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Graves’ disease (GD) is a common autoimmune cause of hyperthyroidism, which is

eventually related to the generation of IgG antibodies stimulating the thyrotropin receptor.

Clinical manifestations of the disease reflect hyperstimulation of the gland, causing

thyrocyte hyperplasia (goiter) and excessive thyroid hormone synthesis (hyperthyroidism).

The above clinical manifestations are preceded by still partially unraveled pathogenic

actions governed by the induction of aberrant phenotype/functions of immune cells.

In this review article we investigated the potential contribution of natural killer (NK)

cells, based on literature analysis, to discuss the bidirectional interplay with thyroid

hormones (TH) in GD progression. We analyzed cellular andmolecular NK-cell associated

mechanisms potentially impacting on GD, in a view of identification of the main NK-cell

subset with highest immunoregulatory role.
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The autoimmune thyroid disorder, known as Graves’ disease (GD), is the most frequent
cause of hyperthyroidism in iodine sufficient areas (1). Production of autoantibodies against
the TSH-receptor (TRAb) represents the ultimate step for disease progression (2). Therefore,
identification of the major drivers involved in triggering and progression of the disease, still
represents an unmet need (1). There is a large consensus that identification of all potential factors
involved in the pathogenesis of GD might favor the development of a more efficient treatment
strategy, as well as of prevention approaches (3). This would be of paramount importance in view
of the current lack of an effective pharmacological therapy for GD (4–6).

Natural killer (NK) cells, whose has been initially defined in virus clearance and defense against
tumors, represent a highly heterogenous cell population. More recently, they have been shown
to be involved in autoimmune disorders with both pathogenic and regulatory roles (7). While it
is widely accepted that abnormalities in the adaptive immune response underpin autoreactivity
and autoimmune diseases, it is also clear that other effector cells within the innate immunity
compartment can act as relevant players. The major aim of this narrative review was to discuss
the potential involvement of NK cells in the pathogenesis of Graves’ disease and to speculate on
potential future treatment/prevention strategies, based on NK cells as a target and/or as a tool
for therapy.
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CURRENT UNDERSTANDING OF THE
PATHOGENESIS OF GRAVES’ DISEASE

Although GD can occur at any age and in both genders, it is
more frequently observed in women in the 4–5th decade of life
(1). The ultimate event is the continuous activation of the TSH-
R on thyroid follicular cells by TRAb (8, 9). This dysregulated
and continuous thyroid stimulation causes hyperthyroidism and,
frequently, thyroid enlargement (goiter) (10, 11). As for other
autoimmune disorders, GD likely results from the breakdown in
the immune tolerance mechanisms, both at systemic (peripheral
blood) and local (tissue) levels (8, 9). Failure of T regulatory
(T reg) cell activity, proliferation of autoreactive T and B cells,
and enhanced presentation of TSH-R (due to increased HLA-
D affinity for TSH-R, more immunogenic TSH-R haplotype, or
increased exposure of TSH-R peptide) drive the development of
the disease (12, 13). Interestingly, TRAb has been detected in
serum only shortly before diagnosis of GD (8).

Studies of dizygotic and monozygotic twins showed that
genetic predisposition plays a relevant role in the development
of GD (14, 15). Genetic risk factors for GD include multiple
susceptibility genes, such as some HLA haplotypes (e.g., HLA
DRB1∗3, DQA1∗5, DQB1∗2), polymorphisms of genes involved
in T and B cells regulation [Cytotoxic T-Lymphocyte Antigen
4 (CTLA4), CD40, Protein tyrosine phosphatase non-receptor
type 22 (PTPN22), the B cell survival factor (BAFF), Fas-
ligand or CD95 and CD3γ], T reg cell functions (FOXp3),
and polymorphisms of genes encoding for thyroid peptides
(variants of thyroglobulin or TSH-R) (12, 16–21). Recently, a
single polymorphism in tumor necrosis factor α (TNFα) gene
(rs1800629) was correlated with an increased risk to develop
GD (22). GD is a heterogeneous disease, resulting from the
combination of various and different gene polymorphisms,
actually detectable by pooled genome wide association study
(21–25). This would explain the weak overall size effect for
genetic markers in genome-wide association studies (16, 21).
Precipitating factors, probably inducing epigenetic changes
include sex hormones, pregnancy, cigarette smoking, stress,
infection, iodine, and other potential environmental factors (17,
26–33).

