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A Quantitative Model Explains Single-Cell Dynamics
of the Adaptive Response in Escherichia coli
Stephan Uphoff1,*
1Department of Biochemistry, University of Oxford, Oxford, United Kingdom
ABSTRACT DNA damage caused by alkylating chemicals induces an adaptive response in Escherichia coli that increases the
tolerance of cells to further damage. Signaling of the response occurs through irreversible methylation of the Ada protein, which
acts as a DNA repair protein and damage sensor. Methylated Ada induces its own gene expression through a positive feedback
loop. However, random fluctuations in the abundance of Ada jeopardize the reliability of the induction signal. I developed a quan-
titative model to test how gene expression noise and feedback amplification affect the fidelity of the adaptive response.
A remarkably simple model accurately reproduced experimental observations from single-cell measurements of gene
expression dynamics in a microfluidic device. Stochastic simulations showed that delays in the adaptive response are a direct
consequence of the very low number of Ada molecules present to signal DNA damage. For cells that have zero copies of Ada,
response activation becomes a memoryless process that is dictated by an exponential waiting time distribution between basal
Ada expression events. Experiments also confirmed the model prediction that the strength of the adaptive response drops with
an increasing growth rate of cells.
SIGNIFICANCE Gene expression noise can influence cell fates and diversify phenotypes in response to stress. For
genotoxic stress, variable expression of DNA repair genes will modulate crucial genome maintenance mechanisms, which
can affect an individual cell’s chance of survival or rate of mutagenesis. This study addresses the role of gene expression
noise in the adaptation of Escherichia coli to DNA alkylation damage. A quantitative model of the gene regulatory circuit of
the adaptive response along with stochastic simulations explained observations from single-cell microfluidics experiments
across a broad range of conditions and perturbations. The model shows that stochastic expression of Ada—a DNA
methyltransferase and transcriptional activator—is responsible for creating stark cellular heterogeneity in the adaptive
response.
INTRODUCTION

The accurate detection and repair of DNA damage is crucial
for genome stability and cell survival. In addition to consti-
tutively expressed repair pathways, cells employ DNA
damage responses that activate DNA repair factors in the
presence of DNA damage. The fidelity of the DNA repair
system relies on a series of processes: sensing the presence
of DNA damage or DNA damaging agents, inducing a DNA
damage response, and correctly repairing lesions. Cells with
genetic defects that impair the function of any of these pro-
cesses show sensitivity to DNA damage, elevated mutation
rates, and genome instability. However, even in fully
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repair-proficient strains, the accuracy of the DNA repair sys-
tem is fundamentally limited by the stochastic nature of the
molecular interactions involved (1,2): For example, proteins
that signal or repair DNA damage perform a random target
search and therefore have a finite chance of overlooking
lesions (3–7). Furthermore, the repair process itself can be
error prone and cause mutations, loss, or rearrangements
of genetic material (8–12). Traditionally, research has
focused on genetic defects and such ‘‘intrinsic errors’’ in
DNA repair–i.e., errors that are inherent to the repair mech-
anism and thus occur with the same probability in all cells of
a population.

By comparison, less attention has been given to ‘‘extrinsic
variation’’ in the DNA repair system–i.e., fluctuations in
protein abundances that may affect the repair capacity of in-
dividual cells. In fact, gene expression noise is ubiquitous
(13), difficult for cells to suppress (14), and is the source
of phenotypic heterogeneity that is widely observed in
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Quantitative Model of the Ada Response
isogenic cell populations (15). Feedback gene regulation
can establish bimodal distributions so that subpopulations
of cells maintain distinct states of gene expression for
long times. Whereas many biological processes are robust
to a certain level of noise, even transient variation in the ca-
pacity of a cell to repair DNA damage can have severe and
potentially irreversible consequences (16–18). For instance,
cells that transiently express too little of a damage sensor
protein may be unable to signal DNA damage efficiently,
leading to mutations or cell death. But there are also evolu-
tionary benefits to heterogeneity and occasional errors in
DNA repair processes when cells are facing selective pres-
sures (19–21). Because noise in DNA repair may tilt the bal-
ance between genome maintenance and plasticity, it may
play an important role in modulating the rate of adaptive
evolution on a single-cell level. This point is of particular in-
terest with regards to the role of phenotypic heterogeneity in
the evolution of drug resistance in microbes and cancers
(22–24).

