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Synopsis The search for the hereditary mechanisms underlying quantitative traits traditionally focused on the identi-

fication of underlying genomic polymorphisms such as single-nucleotide polymorphisms. It has now become clear that

epigenetic mechanisms, such as DNA methylation, can consistently alter gene expression over multiple generations. It is

unclear, however, if and how DNA methylation can stably be transferred from one generation to the next and can

thereby be a component of the heritable variation of a trait. In this study, we explore whether DNA methylation

responds to phenotypic selection using whole-genome and genome-wide bisulfite approaches. We assessed differential

erythrocyte DNA methylation patterns between extreme personality types in the Great Tit (Parus major). For this, we

used individuals from a four-generation artificial bi-directional selection experiment and siblings from eight F2 inter-

cross families. We find no differentially methylated sites when comparing the selected personality lines, providing no

evidence for the so-called epialleles associated with exploratory behavior. Using a pair-wise sibling design in the F2

intercrosses, we show that the genome-wide DNA methylation profiles of individuals are mainly explained by family

structure, indicating that the majority of variation in DNA methylation in CpG sites between individuals can be

explained by genetic differences. Although we found some candidates explaining behavioral differences between F2

siblings, we could not confirm this with a whole-genome approach, thereby confirming the absence of epialleles in these

F2 intercrosses. We conclude that while epigenetic variation may underlie phenotypic variation in behavioral traits, we

were not able to find evidence that DNA methylation can explain heritable variation in personality traits in Great Tits.

Introduction

Most quantitative traits, such as behavioral traits,

consist of both a considerable nonheritable environ-

mental component, and a part that is attributed to

heritable or so-called genetic effects (Benzer 1973;

Kearsey and Pooni 1996; Barton and Keightley

2002; Stirling et al. 2002). The search for the molec-

ular mechanisms underlying the heritable compo-

nent of these traits traditionally focused on the

identification of associations with underlying geno-

mic polymorphisms such as single-nucleotide

polymorphisms (SNPs) or other structural variants

(Sokolowski 2001; Boake et al. 2002). Although

many candidate genes were identified with often

small effects, most of these studies were able to ex-

plain just a fraction of the heritable variation in be-

havioral traits and the hereditary mechanisms still

largely remain unknown (Bell and Dochtermann

2015; Laine and van Oers 2017).

Exploratory behavior is a widely-used behavioral

trait (Hughes 1997) to measure the behavioral re-

sponse to a novel environment (NE), often studied
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in the context of animal personality (R�eale et al.

2007). Exploratory behavior is known to have a

moderately heritable component of on average 58%

(van Oers and Sinn 2013), but at the same time, it is

affected by early developmental factors (Carere et al.

2005; Krause and Naguib 2011; van Oers et al. 2015).

Large effort has been made to unravel the structural

genomic variation underlying the additive and non-

additive genetic component reflecting the heritable

component of exploratory behavior (van Oers and

Mueller 2010). Some associations of low effect size

with several SNPs within candidate genes have been

reported (Fidler et al. 2007; Timm et al. 2019; but

see e.g., Edwards et al. 2015), and genome-wide as-

sociation studies and quantitative trait locus studies

have revealed some regions of interest in the genome

(Santure et al. 2015; Kim et al. 2018), albeit without

showing any clear and consistent pattern (Crusio

et al. 2013; Laine and van Oers 2017). In conclusion,

the genomic structure underlying heritable variation

in exploratory behavior remains poorly understood.

Several reviews have suggested that apart from

structural variation in genes, also epigenetic mecha-

nisms may help us to fill this gap in our knowledge

on the inheritance of behavioral traits (Stamps and

Groothuis 2010; Groothuis and Trillmich 2011;

Trillmich and Hudson 2011). Epigenetic mechanisms

can be defined as those biochemical mechanisms that

stably alter gene expression by affecting either tran-

scription or translation without a single change in

the primary nucleotide sequence of the genome

(Richards 2006). In many organisms, epigenetic

mechanisms alter gene expression as a response to

a variety of internal and external factors (Law and

Jacobsen 2010). For example, DNA methylation lev-

els of cytosines in the context of CpG dinucleotides,

which are CG dinucleotides (5’-cytosine guanine-3’)

separated by a phosphate (p) group, one of the best

studied epigenetic mechanisms, have been shown to

change during the course of development under the

influence of DNA methyltransferases (Hashimshony

et al. 2003). These changes are directly affecting the

activity of specific genes that are suppressed or re-

pressed during different developmental stages. CpG

methylation has not only been found to predictably

vary over developmental stage, but may also change

due to environmental factors. The environment can,

on one hand, cause methylation changes during de-

velopment under influence of, for example nutrition,

early-life stress and stochastic processes during two

so-called sensitive periods, when after a global de-

methylation methylation is reestablished (Faulk and

Dolinoy 2011). Typically, these changes are often

long-lasting throughout an individual’s lifetime

(Faulk and Dolinoy 2011). On the other hand,

changes induced rhythmic through seasonally vary-

ing factors (Stevenson and Prendergast 2013;

Viitaniemi et al. 2019), where predictable changes

in the environment may cause repeatable DNA

methylation fluctuations throughout a lifetime.

However, such persistent changes in DNA methyla-

tion are most likely caused by epigenetic inheritance

in the broad sense, which is the inheritance of de-

velopmental variation throughout mitotic cell-

division within an organism (Jablonka and Raz

2009).

Much less is known on whether between-

individual variation in DNA methylation can be a

target for natural selection itself (Ledon-Rettig et

al. 2012; Verhoeven et al. 2016; Hu and Barrett

2017). More specifically, the hypothesis that DNA

methylation can be stably inherited via the germline

to next generations (inheritance in the narrow sence)

would allow for DNA methylation to be selected on

and hence impact evolutionary processes (Heard and

Martienssen 2014; Bo�skovi�c and Rando 2018).

Examples of the existence of such eppi-alleles are

mainly found in plants (Heard and Martienssen

2014) and in wild vertebrates, few studies have pro-

vided only indirect evidence that DNA methylation

might be under natural selection. In Darwin’s

Finches, DNA methylation has been shown to accu-

mulate during speciation, while the phylogenetic dis-

tance was unrelated to genetic variation in the form

of the number of copy number variant mutations

(Skinner et al. 2014). In Great Tits (Parus major),

genes in genomic regions with signals of positive

selection, so-called selective sweep regions, were

found to have higher levels of CpG methylation

and lower non-CpG methylation compared to genes

that were outside of these selective sweep regions

(Laine et al. 2016). This points to the possibility

that methylation variation is affected by past selec-

tion. However, an alternative explanation is that epi-

genetic variation only facilitates genetic selection or

that selection is acting on genetic variants that in

their case affect methylation (Verhoeven et al. 2016).