GD has been historically considered a T helper (Th)2-skewed
disorder (34). This was supported by the starring role of B cells
and by the features of Th cells infiltrating the thyroid gland,
which are T cell clones specific for the TSH-R and mainly
harbor Th2 cytokines (34, 35). More recently, Nagayama et al.
demonstrated that the induction of immune shifting toward a
Th2 phenotype in a GD mouse model was associated with a
decrease, rather than an increase, in TRAb synthesis (36). This
indirectly suggested a Th1 priority role in the induction of GD
(35). In keeping with these findings, several studies showed
that thyrostatic treatment with antithyroid drugs progressively
induced transition from Th1 to Th2 predominance (37). As
elegantly demonstrated by Rapaport and McLachlan, the fact
that TRAb antibodies belong to the subclass of IgG, might
explain the Th1-Th2 cytokine bias (38). Indeed, different IgG
subclassesmight coexist in several diseases and could additionally
contribute to the pathogenic mechanisms (35–43). While early

stage of the humoral immune response involves Th1 cytokines
(e.g., IFN [interferon] γ), the prolonged immunization depends
on IgG4 antibodies, driven by Th2 cytokines (e.g., interleukin
[IL]-4) (39, 40). During a first phase, antigen presenting cells
(APCs) and B cells-derived cytokines (IFNγ and TNFα) stimulate
thyrocytes to secrete several chemokines, including C-X-C
chemokine 10 that can recruit Th cells. Th cells interact with B
cells to produce antibodies (1). Finally, intrathyroidal Th2 cells
inhibit Th1 responses through the secretion of IL-10, IL-5, and
IL-4 (38–46), thus preventing destruction of the thyroid gland,
at variance with Hashimoto’s thyroiditis. At this stage, thyroid
gland might be protected from destruction both by inhibition
of macrophages (from Th2 cytokines) and by upregulation of
anti-apoptotic mechanisms (BCL-XL)/downregulation of Fas-
Fas-ligand interaction (44, 45). Concomitantly, the increased Th2
response leads to an increased production of antibodies.

NATURAL KILLER CELLS AND THEIR
ROLE IN AUTOIMMUNITY

NK cells are large granular lymphocytes (LGL), recently classified
as a subset of innate lymphoid cells (47). They are classically
distinguished from the other mononuclear cells due to the
expression of CD56, a molecule mediating homotypic adhesion,
and null expression of CD3 (48). Additionally, based on
the density of CD16 espression (a low-affinity receptor for
the Fc portion of immunoglobulin G) and CD56 surface
markers, NK cells could be further distinguished in two major
subsets: CD56brightCD16dim/− and CD56dimCD16+cells (49–51).
According to a well-supported theory, NK cell precursors leave
the bone marrow, transit through peripheral blood and reach the
lymph nodes, where, under the influence of cytokines produced
by stromal matrix, they differentiate into CD56+CD16− (49–53).
Maturation process is characterized by the down-regulation of
CD56 and the acquisition of CD16 markers, as well as of “killer
cell immunoglobulin-like receptors” (KIRs), getting the features
of CD56dimCD16+cells (50, 52–54). Therefore, CD56dimCD16+