The adaptive response to DNA alkylation damage in Es-
cherichia coli is a case inwhich gene expression noise appears
to cause significant cell-to-cell heterogeneity in DNA repair
capacity (17,18). Alkylating agents, such as methyl methane-
sulfonate (MMS), occur endogenously and in the environ-
ment. In cells, alkylated DNA lesions block DNA
replication and transcription and can lead to mutations
(10,25). The adaptive response is regulated by theAda protein,
a DNA methyltransferase that directly repairs methylated
phosphotriester, O6MeG, and O4MeT lesions by transferring
the methyl groups from the DNA onto two cysteine residues
on itself (26–28). These reactions are irreversible and turn
the methylated Ada protein (meAda) into a transcriptional
activator of the genes ada, alkB, alkA, and aidB that are
involved in the repair or prevention ofDNAalkylation damage
(29). The response causes a positive feedback amplification of
Ada expression that renders cellsmore tolerant to further dam-
age. No demethylation reactions have been reported for
meAda. Therefore, deactivation of the adaptive response is
thought to occur via the dilution of meAda molecules due to
cell growth, inhibition of transcriptional activation by compe-
tition with unmethylated Ada (30), and possibly proteolytic
cleavage (31). Surprisingly, the timing of response activation
varies drastically across genetically identical cells, even at
saturating levels of DNA damage (18). The very low abun-
dance of Ada before DNA damage treatment appears to be
the cause of this variation. In particular, single-molecule imag-
ing showed that stochastic Ada expression results in a subpop-
ulation of cells that does not contain a single Ada protein and
therefore cannot sense the presence of DNA alkylation dam-
age. Without induction of the adaptive response, the insuffi-
cient repair capacity of these cells increases mutagenesis to
a similar level as in mutant cells in which the ada gene has
been deleted (17).

These surprising observations call for a quantitative
model to pinpoint the noise source underlying the heteroge-
neity in the adaptive response. Quantitative models have
been key to our current understanding of gene expression
noise and its important functions in diverse biological pro-
cesses (13,32–35), including DNA damage signaling and
repair (16,36–39). Here, I capitalized on time-lapse micro-
scopy data showing the adaptive response dyanamics in
hundreds of single E. coli cells for a large range of damage
conditions (18). The direct measurement of key observables
and parameters allowed construction of a quantitative model
of the core Ada regulation. The proposed model is remark-
ably simple yet accurately reproduces experimental obser-
vations—both the cell average as well as the stochastic
behavior of single cells. The model also predicts cell re-
sponses after different experimental perturbations. No addi-
tional post hoc noise term was required in this model, but
propagation of basic Poisson fluctuations alone was suffi-
cient to explain the observed cell-to-cell variation in
response activation. These results establish that intrinsic
noise in the basal expression of the ada gene is solely
responsible for the stochastic nature of the adaptive
response. The model also predicts that the strength of the
response should be inversely related to the growth rate of
cells, which was confirmed in experiments.
MATERIALS AND METHODS