In order to test if a part of the heritable variation

in a quantitative behavioral trait, such as exploratory

behavior, could be explained by the transgenerational

inheritance of stable epigenetic variation, we here

investigated the correlated response of erythrocyte

DNA methylation to artificial phenotypic selection

on early exploratory behavior (EEB), a validated per-

sonality trait in a European songbird, the Great Tit

(P. major). DNA methylation in the Great Tit ge-

nome is known to show a typical pattern known

for vertebrates (Laine et al. 2016). Methylation levels
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are relatively high in intergenic regions, with percen-

tages reaching around 50. Close to transcription start

sites (TSSs) of genes, the methylation levels in CpGs

drop, to rise again after the TSS, where gene body

(introns and exons) percentages reach comparable

levels to intergenic regions. This hypomethylation

around the TSS is associated with the presence of

so-called CpG-islands (CGIs), CG-rich areas with

promotor regions of genes. We have shown before

that in Great Tits, levels of DNA methylation in red

blood cells, as we used here, are highly correlated

(�0.8) to methylation levels in brain (Derks et al.

2016).

We assessed whole-genome differential methyla-

tion patterns between pools of individuals from a

four-generation artificial bi-directional selection ex-

periment and between siblings with extreme person-

ality phenotypes originating from eight F2 intercross

families using a combination of reduced representa-

tion bisulfite sequencing (RRBS) and whole-genome

bisulfite sequencing (WGBS) methods, validated for

P. major (Derks et al. 2016; Laine et al. 2016;

M€akinen et al. 2019). We identified differential

CpG methylation in several CpGs in one candidate

gene, DRD4 in a former study using pyrosequencing,

suggesting that epigenetic expression regulation is

partly heritable (Verhulst et al. 2016). We, therefore,

predicted that due to selection on exploratory behav-

ior, founder effects and drift, genetic differences may

have accumulated in DNA methylation between the

two lines. By using the intra-family comparison be-

tween extreme phenotypes in the F2 cross, we expect

to only detect those differentially methylated CpGs

(DMC) that are due to artificial selection, which is

expected to be a subset of the differences between

the lines. By using RRBS on a subset of CpG sites on

an individual level, we were able to focus on indi-

vidual level differences of fewer, but functionally rel-

evant CpGs.

We find no differentially methylated sites when

comparing the selected personality lines, providing

no evidence for so-called epialleles. Using a pair-

wise individual sibling design in the F2 intercrosses,

we show that genome-wide DNA methylation pro-

files of individuals are mainly explained by family

structure, indicating that the majority of variation

in DNA methylation in CpG sites between individu-

als can be explained by genetic differences or less

likely, due to stable transgenerationally inherited

methylation patterns. Although we found some can-

didate CpGs explaining behavioral differences be-

tween siblings in these F2 intercrosses, we conclude

that while epigenetic variation may be heritable and

underly phenotypic variation in behavioral traits, we

did not find evidence that selection on exploratory

behavior had consequences for co-selection on DNA

methylation. Therefore, we conclude here that vari-

ation in DNA methylation cannot explain heritable

variation in personality traits in Great Tits.

Material and methods

Study population

The Great Tit (P. major) is a very common passerine

bird species, inhabiting all types of wooded areas

throughout Europa, Asia, and parts of Northern

Africa. Birds used in this study originated from an

artificial selection experiment on exploratory behav-

ior (Drent et al. 2003; van Oers et al. 2014). In brief,

for the parental generation, nestlings of 10 days old

were collected from natural nests and transferred to

the aviary facilities of the Netherlands Institute of

Ecology (NIOO-KNAW), The Netherlands. These

nestlings were hand raised until independence and

tested for a combination of two behavioral tests be-

tween 1 and 2 months after hatching. A NE test,

where a bird was allowed to explore a novel room

of 2� 4� 2.5 m in which five artificial trees were

placed and two novel object (NO) tests, in which a

Pink Panther model and a penlight battery were in-

troduced in the home cage of the bird. The NE test

resulted in a score between 0 and 10, where a score

of 10 was given to birds that visited four out of five

trees within 1 min after entering the room and a

score of 0 if they did not >3 trees within 10 min.

For each NO test, a bird could gain a maximum of

five when the bird pecked the NO, resulting in a

maximum score of 10 for the two NO tests together.

This sums-up to a score between 0 and 20 for EEB.

Birds from the parental generation were selected for

fast (high scores; fast exploring [FE]) or slow (low

scores; slow exploring [SE]) EEB by pairing up males

and females with either high or low scores, taking

into account family relationships. They were housed

in pairs in half-open aviaries to produce first-

generation (F1) eggs. To minimize pre- and post-

hatching non-genetic maternal effects, eggs were

transferred to a nest in a natural population, where

they hatched. To match rearing conditions for the

two selection lines (SELs), chicks were cross-fostered

one day after hatching, in such a way that half of a

slow brood were raised together with half of a fast

brood. Foster nests were chosen based on their tim-

ing of incubation without taking parental character-

istics into account. Ten days after hatching, the

nestlings were then brought to the NIOO-KNAW

facilities for standardized hand rearing. This proce-

dure was repeated for four generations (F4) resulting
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in bidirectional SELs (see Drent et al. [2003] for

details). Males and females from the F4 were subse-

quently crossed by pairing them with partners from

the other SEL producing reciprocal F1-intercross

(F1C) offspring using the same procedure as de-

scribed above, where all F1C individuals are expected

to be heterozygous at relevant loci (Lynch and Walsh

1998). Twenty F1C Females were then randomly

chosen to produce an F2-intercross generation

(F2C; see van Oers et al. 2014 for details), where

all the relevant loci are expected to segregate out.

EEB has a realized heritability of 54%, calculated

from this selection experiment (Drent et al. 2003).

Heritability estimates of exploratory score range

from 0.22 to 0.61 in our wild population

(Dingemanse et al. 2002).

We used two different genetic groups of birds for

this study to create three datasets. As first genetic

group for the first dataset, we used six unrelated

FE and six unrelated SE individuals originating

from the F4 of the EEB SELs. For both SE and FE,

we pooled DNA of three males and three females to

produce an SE (SE-SEL) and an FE pool (FE-SEL),

respectively, for WGBS. The second genetic group,

F2C, was used for two datasets. From eight F2C

families, we chose the most extreme FE bird (�xEEB

¼ 15; range 14–17; FE-IND) and the most extreme

SE bird (�x EEB¼ 1; range 0–5; SE-IND) per family for

RRBS sequencing using 16 individual libraries (see

below). As a second dataset for this genetic group,

we randomly selected six out of these 8 F2C families

(12 individuals) for creating DNA pools to produce

an FE-F2C and an SE-F2C pool for WGBS (see be-

low), each consisting of six F2C individuals. For this,

small blood samples (10mL) that were previously

collected by puncturing the jugular vein were used

that were stored in 1 mL Cell Lysis Buffer (Gentra

Puregene Kit, Qiagen, USA) until analysis. DNA was

extracted from 250mL whole blood solution, using a

Gentra Puregene Kit (Qiagen, USA) following the

manufacturer’s protocol and concentration was de-

termined using a Nanodrop 2000 (ThermoThermo

Scientific, USA). DNA was stored in DNA

Hydratation Solution (Qiagen, USA). By running

1.5mL on a 1% agarose gel together with a size lad-

der, the integrity of the DNA was verified.