NKs show high potential of cytotoxicity, due to the high content
of cytolytic granules (containing perforin and granzyme), the
high expression of KIRs, ILT2 (immunologlobulin-like transcript
2), and CD16 itself (51, 53). Conversely, CD56brightCD16dim/−

are more immature cells, characterized by poor cytotoxic
ability, high expression of inhibitory receptors (such as
NKG2A), high ability to proliferate in response to IL-2 and
elevated production of several cytokines, such as IFNγ, TNFα,
granulocyte–macrophage colony-stimulating factor, IL-10 and
IL-13, depending on the conditions of stimulation (51, 55–58). It
is the balance between inhibitory and activating signals, deriving
from non-rearranged surface receptors, to dictate whether or not
NK cells will kill target cells, engaged during their “patrolling”
action (Figure 1A). Inhibitory receptors such as NKG2A, CD161,
and inhibitory KIRs prevented the killing of normal cells, through
the recognition of “self ” molecules belonging to MHC class
I. Thus, according to the “missing self-hypothesis,” NK cells
recognize and attack target cells presenting low or aberrant MHC
class I molecules (59). Furthermore, activating receptors, such
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as the natural cytotoxic receptors (NKp44, NKp46, NKp30),
CD69, activating C-type lectin-like receptors (as the natural
killer group 2D receptor) and activating KIRs recognize ligands
induced on stressed cells (infected/overactive/transformed cells)
and stimulate NK cells activation.

With the advent of the single cell technologies, coupled with
RNA sequencing, it has been observed that NK cell heterogeneity,
in term of subsets, is more complex (according to the different
surface antigens and cytokine milieu) (60). This is not only a
gene-restricted but also an environmental (re)-directed process
(61–64). Modeling T cell classification, in humans, NK cells
could be divided at least in two sets: “NK1,” characterized by the
production of IFNγ and the regulatory “NK2” cells (65, 66). The
polarization to NK2 phenotype depends on high IL4 levels and is
characterized by the high production of “type 2” cytokines (i.g.,
IL-5, IL-10, and IL-13), the high expression of cytokines receptors
and of NKG2A surface marker.

Considering their role in defense against viruses and that
viral triggers are often involved in the initiation of several
immune disorders, NK cells have been investigated for their
role in autoimmunity (65–68). Indeed, CD56bright NK cells
may orchestrate the overall immune process, influencing both
innate and adaptive immune cells, through the integration of
signals from numerous activating and inhibitory receptors. Due
to the high plasticity and interaction with other immune and
stromal cells, CD56bright NK cells acquire a regulatory role
(65–69). In this context, a third subset, called “NK reg” has
therefore been suggested and defined, according to surface
inducible or constitutive markers such as CD117 (65–73).
However, the available studies provided conflicting results, since,
under some circumstances, NKs play a protective role, while
in others they have been blamed to be pathogenic (7, 62,
68, 69). Likely, their action is correlated to the type of cell
becoming the target of attack. In case of whether acquired
or inherited dysfunctions, NK cells might participate into the
destruction of non-transformed, healthy cells as the first step of
the autoimmune process. Conversely, if targets are autoreactive
T cells, dendritic cells (DC) or pro-inflammatory macrophages,
NKs might act as regulators, dampening the inflammatory
process (65, 69–73). Interestingly, NK cell regulatory activity
has been demonstrated in several autoimmune diseases, such as
multiple sclerosis (MS), experimental colitis or encephalitis (EE)
and arthritis (RA), by different strategies such as cytokine release,
interaction with ligands of the receptors NKG2D, NKG2A,
NKp46 or perforin-mediated T cell death (63, 72, 73). In a
mouse model, Ehelers and co-workers demonstrated that high
levels of IL-18, which are found in Th1-skewed autoimmune
process, induced the expression of CD117 on NKs which, in turn,
became able to suppress CD8+T cells (73). In other experiments,
CD56bright NK suppressed autologous CD4+ T cells proliferation
through the expression of NKp30 and NKp46, granzyme B
releasing and immunosuppressive molecule adenosine (72, 73).
In experimental models of autoimmune EE, the inhibitory role of
NKs on the T effectors proliferation, as well as a direct cytotoxic
effect on autoreactive specific T cells, were shown (74). Likewise,

FIGURE 1 | The role of natural killer cells in the pathogenesis of Graves’

disease. (A) Enumeration of activating/inhibitory receptors and cytokines

receptors, whose signals determined NK cells activity in health and disease.