Single-cell imaging of the adaptive response

The construction of the model was based on experimental data described in

(18). Briefly, the adaptive response was monitored in live E. coli AB1157

cells carrying a functional fusion of Ada to the fast-maturing fluorescent

protein mYPet (40) that is expressed from the endogenous chromosomal lo-

cus, thus maintaining native expression levels. Cells also expressed mKate2

constitutively to aid automated segmentation image analysis. Fluorescence

time-lapse imaging was performed at 3-min time intervals on a Nikon Ti-E

inverted fluorescence microscope (Nikon, Tokyo, Japan) equipped with a

60� NA 1.40 oil immersion objective and Hamamatsu Orca R2 CCD cam-

era (Hamamatsu, Shizuoka, Japan). Single fluorescence snapshots were re-

corded on a similar Nikon Ti-E instrument equipped with a 100�NA 1.4 oil

immersion objective and Photometrics CoolSNAP HQ CCD camera (Tele-

dyne Photometrics, Tucson, AZ). Both instruments had an LED excitation

source (Lumencor SpectraX; Lumencor, Beaverton, OR) and perfect focus

system. Exposure times were 50 ms for mKate2 and 100 or 200 ms for Ada-

mYPet (time lapse or snapshots). Cells were grown and imaged at 37�C in

supplemented M9 minimal medium containing M9 salts (15 g/L KH2PO4,

64 g/L Na2HPO4, 2.5 g/L NaCl, and 5.0 g/L NH4Cl), 2 mM MgSO4,

0.1 mM CaCl2, 0.5 mg/mL thiamine, minimal essential medium amino

acids, 0.1 mg/mL L-proline, 0.85 mg/mL Pluronic F127 (added for micro-

fluidics), and 0.2% glucose (or 0.2% glycerol as indicated in Fig. 5). Micro-

fluidic single-cell imaging was performed using the ‘‘mother machine’’

microfluidic device (41). A constant flow of growth medium containing

the DNA methylating agent MMS was applied at the times and concentra-

tions indicated in the figures. For snapshots, shaking cultures were treated

with MMS before imaging immobilized cells on agarose pads.
Ada response model

The structure of the model is based on previous genetic and biochemical

characterization of the adaptive response (26–28). Key to the model is a

positive feedback loop in which DNA damage-induced irreversible
Biophysical Journal 117, 1156–1165, September 17, 2019 1157
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methylation of Ada creates meAda, which acts as a transcriptional

activator for the ada gene. The chemical kinetics of the model can be

described as a system of ordinary differential equations according to the

diagram in Fig. 1 A:

d=dt ½meAda� ¼ f1ð½MMS�Þ , ½Ada�--ðlnð2Þ þ rÞ , ½meAda�;
(1)

d=dt ½Ada� ¼ kbasal þ f2ð½meAda�Þ--lnð2Þ , ½Ada�: (2)
Self-methylation of Ada in the presence of DNA methylation damage

generates meAda molecules with a rate proportional to the MMS concentra-

tion: f1([MMS]) ¼ kme , [MMS].

In the absence of DNA methylation damage, the ada gene is expressed at

a constant basal rate kbasal from the PAda promoter. This rate is independent

of the abundance of Ada or meAda. Transcription of the ada gene is

induced to rate kind when meAda binds to the PAda promoter with an asso-

ciation rate kon and dissociation rate koff in a noncooperative manner (42):

PAda þmeAda4PAda �meAda:

In the deterministic model, Ada is produced according to the fraction of

time that the PAda promoter is bound by meAda:

f2ð½meAda�Þ ¼ kind , ½meAda���koff
�
kon þ ½meAda��;

where kind is the fully induced production rate at saturating amounts of

meAda.

Production of Ada and meAda molecules is counteracted by dilution due

to exponential cell growth. When time is expressed in units of generation
A

B

C

FIGURE 1 Deterministic model of the adaptive response. (A) Schematic of

cells. MMS treatment creates DNA methylation damage that converts Ada to

promoter. Both Ada and meAda molecules are diluted because of cell grow

autorepression. (B) Shown is the cell average steady-state expression of Ada

ations (mean 5 SD). The curve shows the analytical steady-state solution o

Shown is the cell average response when MMS was added at time 0 and

The model curves of total Ada abundance were generated by numerically s

is the cell average response and response deactivation upon the addition and

line indicates the time of MMS removal. The numerical solution of the mo

respectively. To see this figure in color, go online.
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times, the dilution rate is equal to ln (2) in the deterministic model. In addi-

tion to dilution, the model also includes loss of meAda at a constant rate r.

This feature can account for proteolytic cleavage of Ada (31) or other mech-

anisms that can inhibit transcriptional activation by meAda (30). The equa-

tion governing the concentration of the inactivated Ada species is as

follows:

d=dt ½inAda� ¼ r , ½meAda�--lnð2Þ , ½inAda�: (3)

The model approximates protein expression as one reaction in which

transcription and translation are described with a single production rate

constant. This reduces the number of free parameters of the model and

allows direct comparison of the experimental observables (i.e., Ada-

mYPet proteins) with the outputs of the model. The total Ada level cor-

responding to the measured Ada-mYPet fluorescence is given by the sum

of [Ada] þ [meAda] þ [inAda]. Bundling transcription and translation is

valid when protein expression follows first-order kinetics with a single

rate-limiting step. This is consistent with the complete lack of ada

expression bursting in our experiments (18) and a short half-life and

low translation efficiency of ada messenger RNAs (mRNAs) (43,44).
Steady-state solution