WGBS

Bisulfite sequencing library preparation and sequencing

We conducted WGBS on pools of both SEL (FE-SEL

and SE-SEL) and F2C-FAM (FE-F2C and SE-F2C).

For WGBS, detailed sequencing methods are de-

scribed in Derks et al. (2016). In brief, DNA of the

four pools of samples (FE-SEL, SE-SEL, FE-F2C, and

SE-F2C) was sheared using a Covaris E210 device to

�700 bp peak fragment sizes. One microgram of

sheared and purified DNA was used together with

1 ng sheared Lambda DNA according to the Illumina

TruSeq LT DNA sample preparation guide. After

this, adapter ligated DNA was purified using

AmpureXP beads (Agencourt) and bisulfite con-

verted using the EpiTect Plus Bisulfite Kit

(Qiagen). Converted DNA was purified and split

over three parallel reactions using Pfu Cx hotstart

DNA polymerase (Agilent Technologies) and 18

PCR cycles. PCR products were pooled and final li-

braries were quantified using a Bio analyzer DNA

1000 chip (Agilent Technologies). WGBS libraries

were sequenced on an Illumina HiSeq2500 at

Wageningen University & Research Next-

Generation Sequencing facilities. Phix, together

with Illumina adapter sequences, were removed after

sequencing by the sequencing facility. FE-SEL, SE-

SEL, FE-F2C, and SE-F2C libraries generated 145 M

(36 Gb), 201 M (50 Gb), 203 M (50 Gb), and 192 M

(48 Gb) paired-end (125 bp) reads, respectively, cor-

responding to an average coverage of 6.6�, 13.9�,

14.9�, and 17.9�, respectively, for CpG sites in the

four WGBS data sets (Supplementary Table S1).

Quality control, trimming, and filtering of raw reads

Sequencing quality of WGBS read libraries was

inspected using FastQC version 0.11.8 (Andrews

2010). FastQ screen version 0.11.1 (Wingett and

Andrews 2018) in bisulfite mode was used to detect

possible contaminations caused by sampling and se-

quencing, to check read coverage, ATCG content,

Ncontent, and adapter content. Premade index data-

bases were used to check for contamination, including

vectors (UniVec Core), FastQC adapters (Andrews

2010), Phix (Coliphage phi-X174, complete genome),

Escherichia coli (E. coli str. K-12 substr. MG1655, com-

plete genome), Homo sapiens (Genome Reference

Consortium Human Build 38), and Arabidopsis thali-

ana (A. thaliana (thale cress), TAIR10). A P. major

index was created using the reference genome version

1.1 (NCBI Assembly GCA_001522545.3; Laine et al.

2016) to confirm presence of P. major sequences.

Contents of contamination levels lower than 3%

were considered as absent. Multiqc version 1.7

(Ewels et al. 2016) was used to summarize the results

of FastQC and FastQ screen.

Trimming and filtering were performed using

Trimmomatic version 0.39 (Bolger et al. 2014).

Read quality was improved by removing the first

five base pairs (bp) at the start of the reads, since

bisulfite conversion is less efficient there. Reads were
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filtered and trimmed for a minimum base quality of

20 Phred at the start and end of a read, a sliding

window of 4 bp with average quality> 20 Phred, an

overall average quality> 20 Phred and at last mini-

mum read length of 40 bp. For adapter clipping,

Trimmomatic was used with the adapter database

(Data from March 30, 2017; Andrews 2010) using

settings: Illuminaclip: FILE : 2:30:10. Efficiency of

read trimming and filtering was confirmed by

FastQC, FastQ screen and Multiqc for all WGBS li-

braries (Supplementary Fig. S1).

Alignment, deduplication, and methylation calling

Reads were aligned to the reference genome using

BS-Seeker2 version 2.1.8 (Guo et al. 2013) using

the aligner Bowtie2 version 2.3.5 and gcc version

7.3.0 (Langmead and Salzberg 2012). An index of

the P. major reference genome version 1.1 (Laine

et al. 2016) was created using bs_seeker2-build.py.

WGBS datasets suffer from duplication trough

PCR duplicates. We conducted deduplication from

PCR duplicates using samtools 1.9 (htslib 1.9).

BAM files were name sorted (sort -n), mate fixed

(fixmate -r -m), position sorted (sort), and duplica-

tion marked and removed (markdup -r).

Methylation calling was done using CGmapTools

(Guo et al. 2018) on the bam file, which was sorted

with samtools sort. As settings we used convert

bam2cgmap, P. major reference genome 1.1 and

the rmOverlap setting to remove possible overlap

due to paired end sequencing.

Filtering, differential methylation analyses, and

visualization

Differentially methylated site analysis was performed

in multiple steps using R version 3.6.1 (R Core Team

2018). We filtered for CpG sites using the CGmap

function of CgmapTools. CpG sites were filtered for

10� minimum coverage and if a site was completely

unmethylated or methylated (0% or 100%) for all

pools, the site was removed. After inspection of plots

between coverage and significance, we detected a

strong association between coverage and differential

methylation: sites with high coverage showed a larger

chance of having significant differential methylation.

We considered this a technical artefact and to avoid

this coverage issue, we ranked the sites according to

their coverage and the 99.9% sites with the lowest

coverage were retained. The final datasets consisted

of only those CpG sites that were present after fil-

tering in both the FE-pool and SE-pool in the SEL

(1,521,921 CpGs) as well as in the F2C

(4,963,579 CpGs) comparison.

The significance of differential methylation for

each of the individual C in a CpG site for the

WGBS data sets (SE-SEL, FE-SEL, SE-F2C, and FE-

F2C) was calculated using a Generalized Linear

Model. As a dependent variable, we used the cbind

function to create a response variable with C’s

(methylated Cs; successes) and Ts (unmethylated

Cs; failures) combined, and we included Line (SE

or FE) as fixed variable using a binomial error struc-

ture and a logit link function.

Sites with singularity or with converge warnings

were omitted. Throughout we conducted a multiple-

testing correction using genome-wide Bonferroni

thresholds: 10log(0.05/1,521,921) ¼ 7.48 for the FE-

SEL vs. SE-SEL comparison and 10log(0.05/6.5M)

¼ 8.00 for the FE-F2C vs. SE-F2C comparison, and

a minimum methylation ratio difference of 10% was

used as threshold.