CD, cluster of differentiation; CD16, Fc receptor; CD244, non MHC biding

receptor acting as costimulatory ligand for NK cells; CD69, early expressed

after NK cell activation; CD96, interacts with nectin and nectin-like proteins;

CD161, recognizes the human NKR-P1A antigen; KIR, killer cell

immunoglobulin like receptor; LAG1 and LAG3, lymphocyte activation gene 1

and 3; NKp30, NKp44, NKp46, the natural cytotoxic receptors (NCR); NKG2A

and NKG2D, natural killer group 2A and 2D; TIGIT, T cell immunoglobulin and

ITIM domain; IL (interleukin)-21/18/15/10/12/4/2 R (receptor); TGF-bR, TGF

beta receptor family; PD1, programmed cell death protein 1; TIM2, T-cell

immunoglobulin and mucin-containing domain 2; (B) Several factors including

microenvironment, cytokines milieu, epigenetic background and

hyperthyroidism itself might impair NK protective activity. DC, dendritic cells;

NK, natural killer cells.
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Takahashi et al. demonstrated, in MS patients, that CD56bright

NK could favor clinical remission, by suppressing the production
of IFNγ, by specific autoreactive T effectors and secreting IL-
5 (57, 69, 75). Laroni et al. observed that CD56bright NK cells
had reduced ability to kill T-cells in MS patients, compared
to healthy controls, possibly due to an increased expression of
NKG2A (69, 76). Thus, impaired cytotoxicity or the inability
to secrete cytolytic granules have been correlated to the escape
of proinflammatory cells (both T and B lymphocytes, DC and
macrophages) from regulatory mechanisms of controls (77). In
other cases, such as RA, loss of NK tolerance (due to decreased
inhibitory signals or inappropriate stimulation of activating
signals) might favor the development of autoimmune diseases.
Different mechanisms have been blamed, such as the presence
of antilymphocyte antibodies (78). In other disorders, such as
myasthenia gravis and EE, NK cells seem to facilitate initiation
and progression of autoimmunity (67, 68). Besides differences
in the strains and models used, several factors may influence
the specific, and even contradictory, actions of NK cells. Their
ability to adapt to different stimuli and different anatomical
localization may play an important role. Microenvironment
itself may influence NK functions, such as migration and tissue
retentions, as it emerged in the complex interaction with DC,
influenced by density, maturation state and phenotype of this
population (68). Epigenetic modifications strongly influence
NK cells all along their life, from development to regulation
and differentiation of effector functions (79–81). Epigenetic
remodeling, acquired through immunological experiences, might
modulate NK functions (61). For instance, gene expression of
several genes (including KIRs) is regulated by DNA methylation
(hypomethylation or hypermethylation) of their promoters. The
interindividual genetic variability in the receptor repertoire,
especially of the highly polymorphic KIR gene, influence
the recognition of target cells (80). KIRs polymorphisms
might influence the engagement with HLA molecules and, as
counterpart, functional interaction between co-inherited KIRs
(especially inhibitory KIRs) and HLA progressively influence NK
education (81). Besides KIRs, other receptors such as NKG2A are
involved in NK education (61).

