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Abstract
Objectives  To empirically assess the relation between 
study characteristics and prognostic model performance 
in external validation studies of multivariable prognostic 
models.
Design  Meta-epidemiological study.
Data sources and study selection  On 16 October 2018, 
we searched electronic databases for systematic reviews 
of prognostic models. Reviews from non-overlapping 
clinical fields were selected if they reported common 
performance measures (either the concordance (c)-
statistic or the ratio of observed over expected number of 
events (OE ratio)) from 10 or more validations of the same 
prognostic model.
Data extraction and analyses  Study design features, 
population characteristics, methods of predictor 
and outcome assessment, and the aforementioned 
performance measures were extracted from the included 
external validation studies. Random effects meta-
regression was used to quantify the association between 
the study characteristics and model performance.
Results  We included 10 systematic reviews, describing 
a total of 224 external validations, of which 221 reported 
c-statistics and 124 OE ratios. Associations between 
study characteristics and model performance were 
heterogeneous across systematic reviews. C-statistics 
were most associated with variation in population 
characteristics, outcome definitions and measurement 
and predictor substitution. For example, validations with 
eligibility criteria comparable to the development study 
were associated with higher c-statistics compared with 
narrower criteria (difference in logit c-statistic 0.21(95% 
CI 0.07 to 0.35), similar to an increase from 0.70 to 0.74). 
Using a case-control design was associated with higher OE 
ratios, compared with using data from a cohort (difference 
in log OE ratio 0.97(95% CI 0.38 to 1.55), similar to an 
increase in OE ratio from 1.00 to 2.63).
Conclusions  Variation in performance of prognostic 
models across studies is mainly associated with variation 
in case-mix, study designs, outcome definitions and 
measurement methods and predictor substitution. 
Researchers developing and validating prognostic models 
should realise the potential influence of these study 
characteristics on the predictive performance of prognostic 
models.

Introduction  
Prediction models, including diagnostic 
and prognostic models, estimate the prob-
ability that an individual has or will develop 
a certain outcome (eg, disease or complica-
tion). Hereto, they combine multiple predic-
tors into an estimate of an individual’s risk.1 
Before using a prediction model in clinical 
practice, it is recommended to validate the 
performance of the model in a population 
other than the population in which the 
model was developed (so called external vali-
dation studies).2 Such studies assess whether 
model predictions remain sufficiently accu-
rate across different settings and populations. 
Obviously, it is important that the method-
ological quality of external validation studies 
is good, as otherwise estimates of the predic-
tion model’s performance may be biased and 
thereby lead to misleading conclusions on its 
generalisability to practice.

Strengths and limitations of this study

►► To the best of our knowledge, this is the first me-
ta-epidemiological study focusing on the association 
of study characteristics with estimates of prognostic 
model performance.

►► We included all 10 systematic reviews describing at 
least 10 external validations of the same prognostic 
model, resulting in 224 external validations.

►► We extracted relevant features of design and con-
duct according to existing checklists on quality as-
sessment (Critical Appraisal and Data Extraction for 
Systematic Reviews of Prediction Modelling Studies 
checklist) and reporting of prediction model studies 
(Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis).

►► It was not feasible to fit multivariable meta-regres-
sion models due to the limited number of available, 
well-reported, validation studies within the individ-
ual reviews, rendering the effective sample size too 
small for multivariable meta-regression analyses.
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Systematic reviews have found that the performance 
of existing prediction models often varies substantially 
across external validation studies of those models.3–5 
These differences may appear due to random variation 
(when validation studies are small) and may arise when 
model predictions are invalid because the model is 
applied in very different populations (eg, the association 
between predictors in the model and the outcome are 
different) or when design-related characteristics of the 
validation study (eg, measurement methods or variable 
definitions) are not well aligned with the original devel-
opment study.2 6

To provide empirical evidence of the association of 
study characteristics with prediction model perfor-
mance, a meta-epidemiological approach can be used. 
Studies using this approach have shown the influence 
of study characteristics on the effectiveness of interven-
tions studied in randomised trials and on the accuracy 
of diagnostic tests.7–12 For diagnostic prediction models, 
evidence suggests estimates of performance may be 
biased in studies with certain study characteristics. One 
study found a higher diagnostic odds ratio in case-control 
studies, studies with differential outcome verification (ie, 
using different outcome assessments across study individ-
uals), and with low sample size.13 To date, no meta-ep-
idemiological study has been performed investigating 
the possible impact of study characteristics on measures 
of the predictive performance of a prognostic model on 
external validation, which is commonly quantified in 
terms of discrimination and calibration.14 The aim of this 
study was to investigate sources of heterogeneity in the 
predictive performance of prognostic models. A meta-ep-
idemiological approach was used to synthesise evidence 
from a range of clinical fields. This study can serve as 
empirical evidence for design-related and analysis-related 
bias in prognostic model studies.