RRBS

Bisulfite sequencing library preparation and sequencing

We conducted RRBS on all 16 individuals originating

from 8 F2C families individually (FE-IND and SE-

IND). For this, high-quality DNA (1mg) of the 16

F2C individuals was used by the Roy J. Carver

Biotechnology Center (University of Illinois, Urbana,

USA) for generation of RRBS libraries following stan-

dard protocols. Using the restriction enzyme MSpI,

DNA was digested, and the resulting fragments were

size selected to a range between 20 and 200 bp using

manual cutting after agarose gel electrophoresis. Size

selected DNA was column-purified after it was

bisulfite-converted using the EpiTect Bisulfite Kit

(Qiagen). Libraries were quantified using Qubit (Life

Technologies, USA) and size-analyzed using am

Agilent Bioanalyzer DNA7500 DNA chip (Agilent

Technologies, USA) and diluted to 10 nM. To ensure

high accuracy quantification for consistent pooling of

barcoded libraries and maximization of the number

of clusters in the Illumina flow cell, dilution was fur-

ther quantitated by qPCR on an ABI 1900. The 16

libraries were sequenced single-end (100 bp) on 2

Illumina HiSeq2500 lanes using a HiSeqSBS sequenc-

ing kit version 4 in such a way that the families and

SE and FE were balanced over lanes to avoid lane

effects, yielding on average 18 M reads per individual

(Supplementary Table S1). Reads were demultiplexed

after sequencing using bcl2fastq version 2.17.1.14

(Illumina). RRBS libraries were quality-checked by

the Roy J. Carver Biotechnology Center and they

trimmed adapters from the raw reads. No further

trimming or filtering was needed.
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Alignment of reads to reference genome and

methylation calling

Reads were aligned to reference genome using BS-

Seeker2 version 2.1.8 (Guo et al. 2013) using the

aligner Bowtie2 version 2.3.5 and gcc version 7.3.0

(Langmead and Salzberg 2012). An RRBS index of

the P. major reference genome version 1.1 (Laine

et al. 2016) was created using bs_seeker2-build.py.

Methylation calling was done using CGmapTools

(Guo et al. 2018) on the bam file, which was sorted

with samtools sort with convert bam2cgmap using

the P. major reference genome 1.1.

Filtering, differential methylation analyses

Differentially methylated site analysis was performed

in multiple steps using R version 3.6.1 (R Core Team

2018). We filtered for CG sites using the CGmap

function of CGmapTools. CpG sites were filtered for

10x minimum coverage and if a site was completely

unmethylated or methylated (0% or 100%) for all

individuals, the site was removed. To avoid coverage

issues with the analysis, the sites were ranked accord-

ing to their coverage and the 99.9% sites with the

lowest coverage were retained. Only those sites that

were present in at least 7 families and that were pre-

sent in at least 14 out 16 individuals were used for the

differential methylation analysis (233,198 CpGs).

Differential methylation for each C in a CpG site

was calculated using Generalized Linear Mixed

Model (GLMM) with lme4 version 1.1-21 (Bates

et al. 2015) with cbind (C, T) as dependent variable,

and personality (FE or SE) as fixed variable using a

binomial error structure and a logit function. Family

was included as a random factor to account for the

fact that SE and FE consisted of two matched birds

from the same family. Modeling was done multi-

threaded using mclapply.

A dispersion parameter (k) was calculated for RRBS

using the residuals of the individual GLMMs as the

ratio of the variance (sum of residuals) divided by two

times the number of fixed and random effects. We

removed sites that fell outside of the 95% Highest

Posterior Density interval (Supplementary Fig. S5).

Sites with singularity or with converge warnings were

omitted. Throughout we conducted a multiple-testing

correction using a genomewide Bonferroni threshold

of �10log(0.05/233,198) ¼ 6.67 and a minimum meth-

ylation ratio difference of 10% was used as threshold.

Visualization and downstream analysis

The dendrogram of the F2C individuals with the

ward.d cluster method and pearson distance and

the Principal Component Analysis (PCA) plot were

made using Methylkit version 1.15.3 (Akalin et al.

2012). Plots of coverage against significance and

overdispersion correction were generated using

ggplot2 version 3.2.1 (Wickham 2016). Genomewide

manhattan plots and QQ plots of differentially meth-

ylated sites were generated using qqman version 0.1.4

(Turner 2018). Volcano plots were made using the

plot function.

Significant sites were linked with genomic features

using rtracklayer version 1.44.2 (Lawrence et al.

2009) and GenomicFeatures version 1.36.4

(Lawrence et al. 2013) making use of the P. major

reference genome 1.1 annotation ID 102. Features

used in the analysis were defined as promoter region

(2 K upstream of the gene start and 200 in length),

TSS region (300 upstream of the TSS and 50 in

length), Genes, Upstream (region 10 K bp from the

transcription termination site) and Downstream (re-

gion 10 K bp downstream of the TSS). Gene infor-

mation related to the differentially methylated sites

was retrieved from NCBI Assembly, Genome and

Gene (Kitts et al. 2016). Gene information from

ensemble.org and European Molecular Biology

Laboratory (EMBL) P. major (Madeira et al. 2019)

provided insight in functionality of genes and asso-

ciated proteins.
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pository under SRX9131258, SRX9131259,

SRX9131260, SRX9131264, SRX9131265, SRX9131270,

SRX9131271, SRX1634690 (FE-IND), six of which

SRX9131258, SRX9131259, SRX9131260, SRX9131265,

SRX9131270, SRX9131271 were used for the FE-F2C

WGBS pool (SRA repository SRX9157550). The indi-

vidual RRBS libraries of the eight slow F2 cross birds

(SE-IND) are available in te SRA repository under

SRX9131261, SRX9131262, SRX9131263, SRX9131266,

SRX9131267, SRX9131268, SRX9131269, SRX1634950,

six of which SRX9131261, SRX9131263, SRX9131266,

SRX9131268, SRX9131269, SRX1634950 were used for

the SE-F2C WGBS pool (SRA repository SRX9157551).

The FE-EEB WGBS and SE-EEB WGBS pools are
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available under SRX9157552 and SRX9157553,

respectively.

Results

WGBS

We performed WGBS in pooled DNA samples de-

rived from whole blood of birds originating from

fast (FE-SEL) and slow selection lines (SE-SEL) on

exploratory behavior, and in pooled samples of ex-

treme phenotypes originating from their F2 inter-

crosses (FE-F2C and SE-F2C). Average mappability

to the Great Tit reference genome 1.1 of the four

WGBS libraries was 59.74% (Supplementary Table

S1). After filtering for 10� coverage and percentile

filtering a total of 2.02 million CpGs (13.6% of the

total number of CpGs in the genome) were covered

for the FE-SEL vs SE-SEL comparison and 6.45 mil-

lion (43.5%) for the FE-F2C vs. SE-F2C comparison

(Supplementary Table S1).

When assessing sites that were differentially meth-

ylated among the pools, we found that both for the

comparison between the fast and SEL (FE-SEL and

SE-SEL) and for the within-family comparison be-

tween extreme F2C phenotypes (FE-F2C and SE-

F2C) no CpG was significantly differentially methyl-

ated after Bonferroni correction (Figs. 1 and 2), in-

dicating an absence of a response to selection on

DNA methylation. When combining the two datasets

to explore the correlation between significance values

of the differential methylation analyses of

1,382,302 CpGs that were present in the SEL and

the F2C datasets, we found one CpG that

approached significance in both analyses

(Supplementary Fig. S7a). One site has borderline

significance in both the differential methylation anal-

yses of SEL (�log10(p) ¼ 5.36 and the differential

methylation analyses of F2C (�log10(p) ¼ 7.24). It

is situated in the gene body of RNA polymerase II

subunit C (POLR2C).