Setting Eqs. 1, 2, and 3 to zero gives the abundances of Ada and meAda at

steady state. These can be expressed as the solution of a quadratic equation

as follows:

½Ada� ¼ --b=ð2aÞ þ 1=ð2aÞ ,O�b2--4ac�;
D

the model is shown; Ada is expressed at a low basal level in undamaged

meAda. Transcription of ada is activated by meAda binding to the PAda
th and division. Additionally, meAda gets inactivated by degradation or

after constant treatment with different doses of MMS for 20 cell gener-

f the model for the total Ada abundance (Ada þ meAda þ inAda). (C)

Ada abundance was measured by time-lapse fluorescence microscopy.

olving the rate equations for different MMS concentrations. (D) Shown

removal of 500 mM MMS during time-lapse microscopy. The vertical

del shows total Ada and meAda abundances as solid and dashed lines,
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with

a ¼ kme , ½MMS�=ðlnð2Þ þ rÞ;

b ¼ koff
�
kon--ðkbasal þ kindÞ , kme , ½MMS�=ðlnð2Þ
þ kme , ½MMS� , ðlnð2Þ þ rÞÞ;

c ¼ --kbasal , koff
�
kon

�ðlnð2Þ þ kme , ½MMS�Þ;
½meAda� ¼ kme , ½MMS� $ ½Ada�=ðlnð2Þ þ rÞ;
½inAda� ¼ r=lnð2Þ , ½meAda�:
Numerical solution

The time-dependent solution of the model equations was numerically

obtained using the ode45 solver in MATLAB (The MathWorks,

Natick, MA).
Stochastic simulation

I simulated time traces of Ada expression in single cells using a custom

implementation of Gillespie’s algorithm in MATLAB (45). To this end,

the Eqs. 1, 2, and 3 of the deterministic model were expressed as elemen-

tary unimolecular or bimolecular reactions. Gillespie’s algorithm assumes

memoryless kinetics, which is appropriate for transitions between discrete

chemical states in which the system is defined entirely by its present state

(Markov process). Stochasticity arises because of the discreteness of the

states of the system (i.e., the integer number of molecules in the cell)

with spontaneous random transitions given by the elementary reactions

of the system. At a given time point, the waiting time until the next tran-
FIGURE 2 Stochastic dynamics of the adaptive response in single cells. (A) D

is shown. The experimental data (top) are from single-molecule counting experim

with a mean of one per cell. Inset: single-cell time traces of Ada expression wi

unsynchronized pulses of Ada expression with 50 mMMMS treatment and stocha

Example time traces from time-lapse microscopy experiments (top) and simulat

cells is shown in gray. The arrow in (C) indicates the time when 200 mM MMS
sition is drawn from an exponential distribution with an expectation value

given by the inverse of the sum of all rates exiting that state (i.e., the rates

of molecule production and conversion). Which of the possible transitions

occurs is then chosen randomly with probabilities according to the relative

rates of the reactions. Initial molecule numbers were drawn from a Poisson

distribution defined by the basal expression rate (see Fig. 2 A). Cell growth

was modeled as a deterministic exponential increase in cell volume over

the course of a generation. The promoter association rate kon was scaled

by the cell volume at each time point. The other rates were approximated

to be independent of cell volume. At the end of a generation, the cell

volume was halved, and the number of remaining molecules was randomly

drawn from binomial distributions to account for stochastic partitioning of

molecules with equal probability at cell division. Molecule numbers

were divided by the cell volume at each time point as for experimental

data.
Model parameters

Parameters were either obtained by direct experimental measurement

(18) or by matching the model output to experimental observations

(Table 1). One set of parameters was used for all the deterministic or

stochastic model realizations in this article. The cell generation time

of 42 min in supplemented M9 glucose medium (or 75 min in M9

glycerol, Fig. 5) was obtained directly by timing cell division events

in the time-lapse microfluidics data. Fluorescence intensities were calcu-

lated from the average pixel intensities within the segmented cell

areas. To correct for the background fluorescence, the intensity before

MMS treatment was subtracted on a per-cell basis. To directly compare

Ada abundances between experiment and model, fluorescence intensity

units were converted to molecule concentrations, as described previously

(18,46). The detection efficiency of fluorescent Ada-mYPet was

estimated to account for incomplete fluorescent protein maturation.

