 compares snapshot images of the simulated
structures of the peptides’ backbones with their actual structures
from NMR spectroscopy. The ⟨RMSD⟩ and ⟨Rg⟩ values of the
simulated structures in the snapshots are provided in the caption
of Figure 17.

■ CONCLUSIONS
We studied the effect of mapping, model for determination of
the Flory−Huggins interaction parameter between the beads,

and the functional form of the electrostatic interaction on the
DPD simulation of model peptides. The peptides with known
structures were TrpZip2 (SWTWENGKWTWK), Rubrivino-
din (GAPSLINSEDNPAFPQRD), Lihuanodin (GSKYSDTA-
DESSYRW), and IC3-GB1/Gai (DIRLAKTLV)with 12, 18, 15,
and 9 amino acids, respectively. The MARTINI model was used
for coarse-graining groups of atoms or molecular fragments into
beads with mapping ranging from 2−1 to 6−1. The interaction
parameter matrix for pairwise bead interactions was determined

Figure 15. Comparison of (A) ⟨Rg⟩ and (B) ⟨RMSD⟩ values of the IC3-CB1/Gai peptide simulated with the SIMFIMmodel and ERFR, Coulombic,
or no electrostatic interaction for 2−1 and 3−1 mappings; the simulated ⟨Rg⟩ and ⟨RMSD⟩ values are compared with the actual Rg from the PDB
database. The Rg versus RMSD contour plots simulated with (C) ERFR, (E) Coulombic, and (G) None for 2−1 mapping. The Rg versus RMSD
contour plots simulated with (D) ERFR, (F) Coulombic, and (H) None for 3−1 mapping. The error bars show SD for Rg and RMSD.
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using the conventional model, based on solubility parameter,
and our new structure independent molecular fragment
interfuse model (SIMFIM). The SIMFIM model accounts for
specific interactions like hydrogen-bonding, polar−polar, and
polar−nonpolar interactions, which are abundantly present in
peptides and proteins. The effect of electrostatic interaction
between amino acids with charged groups was modeled with
ERFR and Coulombic functional forms of the electrostatic
interaction. The simulated peptide structures were compared
with the actual structures as measured by NMR spectroscopy.
Lower mappings of 2−1 and 3−1 predicted structural properties
closer to the actual properties as compared to higher mappings
of 4−1 to 6−1, which was attributed to the higher atomic
resolution of the simulated peptides at lower mappings. Further,

the mass of individual beads in 2−1 and 3−1 mappings was 36
and 54 amu, respectively, which was closer to the averagemass of
all molecular fragments represented by the beads (45 amu), as
compared to the mass of individual beads at higher mappings.
The ⟨RMSD⟩ values, which represented the deviation of the
spatial coordinates of the simulated beads from those of the
actual structure, were lower at lower mappings of 2−1 and 3−1.
The ⟨Rg⟩ values of the peptides were smaller at lower mappings
and closer to the actual value as compared to higher mappings.
The distribution of ⟨Rg⟩ values of the peptides was narrower at
lower mappings. As the simulation time of the peptides with 2−1
mapping was relatively long, 3−1 mapping provided predictions
sufficiently close to the actual properties at practical simulation
times. The conventional model calculated repulsive Flory−

Figure 16. Comparison of ⟨Rg⟩ and ⟨RMSD⟩ values of (A) TrpZip2, (B) Rubrivinodin, (C) Lihuanodin, and (D) IC3-CB1/Gai peptides simulated
with the SIMFIMmodel and ERFR, Coulombic, or no electrostatic interaction for 2−1 to 6−1mappings; the simulated ⟨Rg⟩ values are compared with
the actual Rg from the PDB database. For TrpZip2 and Lihuanodin, the lowest and highest experimental Rg values among the 20 structures from the
PDB database are shown as whiskers under the “NMR” column. The error bars show SD for Rg.

Figure 17.Comparisons of simulated (top) and actual (bottom) structures of (A) TrpZip2 (RMSD = 3.13 Å, Rg = 5.86 Å), (B) Rubrivinodin (RMSD
= 3.51 Å, Rg = 5.79 Å), (C) Lihuanodin (RMSD = 4.9 Å, Rg = 5.13 Å), and (D) IC3-CB1/Gai (RMSD = 5.24 Å, Rg = 4.75 Å) peptides. The structures
were simulated with the SIMFIM model, ERFR for electrostatic interaction, and mapping of 3−1.
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Huggins interaction parameters between water and all amino
acids, which was unrealistic for some amino acids like lysine,
glutamic acid, arginine, aspartic acid, serine, glutamine, and
arginine. Conversely, our SIMFIM model predicted both
attractive and repulsive interactions. Although the simulated
⟨Rg⟩ values with the conventional and SIMFIM models were
close to the actual Rg of the peptides, the simulated ⟨RMSD⟩
values for SIMFIM were much lower than those of the
conventional model. Therefore, the SIMFIM model predicted
structures that were closer to the actual peptide structures. The
⟨Rg⟩ values of the peptides simulated using the ERFR functional
form for electrostatic interaction were closer to the actual value
as compared to the Coulombic function, which was attributed to
the physically unrealistic overstretching of the chains and the
release of excessively large quantities of energy. In the case of the
IC3-GB1/Gai peptide, the ⟨RMSD⟩ values were slightly higher
compared to the other peptides, which was attributed to the
imposition of no constraints on the stability of the α-helical
structure of IC3-GB1/Gai in the simulation. Unlike the other
peptides, all amino acids in the IC3-CB1/Gai peptide
participated in the secondary structure formation. Despite the
lack of any constraints, the range of ⟨Rg⟩ values at maximum
probability for the IC3-GB1/Gai peptide simulated with
SIMFIM and ERFR functions for electrostatic interaction
contained the actual value at 3−1 mapping.

The DPD simulation of peptides with the new SIMFIM
model is potentially useful for predicting the physical properties
of synthetic peptides with unknown structures. This method-
ology could potentially be used in the future to improve our
ability to predict by simulation the formation of self-assembled
peptide structures at the nanoscale in an aqueous medium.
Further, it could potentially be used in the future to simulate the
aggregation of peptides and predict their critical concentration
for micelle formation.
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