RRBS

We performed RRBS on individual DNA samples of

birds originating from the fastest (FE-IND) and

slowest (SE-IND) bird within eight families originat-

ing from the F2 intercross. On average, 650,489

(range 509,029–735,704) CpG sites were covered af-

ter filtering (Supplementary Table S2).

The average methylation percentage for the 16

RRBS samples was 15.97 (range 14.38–16.93).

When clustering the F2C individuals based on their

similarity in overall methylation profile, we found

that they strongly clustered based on family

(Supplementary Fig. S2), suggesting that most

variation in their genome-wide methylation profile

has a genetically inherited basis. There was no gen-

eral clustering based on exploratory phenotype, and

F2C-FE and F2C-SE birds did not differ in their

average methylation percentage (mean 6 SEM;

F2C-FE: 15.95 6 0.29; F2C-SE: 15.99 6 0.33; F1,14

¼ 0.001; P ¼ 0.94) . A PCA analysis did not show

any obvious clustering for either family or explor-

atory type (Supplementary Fig. S3).

When comparing extreme fast F2C individuals

with extreme slow F2C individuals, we found seven

DMC with �log10(p) > 6.67 and the difference in

methylation between FE and SE> 0.10 (Table 1).

Five of these CpGs had higher methylation levels

in the SE-F2C birds and two showed higher methyl-

ation levels in FE-F2C. Six out of these seven sites

were situated in annotated genes, of which three

were situated in gene bodies. One CpG on chromo-

some 4 was situated in an intron of LPS-responsive

beige-like anchor (LRBA) protein and two CpGs

were situated 17 bp apart in the last exon of sema-

phorin 7 A (John Milton Hagen blood group;

SEMA7A) on chromosome 10. Three significant

DMC were situated in the promotor regions of

genes. One CpG was found in the TSS of

Mitochondrial rRNA methyltransferase 1 (MRM1)

on chromosome 19, one in the promotor of

LOC107214669 on chromosome 25LG2, identified

as the scale keratin-like gene at OrthoDB.org v10.1,

a bird- and reptile-specific gene and one in the pro-

motor of strawberry notch homolog 2 (SBNO2).

There was no correlation between significance values

of the differential methylation analyses of 80,300

CpGs that were present in the RRBS and the

WGBS F2C data sets (Supplementary Fig. S7b).

Discussion

Here, we have used whole-genome DNA methylation

profiling in blood tissue of lines selected for four

generations on fast or slow exploratory behavior

and their F2 intercross and did not find evidence

for the presence of correlated selection on CpG

methylation marks. We did not find any differen-

tially methylated site between WGBS pools of six

unrelated birds from the fast and slow lines, nor

did we find any CpG to be differentially methylated

when comparing WGBS pools of two family mem-

bers with extreme exploratory phenotypes of the F2

intercross between the fast and the slow line using

WGBS. When conducting a differential methylation

analysis on a reduced set of CpGs on an individual

level using RRBS, we did find some interesting
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Fig. 1 Manhattan plots visualizing the significance of differential methylation of individual CpG sites against the physical P. major genome

position per chromosome. �log10(P) values were calculated from a generalized mixed model with the number of methylated C’s over

the number of unmethylated C’s (binary logistic) as dependent variable for the difference between pools of birds originating from (A)

the fourth generation of selection for fast and slow exploratory behavior (FE-SEL and SE-SEL), (B) six extreme slow (SE-F2C) and fast

(FE-F2C) phenotypes from F2 intercross families between these lines, and (C) from a binary logistic generalized linear model calculating

differential methylation between 16 F2 intercross individuals with extreme phenotypes from eight families. Critical Bonferroni cor-

rected �log10(p) values are indicated by a horizontal line and genome-wide significant CpG sites are depicted in green.
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Fig. 2 Volcano plots visualizing the difference in DNA methylation between the WGBS pools against the significance derived from the

differential methylation analysis for (A) pools of five individuals originating from the fourth generation of selection for fast and slow

exploratory behavior (FE-SEL and SE-SEL), (B) pools of six extreme slow (SE-F2C) and six fast (FE-F2C) phenotypes from six F2

intercross families between these lines, and (C) from a binary logistic generalized linear model calculating differential methylation

between 16 F2 intercross individuals with extreme phenotypes from eight families. Methylation differences per site were calculated by

subtracting the methylation ratio for SE from site ratios from the FE samples per site. Positive values, therefore, indicate higher

methylation levels for FE samples. In the F2C-IND dataset the difference per site was calculated from the mean methylation levels over

all samples, subtracting the methylation ratio for SE from site ratios from the FE samples per site. Positive values therefore indicate

higher methylation levels for FE samples.

Epigenetics of animal personality 1525



candidate CpGs. These candidates did not overlap

with the whole-genome WGBS analysis.

This result adds to the studies that fail to find

evidence for transgenerational epigenetic inheritance

of the so-called epialleles in birds (Guerrero-Bosagna

et al. 2018) that in part can likely be explained by

the lack of genomic imprinting in birds (Fr�esard

et al. 2014; Zhuo et al. 2017). In fact, in general,

these stable CpGs with a Mendelian inheritance are

mainly known from plants and some invertebrates

(Heard and Martienssen 2014), where silent and ac-

tive alleles of a given gene may coexist and segregate

in a Mendelian manner during meiosis (Bo�skovi�c
and Rando 2018). Up to date, only one clear exam-

ple exists in vertebrates of such epialleles, namely the

agouti (A) gene model in mice, where different phe-

notypes produce offspring of similar coat colour

without the presence of genetic variation for coat

colour (Daxinger and Whitelaw 2012). However,

since we here lack data from the P until the fourth

generation, we were unable to actually track CpG

methylation throughout the selection process.

Alternative reasons for the lack of a correlated

response of CpG variation to artificial selection on

exploratory behavior, might be because we have con-

ducted only four generations of artificial selected for

exploratory behavior. These four generations might

not have been enough to fully fixate methylation

differences between the lines associated with explor-

atory behavior. However, since we were able to ob-

serve ample genetic diversity between individuals

after four generations (Laine et al. unpublished

data), we assume that any co-selection on transge-

nerational inherited methylation would also be de-

tectable. In an analysis on methylation differences

between two red junglefowl lines, selected for diver-

gent levels of fear for humans over five generations,

several differences were found in hypothalamic DNA

methylation between the lines (Belteky et al. 2018).

Two differences in appraoch between the studies

could explain the dissimilar findings with ours.

First, instead of a CpG-based analysis, methylated

DNA immunoprecipitation was used, analyzing 1-

kb regions on global methylation differences.

Second, where we have sequenced erythrocyte meth-

ylation, where genetic differences might be more ap-

parent in other tissues such as brain tissue. In Great

Tits, we have found in an earlier study that methyl-

ation differences between tissues are especially apper-

ent for genes that are expressed in a tissue-specific

way (Derks et al. 2016). So, where induced levels of

DNA methylation in blood maybe a good biomarker

of induced levels in other tissues, stably inherited

methylation marks might be tissue specific. In our

study on methylation differences in DRD4, however,

we found a difference between the lines both in

blood as well as in brain tissue (Verhulst et al. 2016).