Considering a maturation half time of 9.7 min for mYPet (47) at 37�C
and a cell generation time of 42 min, fluorescent molecules

represent a fraction 1/(1 þ 9.7 min/42 min) ¼ 80% of the total Ada

abundance.
istribution of the number of Ada molecules per cell without MMS treatment

ents (18). Simulated data (bottom) were drawn from a Poisson distribution

thout MMS treatment is shown. (B–D) Example time traces show random

stic activation of the Ada response with 200 mM and 1 mMMMS treatment.

ed data of total Ada (bottom) are shown. The cell-average data from >100

was removed. To see this figure in color, go online.
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TABLE 1 Parameter Values Used for All Plots in This Article

Parameter Value

kbasal 1.25 molecules generation�1

kind 1250 molecules generation�1

kon 10 generation�1

koff 1200 molecules generation�1

kme 1.25 molecules [MMS] �1 generation�1

r 0.65 generation�1

MMS concentration in mM.

Uphoff
RESULTS

A quantitative model of the adaptive response

I first examined whether the proposed model (Fig. 1 A)
could reproduce the cell-average steady-state expression
of Ada after continuous treatment with MMS for 20 cell
generations. Experiments showed that Ada expression was
very low in the absence of damage treatment and for con-
centrations below a threshold of 200 mM MMS. A switch-
like dose response occurred for concentrations above
350 mM MMS in which Ada abundance saturated with a
very narrow transition region of intermediate Ada expres-
sion levels. The analytical steady-state solution of the model
accurately reproduced the dose response curve (Fig. 1 B). I
also tested a more complex version of the model in which
methylation of Ada at both Cys38 and Cys321 is required
for ada gene induction (27,48). Examining the dose
response for a range of methylation rates showed that a
good match to experimental data could only be obtained
when methylation of one of the cysteines is fast compared
to the other (Fig. S1). This indicates either that single
methylation is sufficient for ada induction or that one of
the methylation reactions is rate limiting in vivo, justifying
the use of a single effective methylation rate in the model.

Imaging cells inside a microfluidic device allowed
following the gene expression dynamics of the adaptive
response in real time (18). Ada-mYPet fluorescence was
used to measure the total Ada abundance (unmethylated
Ada and meAda) per cell using time-lapse imaging for hun-
dreds of cells over tens of generations per experiment. Aver-
aging the measured fluorescence signal of all cells at each
time point showed that continuous treatment with high
MMS concentrations (>350 mM) caused rapid activation
of Ada expression within two cell generations, and steady-
state expression was reached within �10 generations
(Fig. 1 C). For lower MMS concentrations (<350 mM),
initial response activation was delayed by more than five
generations, and expression reached steady state only after
�20 generations of treatment. The numerical solution
of the model closely matched the measured dynamics
(Fig. 1 C), using the same set of parameters as for the
steady-state analysis. Furthermore, the model confirms
that the removal of MMS leads to deactivation of the adap-
tive response by the dilution of Ada and meAda molecules
as a result of cell division (Fig. 1 D). The abundance of
1160 Biophysical Journal 117, 1156–1165, September 17, 2019
meAda decayed exponentially immediately after MMS
removal, whereas Ada expression remained induced for
several generations until meAda levels had diminished.
This deactivation delay scaled with the concentration of
MMS that cells were exposed to previously (Fig. S2).
Consequently, a cell’s memory of the stress and adaptation
are prolonged after severe damage exposure. There
were no signs of hysteresis effects after MMS removal, as
expected for the noncooperative promoter binding of
meAda (42).
Poisson fluctuations of Ada expression in the
absence of DNA damage

Stochastic effects appear to play a key role in the dynamics
of the adaptive response at the single-cell level. Single-
molecule counting of Ada-mYPet showed that the average
production rate in the absence of DNA methylation damage
is as low as one Ada molecule per cell generation (18). This
is equivalent to a population mean of 1.4 Ada molecules per
cell, given that the average loss rate by cell division is ln (2)
per cell generation. The distribution of Ada numbers ranged
from 0 to �6 molecules per cell. Spontaneous induction of
higher Ada expression in the absence of MMS treatment
was never observed in experiments (Fig. 2 A, inset). Ada
copy numbers were well described by a simulated Poisson
distribution when the mean was fixed by the average expres-
sion from experiments (Fig. 2 A). The integer numbers of
Ada molecules can be viewed as discrete cell states, and
transitions between these states occur with a constant (mem-
oryless) probability given by the average production and
loss rates.