THE LINK BETWEEN LEUKOCYTES AND
THYROID HORMONES

A possible link between THs and the immune system was
already suggested more than 40 years ago, by the discovery
that Staphylococcus-stimulated lymphocytes might de novo
synthesize a TSH-like substance (immunoreactive TSH, i-TSH),
similar to the pituitary-released form and possibly involved in
autoimmune thyroid disorders (AITD) (82). Further experiments
progressively demonstrated that bone marrow hematopoietic
cells, lymphocytes, DC and even intestinal epithelial cells, could
synthesize TSH (83). The role of extra-pituitary TSH remains
to be clarified. It was speculated that, as pituitary TSH, i-TSH
might stimulate the synthesis of TH, which, in turn, might
influence the immune system (indirect effect). Several papers
showed that immune cells harbor essential elements required for

THs metabolism and action. For example, both neutrophils and
DC express T3 (the active form of TH) transporters (MCT10
in human) and type 2 and 3 deiodinases (involved in THs
synthesis) (84–86). Indeed, it has been widely demonstrated
that THs interact with hematopoietic cells (85–90) at different
levels. T3 might affect target immune cells by binding both
to nuclear receptors (thyroid hormones receptors TRα and
TRβ) and membrane receptors (86–90). For example, TH and
especially T3 can influence maturation of DCs (84, 85). DC
phenotype was studied in thyroidectomized patients before and
after levothyroxine supplementation, showing that THs induce
an increase in DCs number and influence their functions (91). A
research group from Cordoba demonstrated that T3 induce DCs
activation throughAkt andNF-kB pathways, driving the immune
response toward a Th1 phenotype (92, 93). Further support to
the regulatory role of TH came from experiments showed
that daily administration of T4 was followed by the complete
restoration of the immune competence in thyroidectomized
mice (94). Furthermore, T4 treatment in mice enhanced the
NKs cytotoxic activity against classical target cells, amplifying
their responsiveness to cytokines and modulating NK metabolic
properties (95). Some years later, Provinciali et al. demonstrated
that, after T4 pre-treatment, the peak of NK cytotoxic activity
was achieved using half the optimal IFNγ concentration (96).
Additional experiments strengthen the hypothesis of a paracrine
TSH-pathway (97–99). TSH-R is expressed on myeloid and
lymphoid cells (100, 101). By its stimulation, TSH (both the
immune and the pituitary released forms) may act as a cytokine-
like regulatory molecule and induce the secretion of several
cytokines, such as TNFα (102, 103). In vitro studies showed that
TSH, combined to classical cytokines (as IL-2, IL-12, IL-1β), acts
as co-stimulus improving lymphocytes and NKs proliferative
response to even low dose of mitogens (103, 104). Todd et al.
demonstrated that TSH was able to enhance the expression
of MHC class II in thyroid cells treated with IFNγ (105).
Accordingly, Dorshkind et al. demonstrated that THs induce
the synthesis of cytokines and the expression of IL-2 receptor
in NK cells (106). Indeed, while both T3 and FT4 boosted the
IFNγ response in mice (107, 108), T4 amplified both IFNγ and
IL-2 (96).

Based on the bidirectional relationship between TH and
the immune system (96), Kmiec et al. postulated that in the
elderly the reduction of TH with aging might be involved
in the impairment of NK activity by T3 administration; they
found a direct correlation between serum T3 levels and NK
activity, in spite of conserved proportion of circulating NK cells
(109, 110). Indeed, NK cell activity was selectively improved
by T3 administration in those subjects having T3 levels in the
slower range.

NATURAL KILLER CELLS AND GRAVES’
DISEASE

From a mutual perspective, thyroid function might orchestrate
the immune response and, conversely, dysfunction of the
immune system might favor the development of thyroid
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TABLE 1 | Summary of studies investigating the role of natural killer cells in Graves’ disease.

References Subjects Study objects Methods Outcome

Amino et al. (111) GD (16 untreated GD + 11

hyperGD under ATD + 3

euGD under ATD + 4

remission GD) vs. 43

controls vs. 14 HT

K lymphs Peripheral blood samples ↓ K lymphs in hyperGD than controls

↓ plaque forming K lymphs in hyperGD

than controls

No differences in K lymphs comparing

euGD to controls.