Alternatively, there are several reasons why we

could have missed potential CpGs. First of all, we

have conducted our study on only a limited number

of samples and libraries. By using pooled samples for

WGBS we, on one hand, dilute any between family

variation in the SEL samples and even corrected for

that in the F2 inter-cross samples, on the other hand,

we might not pick up any subtle differences that are

only present in some of these families. We also show

that by taking a WGBS approach, likely many CpG

sites are taken into consideration that may not be

relevant for this analysis, such as intergenic CpGs,

although they could be relevant for transposable el-

ement methylation of CpG island methylation in

other contexts (Derks et al. 2016). Another reason

is that due to our strict correction for the number of

tests we conducted, type II errors can be expected

(failure to recognize differentially methylated sites as

significant). Since we expected an association be-

tween the differences in methylation between the

two SEL libraries and the two F2C libraries, we ex-

plored this correlation. We only found one CpG site

that was consistently close to significance in both the

Table 1 The CpG sites that are differentially methylated between eight fast individuals and eight slow individuals from eight F2C

families

Chr Chr Genbank Position P-value 2log10(P) Meth.diff (%) Feature Gene

4 NC_031771.1 10,648,394 1.37E-07 6.86 �27.88 Gene body LRBA

5 NC_031774.1 54,093,387 9.74E-09 8.01 32.13 – –

10 NC_031779.1 1,734,466 2.43E-08 7.62 �30.29 Gene body SEMA7A

10 NC_031779.1 1,734,483 1.54E-07 6.81 �27.71 Gene body SEMA7A

19 NC_031787.1 8,103,120 5.14E-08 7.29 18.57 TSS MRM1

25LG2 NC_031794.1 166.118 4.79E-08 7.92 �29.71 Promotor LOC107214669

28 NC_031797.1 3,222,562 1.48E-09 8.83 �36.00 Promotor SBNO2

Methylation difference is calculated as FE–SE. Positive values, therefore, indicate hypermethylation in fast individuals.
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SEL analyses and the F2 intercross WGBS. This indi-

cates that if we missed any sites in our WGBS anal-

ysis on the SELs, they are likely not present in the F2

intercrosses and therefore likely caused by drift or

founder effects. However, future analyses including

individual-based data should give more power to

detect potential sites. Another reason could be that

we could have lower epigenetic variation in our cap-

tive population compared to a wild population. A

meta-analysis showed, however, that genetic varia-

tion in personality traits is not higher under con-

trolled lab experiments (h2¼ 0.24) compared to

wild populations (h2¼ 0.36) (van Oers and Sinn

2013).

We did find seven differentially methylated sites in

the RRBS analysis on the fast and slow F2 intercross

individuals, and we were able to annotate six out of

these seven DMC in genes. We found a DMC near

the transcription termination site of one of the

genes, MRM1, which is present in mitochondrial

RNA granules and responsible for methylation of

16S mt-rRNA (Van Haute et al. 2015). Two other

CpG’s were present in promotor regions of genes.

The first is an interesting candidate to explain phe-

notypic differences in exploratory behavior and was

identified as the scale keratin-like gene, a bird- and

reptile-specific gene responsible for the structural

constituent of the cytoskeleton. For example, in a

genomic comparison between African and

European chicken (Gallus gallus), a group of negh-

boring scale keratine-like genes was found to be un-

der strong selection in relation to environmentally

induced stress tolerance (Fleming et al. 2017), a

likely component of exploratory behavior (Baugh

et al. 2017). A second DMC in a promotor region

was found in SBNO2. Three other significant differ-

entially methylated sites were found in gene bodies.

Two of which were in close proximity in semaphorin

7 A (John Milton Hagen blood group; SEMA7A) and

one in the LPS Responsive Beige-Like Anchor gene

(LRBA). Although no CpGs were significantly differ-

entially methylated in our WGBS datasets, one CpG

reached significance in both the SEL comparison as

well as the comparison between the SE and FE pool

of the F2 inter-crosses. This CpG was situated near

the transcription termination site of RNA polymer-

ase II subunit C (POLR2C), a gene related to RNA

transcription and RNA splicing. There are two rea-

sons why these sites were not differentially methyl-

ated in the WGBS dataset of the selected lines. First,

because we had more power in detecting significant

CpGs in the RRBS dataset and second, since the

phenotypic variation in EEB between the siblings of

the F2 intercross individuals is likely not only due to

heritable variation alone, these CpGs are indicative

for functional variants that affect nonheritable phe-

notypic variation in exploratory behavior via envi-

ronmental effects during early development.

Therefore, the detected genes remain largely indica-

tive and need further functional validation in the

future.

In conclusion, we did not find evidence for a cor-

related selection on CpG methylation in lines se-

lected for exploratory behavior in Great Tits. We

did find that CpG methylation may explain pheno-

typic variation in exploratory behavior indicating

that DNA methylation may be more important for

plastic responses to the environment, rather than to

be stably inherited over multiple generations. We

infer from these results that there is low evolutionary

potential for variation in DNA methylation related

to exploratory behavior (Verhoeven et al. 2016;

Herrel et al. 2020). We do, however, confirm that

variation in DNA methylation affects the noninher-

ited fraction of behavioral phenotypes, which is now

been recognized in many systems (Yan et al. 2015;

Merlin and Liedvogel 2019; Sepers et al. 2019;

Lindner et al. 2020). From this, we conclude that

DNA methylation mainly plays a role for epigeneti-

cally based phenotypic plasticity, and that these en-

vironmentally induced effects of DNA methylation

on behavioral traits in vertebrates will likely not

play a role in the evolution of such traits (Heard

and Martienssen 2014).

Acknowledgments

We would like to thank Christa Mateman for mo-

lecular lab work, Eveline C. Verhulst for help con-

ceiving the idea. We are very greatful to Haley

Hanson, Tyler Stevenson, and Lynn Martin for the

invitation to speak in the symposium. We thank the

editor, Tyler Stevenson and an anonymous reviewer

for help improving the manuscript during the

reviewing proces.

Funding

This study was funded by an inovation grant from

NIOO-KNAW to K.J.F.V. and K.V.O. and an NWO-

ALW open competition grant (ALWOP.314) to

K.V.O. and B.S.

Authors’ Contributions

K.V.O, B.S. and K.J.F.V. conceptualized the study;

K.V.O. collected the samples; W.S. conducted the

formal analysis under supervision of K.V.O, B.S.

and F.G.; V.N.L. developed the analysis strategy.

K.V.O. and V.N.L. wrote the original draft of the

Epigenetics of animal personality 1527



manuscript and all authors contributed to editing

and reviewing the manuscript. The authors declare

no conflict of interest.

Supplementary data

Supplementary data available at ICB online.

References

Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE,

Figueroa ME, Melnick A, Mason CE. 2012. methylKit: a

comprehensive R package for the analysis of genome-wide

DNA methylation profiles. Genome Biol 13:R87.

Andrews S. 2010. FastQC: a quality control tool for high

throughput sequence data (https://www.bioinformatics.bab-

raham.ac.uk/projects/fastqc/, accessed March 03, 2020).