Many genes are expressed in bursts, in which multiple
mRNAs are produced in a short interval, and each transcript
is translated repeatedly (49), which broadens protein expres-
sion distributions (50). The close fit of the Poisson distribu-
tion demonstrates a lack of expression bursting for Ada,
which can be explained by the low translation efficiency
and short half life of ada mRNAs (43,44). It has also been
shown that periodic changes in the gene copy number due
to DNA replication result in gene expression variation
(51,52). However, because the ada gene is located close to
the chromosome terminus region, the gene is present at a
single gene copy until late in replication and therefore ex-
pected to show little expression variation over the cell cycle.
A stochastic model recapitulates single-cell
response dynamics after DNA damage treatment

In contrast to the gradual response induction suggested by
the numerical solution of the model (Fig. 1 D), single-cell
time-lapse imaging revealed significant heterogeneity in
ada expression after MMS exposure (18). Continuous treat-
ment with low concentrations of MMS (50–100 mM) caused
stochastic pulses of Ada expression but did not sustain the
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conversion of Ada to the meAda transcription activator
(Fig. 2 B). Because the pulses are rare, the cell-average
expression is close to the low average value predicted by
the deterministic version of the model (gray curves in
Fig. 2, B–D). Intermediate MMS concentrations (200–
350 mM) resulted in a persistent Ada induction once the
response was activated, but activation times were extremely
broadly distributed across cells (Fig. 2 C). Delays of more
than 20 generations were frequently observed, a time in
which a single cell can grow into a colony of millions.
Therefore, the slow induction of Ada expression seen in
the bulk-average curves (Fig. 1 C) is caused by a gradual in-
crease in the proportion of induced cells over time. Even at
high MMS concentrations (>500 mM), activation times
differed by multiple generations between cells (Fig. 2 D).
Contrary to response activation, removal of MMS caused
all cells to switch off the adaptive response uniformly
(Fig. 2 C). Residual heterogeneity in the response deactiva-
tion times between cells was similar for different MMS
concentrations, consistent with the simple model of deacti-
vation by dilution (Fig. S2).

I tested whether the proposed model could explain aspects
of the observed cell-to-cell variation. Importantly, the micro-
fluidic imaging system ensures that cells grow under constant
identical conditions, such that any heterogeneity can be
attributed to stochastic processes intrinsic to each cell. I hy-
pothesized that incorporating the discrete nature of molecule
numbers and probabilistic reaction kinetics into the model
could account for the stochastic response dynamics. This hy-
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pothesis was driven by the fact that Poisson fluctuations are
especially pronounced for low numbers of molecules as
measured for Ada. Moreover, the positive feedback loop of
Ada can amplify any initial fluctuations (53).

Stochastic simulations provide a general approach for
generating single-cell trajectories that can be directly
compared to experimental data (54). To this end, I expressed
the model equations as unimolecular or bimolecular
elementary reactions and used Gillespie’s algorithm (45)
to create probabilistically exact realizations of the proposed
model. I used the same parameter values as for the determin-
istic model. Remarkably, simulated trajectories closely
resembled the complex dynamics of the adaptive response
in single cells over the whole range of MMS concentrations
used in the experiments (Fig. 2). In particular, simulations
reproduced the random Ada expression bursts at low
MMS as well as the stochastic activation followed by sus-
tained Ada expression at high MMS concentrations. Simu-
lated cell traces also showed uniform deactivation of Ada
expression after MMS removal. Importantly, no additional
features or noise terms had to be added to the model to
achieve these features.
Poisson noise in basal Ada expression dictates
stochastic response delays

For a quantitative comparison of experiments and model
simulations, I evaluated the distribution of delay times be-
tween the addition of MMS and the first activation of the
5 6
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FIGURE 3 Gene expression noise randomizes the

activation of the adaptive response. (A) Response

activation time distributions are shown. Cumulative

distributions show the percentage of cells that acti-

vated the adaptive response after MMS exposure.