Iwatani et al. (112) GD (12 hyperGD + 5 euGD)

vs. HT (17 euHT + 4

hypoHT) vs. 55 controls

LGL Peripheral blood samples LGL ↓↑FT4, FT3 in hyperGD

↓LGL in hyperGD compared to

other groups

Stein-Streilein

et al. (113)

Mice fed with T4 vs.

hypothyroid (due to ATD) vs.

euthyroid mice

NK release of lytic

factors

Blood, spleen and lung samples

after 2 and 6w

↓lytic molecules release in thyrotoxic

mice

Papic et al. (114) 22 untreated GD vs. 18

hyperthyroxinemic for T4

treatment

cNK number and

activity

Peripheral blood samples

Release assay for NK cytotoxicity

against K562

↓cytotoxicity in hyperthyroidism (both

groups)

↓ability of IL-2 chance to enhance NK

activity in GD

Wang et al. (115) GD (33 untreated GD + 19

euGD under ATD + 6 euGD

after ATD withdrawal) vs. 43

controls

cNK number,

cytotoxicity

Peripheral blood samples

Release assay for NK cytotoxicity

against K562

No differences in cNK number in GD

compared to controls.

↓cytotoxicity in untreated GD or

during ATD treatment vs. euGD

Pedersen et al.

(116)

20 untreated GD vs. 11 HT

vs. 10 non-toxic goiter vs.

22 controls

cNK number,

cytotoxicity

Co-culture with IL-2, IFN,

indomethacin

Release assay for NK cytotoxicity

against K562

No differences in cNK number and

activity in AITD vs. controls

Lee et al. (117) 18 untreated GD vs. 18

controls

cNK cytotoxicity Co-culture with T4

Release assay for NK cytotoxicity

against K562

No differences in cNK activity in GD vs.

controls

↑ cytotoxicity with T4 in controls but

not in GD

Hidaka et al. (118) 25 untreated GD vs. 18 HT

vs. 22 postpartum AITD vs.

61 controls

cNK cytotoxicity Peripheral blood samples

Release assay for NK cytotoxicity

against K562

↑cytotoxicity in GD vs. other groups

Aust et al. (119) 10 GD tNK and cNK

number

Thyroid tissues and peripheral

blood samples

tNK↑↑ AbTPO

Wenzel et al. (120) 40 GD vs. 26 HT vs. 32

controls

cNK cytotoxicity Peripheral blood samples

Release assay for NK cytotoxicity

against K562

↓ cytotoxicity in untreated/under ATD

GD vs. controls

Solerte et al. (121) 13 untreated GD vs. 11

hypoHT vs. 15 controls

Functional studies cNK were incubated with IL-2,

TGF-β and DHEAS

Release assay for NK cytotoxicity

against K562

Cytokine secretion

↓cytotoxicity induced by IL2 e TGF-β

in GD and HT

↓spontaneous and IL2 induced

TNFα release

Dastmalchi et al.

(80)

8 untreated GD vs. 176

controls

KIR genes and

related HLA

polymorphisms

Peripheral blood samples

PCR-SSP

No evident correlations

Zhang et al. (122) 28 untreated GD vs. 23

controls

Functional and

phenotypic studies

Peripheral blood samples ↓cytotoxicity in GD vs. controls

↓NKG2D+, NKG2C+, NKp30+,

NKG2A+ NK in GD vs. controls

↓IFNγ in GD vs. controls

NKG2A+ NK ↓↑TRAb

NKG2D+ NK ↓↑TH

AITD, autoimmune thyroid disorders; ATD, antithyoid drugs; cNK, circulating NK cells; eu, euthyroidism; d, days; HT, Hashimoto’s thyroiditis; IFN-γ, interferon γ; K lymphs, killer

lymphocytes; LGL, large granular lymphocytes; NKG2 A/C/D, natural killer group 2D, belonging to C-type lectin like receptors; PCR-SSP, polymerase chain reaction sequence-specific

primer directed method; tNK, tissutal (intrathyroidal) NK cells; TH, thyroid hormones; w, weeks; ↑ enhance; ↓ depress; ↑↑ direct correlation; ↓↑ inverse correlation.