Barton NH, Keightley PD. 2002. Understanding quantitative

genetic variation. Nat Rev Genet 3:11–21.

Bates D, M€achler M, Bolker BM, Walker SC. 2015. Fitting

linear mixed-effects models using lme4. J Statist Softw

67:95324.

Baugh AT, Davidson SC, Hau M, van Oers K. 2017.

Temporal dynamics of the HPA axis linked to exploratory

behavior in a wild European songbird (Parus major). Gen

Comp Endocrinol 250:104–12.

Bell AM, Dochtermann NA. 2015. Integrating molecular

mechanisms into quantitative genetics to understand con-

sistent individual differences in behavior. Curr Opin Behav

Sci 6:111–4.

Belteky J, Agnvall B, Bektic L, Hoglund A, Jensen P,

Guerrero-Bosagna C. 2018. Epigenetics and early domesti-

cation: differences in hypothalamic DNA methylation be-

tween red junglefowl divergently selected for high or low

fear of humans. Genet Sel Evol 50:13.

Benzer S. 1973. Genetic dissection of behavior. Sci Am

229:24–37.

Boake CRB, Arnold SJ, Breden F, Meffert LM, Ritchie MG,

Taylor BJ, Wolf JB, Moore AJ. 2002. Genetic tools for

studying adaptation and the evolution of behavior. Am

Nat 160:S143–59.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flex-

ible trimmer for Illumina sequence data. Bioinformatics

30:2114–20.

Bo�skovi�c A, Rando OJ. 2018. Transgenerational epigenetic

inheritance. Ann Rev Genetics 52:21–41.

Carere C, Drent PJ, Koolhaas JM, Groothuis TGG. 2005.

Epigenetic effects on personality traits: early food provi-

sioning and sibling competition. Behaviour 142:1329–55.

Crusio WE, Sluyter F, Gerlai RT, Pietropaolo S. 2013.

Behavioral genetics of the mouse. Vol. 1. Genetics of be-

havioral phenotypes. Cambridge: Cambridge University

Press.

Daxinger L, Whitelaw E. 2012. Understanding transgenera-

tional epigenetic inheritance via the gametes in mammals.

Nat Rev Genet 13:153–62.

Derks MFL, Schachtschneider KM, Madsen O, Schijlen E,

Verhoeven KJF, van Oers K. 2016. Tissue-specific gene

methylation in the great tit (Parus major). BMC

Genomics 17:419.

Dingemanse NJ, Both C, Drent PJ, van Oers K, van

Noordwijk AJ. 2002. Repeatability and heritability of ex-

ploratory behaviour in great tits from the wild. Anim

Behav 64:929–38.

Drent PJ, van Oers K, van Noordwijk AJ. 2003. Realized her-

itability of personalities in the great tit (Parus major). Proc

Royal Soc Lond Ser B Biol Sci 270:45–51.

Edwards HA, Hajduk GK, Durieux G, Burke T, Dugdale HL.

2015. No association between personality and candidate

gene polymorphisms in a wild bird population. PLoS

One 10:e0138439.

Ewels P, Magnusson M, Lundin S, K€aller M. 2016. MultiQC:

summarize analysis results for multiple tools and samples

in a single report. Bioinformatics 32:3047–8.

Faulk C, Dolinoy DC. 2011. Timing is everything: the when

and how of environmentally induced changes in the epi-

genome of animals. Epigenetics 6:791–7.

Fidler AE, van Oers K, Drent PJ, Kuhn S, Mueller JC,

Kempenaers B. 2007. Drd4 gene polymorphisms are asso-

ciated with personality variation in a passerine bird. Proc

Royal Soc Lond Ser B Biol Sci 274:1685–91.

Fleming DS, Weigend S, Simianer H, Weigend A, Rothschild

M, Schmidt C, Ashwell C, Persia M, Reecy J, Lamont SJ.

2017. Genomic comparison of indigenous African and

Northern European chickens reveals putative mechanisms

of stress tolerance relat environ select pressure. G3 7:1525–37.

Fr�esard L, Leroux S, Servin B, Gourichon D, Dehais P,

Cristobal MS, Marsaud N, Vignoles F, Bed’hom B,

Coville JL, et al. 2014. Transcriptome-wide investigation

of genomic imprinting in chicken. Nucleic Acids Res

42:3768–82.

Groothuis TGG, Trillmich F. 2011. Unfolding personalities:

the importance of studying ontogeny. Dev Psychobiol

53:641–55.

Guerrero-Bosagna C, Morisson M, Liaubet L, Rodenburg TB,

de Haas EN, Ko�st’�al L’, Pitel F. 2018. Transgenerational

epigenetic inheritance in birds. Environ Epigenet 4:dvy008.

Guo W, Zhu P, Pellegrini M, Zhang MQ, Wang X, Ni Z.

2018. CGmapTools improves the precision of heterozygous

SNV calls and supports allele-specific methylation detection

and visualization in bisulfite-sequencing data.

Bioinformatics 34:381–7.

Guo WL, Fiziev P, Yan WH, Cokus S, Sun XG, Zhang MQ, Chen

PY, Pellegrini M. 2013. BS-Seeker2: a versatile aligning pipe-

line for bisulfite sequencing data. BMC Genomics 14:774.

Hashimshony T, Zhang J, Keshet I, Bustin M, Cedar H. 2003.

The role of DNA methylation in setting up chromatin

structure during development. Nat Genet 34:187–92.

Heard E, Martienssen RA. 2014. Transgenerational epigenetic

inheritance: myths and mechanisms. Cell 157:95–109.

Herrel A, Joly D, Danchin E. 2020. Epigenetics in ecology and

evolution. Funct Ecol 34:381–4.

Hu J, Barrett RDH. 2017. Epigenetics in natural animal pop-

ulations. J Evol Biol 30:1612–32.

Hughes RN. 1997. Intrinsic exploration in animals: motives

and measurement. Behav Proc 41:213–26.

Jablonka E, Raz G. 2009. Transgenerational epigenetic inher-

itance: prevalence, mechanisms, and implications for the

study of heredity and evolution. Quart Rev Biol 84:131–76.

Kearsey MJ, Pooni HS. 1996. The genetical analysis of quan-

titative traits. London: Chapman & Hall.

1528 K. van Oers et al.



Kim JM, Santure AW, Barton HJ, Quinn JL, Cole EF, Visser

ME, Sheldon BC, Groenen MAM, van Oers K, Slate J, et al.

2018. A high-density SNP chip for genotyping great tit

(Parus major) populations and its application to studying

the genetic architecture of exploration behaviour. Mol Ecol

Resources18:877–91.

Kitts PA, Church DM, Thibaud-Nissen F, Choi J, Hem V,

Sapojnikov V, Smith RG, Tatusova T, Xiang C, Zherikov A,

et al. 2016. Assembly: a resource for assembled genomes at

NCBI. Nucleic Acids Res 44:D73–80.

Krause ET, Naguib M. 2011. Compensatory growth affects

exploratory behaviour in zebra finches, Taeniopygia gut-

tata. Anim Behav 81:1295–300.