The activation time corresponds to the time when

Ada levels crossed a threshold of 23 molecules per

cell (a threshold close to the experimental detection

limit). The experimentally measured distributions

from time-lapse microscopy include between 59

and 149 cells for each MMS concentration (left).

Model results are from 1000 independent Gillespie

simulations for each MMS concentration (right).

Identical data analysis was performed for simulated

and experimental cell trajectories. (B) Shown is the

average delay time between MMS addition and the

generation of the first meAda molecule from 1000

simulated trajectories, conditional on the initial

number of Ada molecules at the time of MMS addi-

tion. The red curve is for cells that initially had zero

Ada molecules, the dotted black line is for one Ada

molecule, the dashed black line is for two Ada mol-

ecules, and the solid black line is for more than two

Ada molecules. The average waiting time between

basal expression events is shown in gray. (C) Shown

is the simulated distribution of response delay times

after 2 mM MMS treatment for cells with initially

zero Ada molecules (red) or more than two Ada

molecules (gray). To see this figure in color, go

online.
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adaptive response in single cells (Fig. 3 A). The delay
time distributions from stochastic simulations of the
model closely resembled those from experiments. How-
ever, it is evident that the fluctuations in Ada expression
after response activation are larger in experiments than
in the simulated trajectories (Fig. 2). The additional vari-
ation likely reflects ‘‘extrinsic noise’’ (55) due to fluctua-
tions in factors that influence Ada expression but were not
included in the model, such as RNA polymerase and ribo-
some concentrations and variation in the length of the cell
cycle. Nevertheless, the close match of the simulated and
experimental delay time distributions shows that stochas-
ticity in the initial activation time of the response is not
influenced by such external noise sources but can be
solely attributed to basic Poisson fluctuations in ada
gene expression.

In particular, noise in the low basal expression of Ada is
responsible for a subpopulation of 20–30% of cells that do
1162 Biophysical Journal 117, 1156–1165, September 17, 2019
not contain any Ada molecules (18). These cells are thus un-
able to activate the autoregulatory adaptive response until
they produce at least one Ada molecule. For simulated
data, it is possible to calculate response delay times condi-
tional on the initial number of Ada molecules at the time
of MMS exposure. This analysis confirmed that the average
delay time between MMS addition and the production of the
first meAda molecule converges to zero with increasing
MMS concentration only for cells that initially contain
one or more Ada molecules (Fig. 3, B and C). But for cells
lacking any Ada molecules, the average delay time ap-
proaches a limit defined by the average waiting time be-
tween stochastic basal expression events (Fig. 3, B and C).
In the model, the basal ada production is a zero-order reac-
tion with an MMS-independent rate constant. Thus,
response activation for cells without Ada molecules follows
a memoryless process with an exponential distribution of
delay times (Fig. 3 C), as seen in experiments (18).
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Testing the predictive power of the model using
experimental perturbations

The predictive power of the model was tested by compari-
son to experiments in which cells were subjected to pertur-
bations that alter the regulation of the adaptive response in a
defined manner (18) (Fig. 4, A and B). When cell division
was inhibited for 45 min using the antibiotic cephalexin
before MMS treatment, Ada molecules accumulate in fila-
mentous cells, and the activation of the adaptive response
becomes uniform in the population (18) (Fig. 4 C). In the
model, cell growth without division resulted in an exponen-
tial increase of cell area and an amplification of ada gene
copies over time. This, together with the lack of molecule
partitioning, was sufficient to generate a uniform response
in the simulations (Fig. 4 D). As an alternative perturbation
to reduce the number of cells with zero Ada molecules,
endogenous Ada-mYPet expression was supplemented
with a plasmid that is present at one to two copies per cell
and expresses ada from the PAda promoter. The slight over-
expression of Ada strongly reduced cell-to-cell variation
upon MMS treatment and eliminated the population of cells
with a delayed response in experiments (18). I modeled this
perturbation by duplicating the ada gene in the simulations
(Fig. 4 C). This alteration resulted in uniform response acti-
vation as seen in experiments (Fig. 4 C). However, the sim-
ulations generated higher Ada expression levels than
measured experimentally, likely because Ada overexpres-
sion is toxic in experiments (18).
Effect of cell growth rate on the response strength