disorders. Several studies investigated the potential contribution
of NKs in the development and/or progression of GD, but
results are still inconclusive and sometimes conflicting. Table 1
reports the available data on this issue (111–123). Researchers
from Osaka University observed that the total percentage of

LGL, including NK-like cells, was decreased in untreated GD
patients compared to euthyroid GD patients on antithyroid drug
therapy and to controls; in addition, the proportion of LGL was
inversely correlated to T4 and T3 levels (110–112, 123). Thus,
while normal THs levels are crucial to maintain an adequate
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activity of the immune system, supraphysiological THs levels
exerted a detrimental effect, mimicking starvation, and increased
cortisol secretion (121, 124–126). Immunocomplexes able to
suppress NK cell activity, as in other autoimmune disorders (e.g.,
RA), were considered as a possible cause of this phenomenon
(76, 127). According to a different hypothesis, the decrease of
NK cells might be the primary immunological abnormality in the
pathogenesis of GD (111, 127).

Solerte et al. reported that both spontaneous and IL-2/IFNβ-
modulated NK cells cytotoxicity (NKCC), as well as spontaneous
and IL-2 induced TNFα release were decreased in NK cells from
13 GD patients compared to 15 controls (121). Both cytokines
secretion and cytotoxicity were promptly normalized by co-
incubating NKs with DHEAS (dehydroepiandrosterone sulfate),
supporting the concept of a concomitant effect of other endocrine
axes (121, 128, 129). Studies from the University of Miami
comparing thyrotoxic mice (due to levothyroxine treatment) to
euthyroid or hypothyroid (due to antithyroid drug treatment)
control mice observed a reduced secretion of cytolytic granules
(113). Similar results were obtained from the same group in
humans (see Table 1) (114), with a reduction in cytotoxicity,
studied by release assay for NK cell cytotoxicity against K562
tumor target cells.

Considering that NK cell activity is affected by age (130), a
study compared NKCC in AITD patients with age and gender-
matched healthy controls, demonstrating an impaired NK cell
activity in AITD (120). As previously outlined, the integration of
activating and inhibitory signals from NK surface regulates NK
cells effector functions, such as cytokine secretion and NKCC.
In a study of 28 newly onset GD patients, Zhang et al. observed
a reduction of NK cells expressing both activating (NKG2D,
NKG2C, NKp30) and inhibitory receptors (NKG2A) compared
to matched healthy controls (122). Additionally, NKG2A+ NKs
were inversely related to TRAb levels, while NKG2D+ NKs were
inversely related to serum free T4 levels (122), supporting the role
of dysfunctional NK cells. Figure 1B illustrates the hypothesis
that in case of dysfunctional impairment, NK cells lose their
ability to protect from the development of GD. Other studies
(115, 117, 119, 120, 122, 131, 132), with some exceptions (116,
118) generally agreed on the impairment of NK activity in GD
and reported that restoration of euthyroidism by antithyroid
drug treatment (especially propylthiouracil) could improve NK
functionality (133, 134).

CONCLUSION AND FUTURE
PERSPECTIVES

It is now clear the immune system, both the innate and the
adaptive components, are crucial host-related orchestrators
of disorder induction/insurgence and progression. Alterations
of immune cell phenotype and functions, as a consequence
of chronic inflammation, are shared features between
cancers, cardiovascular, neurological, and autoimmune
diseases. In the new era of immunotherapy, most of the
efforts are addressed to cancer, as supported by the vast
literature and clinical trials (135). This rapidly developing
field suggests the same attention should be dedicated also to
autoimmunity, that still requires a better understanding of the
cellular and molecular events occurring during autoimmune
disorders, including GD. Unveiling these mechanisms and
events is required to identify new immunological cellular
biomarkers, trace disease progression, and design new targeted
therapeutic strategies for autoimmunity. In this scenario,
re-education/manipulation of NK cells appear as a promising
strategy, as confirmed by the growing interest in CAR-NK
cells (136).
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