Laine V, van Oers K. 2017. The quantitative and molecular

genetics of individual differences in animal personality. In:

Vonk J, Weiss A, Kuczaj SA, editors. Personality in non-

human animals. Cham, Switzerland: Springer. p. 55–72.

Laine VN, Gossmann TI, Schachtschneider KM, Garroway CJ,

Madsen O, Verhoeven KJF, de Jager V, Megens HJ, Warren

WC, Minx P, et al. 2016. Evolutionary signals of selection

on cognition from the great tit genome and methylome.

Nat Commun 7:10474.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment

with Bowtie 2. Nat Methods 9:357–9.

Law JA, Jacobsen SE. 2010. Establishing, maintaining and

modifying DNA methylation patterns in plants and ani-

mals. Nat Rev Genet 11:204–20.

Lawrence M, Gentleman R, Carey V. 2009. rtracklayer: an R

package for interfacing with genome browsers.

Bioinformatics 25:1841–2.

Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M,

Gentleman R, Morgan MT, Carey VJ. 2013. Software for

computing and annotating genomic ranges. PLoS Comput

Biol 9:e1003118.

Ledon-Rettig CC, Richards CL, Martin LB. 2012. Epigenetics

for behavioral ecologists. Behav Ecol 24:311–24.

Lindner M, Laine VN, Verhagen I, Viitaniemi HM, Visser

ME, van Oers K, Husby A. 2020. Epigenetic mediation of

the onset of reproduction in a songbird. bioRxiv

2020.02.01.929968 (https://www.biorxiv.org/content/

10.1101/2020.02.01.929968v1).

Lynch M, Walsh B. 1998. Genetics and analysis of quantita-

tive traits. Sunderland (MA): Sinauer Associates, Inc.

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan

N, Basutkar P, Tivey ARN, Potter SC, Finn RD, et al. 2019.

The EMBL-EBI search and sequence analysis tools APIs in

2019. Nucleic Acids Res 47:W636–41.

M€akinen H, Viitaniemi HM, Visser ME, Verhagen I, van Oers

K, Husby A. 2019. Temporally replicated DNA methylation

patterns in great tit using reduced representation bisulfite

sequencing. Sci Data 6:136.

Merlin C, Liedvogel M. 2019. The genetics and epigenetics of

animal migration and orientation: birds, butterflies and be-

yond. J Exp Biol 222:jeb191890.

R Core Team. 2018. R foundation for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing.

(http://www.R-project.org).

R�eale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ.

2007. Integrating temperament in ecology and evolutionary

biology. Biol Rev 82:291–318.

Richards EJ. 2006. Opinion—inherited epigenetic variation—

revisiting soft inheritance. Nat Rev Genet 7:395–U2.

Santure AW, Poissant J, De Cauwer I, van Oers K, Robinson

MR, Quinn JL, Groenen MAM, Visser ME, Sheldon BC,

Slate J. 2015. Replicated analysis of the genetic architecture

of quantitative traits in two wild great tit populations. Mol

Ecol 24:6148–62.

Sepers B, van den Heuvel K, Lindner M, Viitaniemi H, Husby

A, van Oers K. 2019. Avian ecological epigenetics: pitfalls

and promises. J Ornithol 160:1183–203.

Skinner MK, Gurerrero-Bosagna C, Haque MM, Nilsson EE,

Koop JAH, Knutie SA, Clayton DH. 2014. Epigenetics and

the evolution of Darwin’s finches. Genome Biol Evol

6:1972–89.

Sokolowski MB. 2001. Drosophila: genetics meets behaviour.

Nat Rev Genet 2:879–90.

Stamps JA, Groothuis TGG. 2010. Ontogeny of animal per-

sonality: relevance, concepts and perspectives. Biol Rev

85:301–25.

Stevenson TJ, Prendergast BJ. 2013. Reversible DNA methyl-

ation regulates seasonal photoperiodic time measurement.

Proc Natl Acad Sci USA 110:16651–6.

Stirling DG, R�eale D, Roff DA. 2002. Selection, structure and

the heritability of behaviour. J Evol Biol 15:277–89.

Timm K, M€agi M, Telve K, Tilgar V. 2019. The behavioural

response of great tits to novel environment and handling is

affected by the DRD4 gene. IBIS161:91–100.

Trillmich F, Hudson R. 2011. The emergence of personality in

animals: the need for a developmental approach. Dev

Psychobiol 53:505–9.

Turner SD. 2018. qqman: an R package for visualizing GWAS

results using Q-Q and manhattan plots. J Open Source

Softw 3:731.

Van Haute L, Pearce SF, Powell CA, D’Souza AR, Nicholls TJ,

Minczuk M. 2015. Mitochondrial transcript maturation

and its disorders. J Inherit Metab Dis 38:655–80.

van Oers K, Kohn GM, Hinde CA, Naguib M. 2015. Parental

food provisioning is related to nestling stress response in

wild great tit nestlings: implications for the development of

personality. Front Zool 12:S10.

van Oers K, Mueller JC. 2010. Evolutionary genomics of an-

imal personality. Philos Transact Royal Soc Lond Ser B

365:3991–4000.

van Oers K, Santure AW, De Cauwer I, van Bers NEM,

Crooijmans RPMA, Sheldon BC, Visser ME, Slate J,

Groenen MAM. 2014. Replicated high-density genetic

maps of two great tit populations reveal fine-scale genomic

departures from sex-equal recombination rates. Heredity

112:307–16.

van Oers K, Sinn DL. 2013. The quantitative and molecular

genetics of animal personality. In: Carere C, Maestripieri D,

editors. Animal personalities: behavior, physiology, and evo-

lution Chicago. Chicago (IL): University of Chicago Press.

Verhoeven KJF, vonHoldt BM, Sork VL. 2016. Epigenetics in

ecology and evolution: what we know and what we need to

know. Mol Ecol 25:1631–8.

Verhulst EC, Mateman AC, Zwier MV, Caro SP, Verhoeven

KJF, Van Oers K. 2016. Natural variation in animal per-

sonality is associated with transgenerationally consistent

DNA methylation. Mol Ecol 25:1801–11.

Epigenetics of animal personality 1529

http://www.R-project.org


Viitaniemi HM, Verhagen I, Visser ME, Honkela A, Van Oers

K, Husby A. 2019. Seasonal variation in genome-wide DNA

methylation patterns and the onset of seasonal timing of

reproduction in great tits. Genom Biol Evol 11:970–83.

Wickham H. 2016. Ggplot2 – elegant graphics for data anal-

ysis. New York (NY): Springer-Verlag.

Wingett SW, Andrews S. 2018. FastQ screen: a tool for multi-

genome mapping and quality control. F1000Res 7:1338.

Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg

D. 2015. DNA methylation in social insects: how epige-

netics can control behavior and longevity. Annu Rev

Entomol 60:435–52.

Zhuo Z, Lamont SJ, Abasht B. 2017. RNA-Seq analyses iden-

tify frequent allele specific expression and no evidence of

genomic imprinting in specific embryonic tissues of

chicken. Sci Rep 7:11944.

1530 K. van Oers et al.