The doubling time of E. coli in rich growth medium is
shorter than the time required to replicate the chromosome.
Cells achieve this by initiating new rounds of replication
before completion of the previous round (56). The early
duplication of genes close to the replication origin increases
their expression proportional to the replication initiation fre-
quency and thus counteracts the dilution of these proteins at
faster growth rates. The abundance of Ada, however, being
expressed from the ada gene at 49.7 min on the chromo-
some map in the vicinity of the terminus region, is expected
to drop with increasing growth rates (Fig. 5 A). I tested this
prediction experimentally by growing cells in minimal me-
dium supplemented with glucose or glycerol carbon sour-
ces, which resulted in generation times of 42 min or
75 min, respectively (Fig. 5 B). Indeed, a strong Ada
response occurred when slowly growing cells were treated
with 100 mM MMS, whereas faster growth did not sustain
a response at the same MMS concentration (Fig. 5 C).
This prediction can be tested by the model of the Ada
response. I fixed the Ada expression rate and gene copy
number while modifying the time between division events,
Biophysical Journal 117, 1156–1165, September 17, 2019 1163
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hence the molecule dilution rate. Simulations confirmed the
inverse relation between the growth rate and the strength of
the adaptive response (Fig. 5 D). This finding raises the
question whether natural fluctuations in growth rates also
modulate the adaptive response in a similar way. In the mi-
crofluidic chip, cell generation times varied over time and
between cells with a SD of 58 min per generation in M9
glucose medium. Indeed, slower growth correlated with
elevated Ada expression in single cells (Fig. S3).
DISCUSSION

The role of noise in the fidelity of DNA repair has been
investigated in eukaryotes, in which nucleotide excision
repair involves stochastic and reversible assembly of
repair factors into large complexes (57,58). Collective
rate control renders the overall repair pathway robust to
variation in the abundances of the individual components
(39). The situation is opposite for damage signaling by
Ada, which acts alone in the regulation of the adaptive
response and feedback amplification results in extreme
sensitivity to gene expression noise. Remarkably, it has
been shown that random variation in the abundance of
Ada by just a single molecule is responsible for separating
isogenic cells into distinct populations that either induced
or failed to induce the DNA damage response. This has
important consequences because the lack of a damage
response decreases survival and increases mutation in
those cells (17).

The adaptive response has been described as ‘‘a simple
regulon with complex features’’ (27). Instead of attempting
to incorporate all mechanistic details, the model described
in this article attempts to reduce the ada regulation to its
central features. For example, methylation of both Cys38
and Cys321 residues in the N- and C-terminal Ada domains
is required for optimal activation of the PAda promoter (48). I
found that a single effective methylation rate is sufficient to
reproduce experimental observations without the need to
distinguish between single or double methylation of Ada.
Another abstraction is that the amount of DNA damage
was not explicitly included in the model but rather absorbed
in a constant methylation rate that is proportional to the
MMS concentration. Nevertheless, it is expected that
methylation lesions initially accumulate during the adaptive
response delay. Subsequently, as Ada repair activity in-
creases, the number of lesions will decrease, effectively
generating a negative feedback loop. Although such a com-
bination of positive and negative feedback mechanisms
could generate a pulse of Ada expression (53), this has not
been observed in experiments. To test this scenario with a
model that incorporates DNA damage as a variable, future
studies could directly quantify the number of lesions and
the repair activity of Ada in vivo, as previously shown for
other enzymes involved in DNA alkylation repair (7). It is
also worth considering that the adaptive response interacts
1164 Biophysical Journal 117, 1156–1165, September 17, 2019
with other cellular responses and processes. For instance,
the alternative s factor RpoS induces Ada expression
upon entry into the stationary phase (27), whereas the
SOS response is crucial for initial survival of alkylation
damage and contributes to alkylation-induced mutagenesis
(17). Considering these simplifications, it is remarkable
that the most parsimonious model of the adaptive response
not only succeeds in quantitatively explaining a large spec-
trum of stochastic single-cell dynamics but also in predict-
ing the system’s behavior after different experimental
perturbations.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2019.08.009.
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