Methods
Search and selection of systematic reviews
We used an existing database (last updated on 16 October 
2018) consisting of studies evaluating multiple existing 
prediction models, including narrative or systematic 
reviews of prediction models, or head-to-head compar-
isons of multiple prediction models validated on a 
specific dataset (see online  supplementary 1 for details 
of the search strategy and selection criteria). To construct 
this database, references identified by the search were 
screened for eligibility by one reviewer (GSC) on title, 
abstract and, if necessary, on full text. Subsequently, 
the full text of all articles in the database were screened 
for eligibility to the current project by another reviewer 
(JAAGD). We selected systematic reviews of prognostic 
models (ie, diagnostic models were excluded) that 
included at least 10 studies that externally validated the 
same prognostic model (this number was chosen a priori 
to facilitate the estimation of study-level parameters such 
as between-study heterogeneity), and that presented the 

performance of these models in terms of discrimination 
(concordance (c)-statistic or area under the receiver 
operating characteristic curve), or calibration (observed 
expected (OE) ratio). Discrimination is the ability of the 
model to distinguish between people who will and who 
will not develop the outcome of interest, while calibration 
reflects the overall agreement between the total number 
of observed and predicted (‘expected’) events.14 We 
excluded systematic reviews that selected studies based 
on specific study characteristics (eg, we excluded system-
atic reviews that did not include primary studies with a 
sample size below 100, if we were not able to identify the 
primary studies that had been excluded for this reason). 
Furthermore, we excluded reviews of prognostic models 
in which the weights of predictors in the original model 
were based on expert opinion rather than on coefficients 
estimated from a formal statistical approach. If more than 
one systematic review on the same prognostic model was 
identified, we included the one with the broadest inclu-
sion criteria (eg, reviews focussing on specific patient 
populations were not preferred if a review with a broader 
population was available) or the most recent review (in 
this order of preference). When multiple prognostic 
models for the same condition were described in one 
systematic review which all fulfilled the selection criteria, 
we included the model with the highest number of 
external validations.

Selection of the primary external validation studies from the 
included systematic reviews
From the included systematic reviews, we collected the 
primary studies in which the prognostic models were 
developed and externally validated. For primary external 
validation studies for which no measure of discrimination 
(c-statistic) or calibration (total OE ratio) was reported 
in the systematic review, we checked the full text of the 
primary study, and if performance was not reported, 
these studies were excluded.

If primary external validation studies described 
multiple external validations of the same model and if 
there was no overlap in included participants between 
these external validations (eg, a model was validated in 
two different cohorts, or a model was validated in men 
and women separately), data were extracted for every 
external validation separately. If a model was validated 
multiple times on the same population (described in 
either one or multiple publications), we selected the 
external validation that was included in the systematic 
review. If the systematic review included all those external 
validations, we selected the one in which the study popu-
lation and predicted outcome most closely resembled the 
population and outcome of the original model.

Data extraction and preparation
We extracted relevant features of design and conduct 
according to existing checklists on quality assessment 
(Critical Appraisal and Data Extraction for Systematic 
Reviews of Prediction Modelling Studies [CHARMS]) 
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and reporting of prediction model studies (Transparent 
Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis [TRIPOD]).15–17 Informa-
tion about study characteristics of studies in which the 
models were developed were extracted from the corre-
sponding development papers. Information about study 
characteristics of primary external validation studies 
were first extracted from systematic reviews. This infor-
mation was subsequently checked using the external vali-
dation studies and, if necessary, additional information 
was extracted by one reviewer (JAAGD or RP). Items we 
extracted included study type (eg, external validation only, 
development of a new model and external validation of a 
model), study design (eg, existing cohort, existing RCT), 
dependency of investigators (validation by independent 
investigators or investigators also involved in the develop-
ment study), eligibility criteria for participant inclusion, 
setting, location (continent), study dates, number of 
centres, follow-up time and prediction horizon, age and 
gender distribution, deletion or substitution of predic-
tors, outcome definition and measurement method, 
sample size and number of events, handling of missing 
data and model performance (see online supplemen-
tary 2 for details). The data extraction form was piloted 
on multiple articles by all reviewers (JAAGD, TPAD, LH, 
KGMM, RP, JBR, RJPMS).

For analysis purposes, some study characteristics had to 
be categorised or transformed (see online supplementary 
2). For example, eligibility criteria of the validation study 
as compared with the development study had to be judged 
and categorised as comparable, narrower (if subgroups 
included in the development study were excluded from 
the validation study), broader (if subgroups excluded 
from the development study were included in the vali-
dation study), mixture (a combination of the two) or 
unclear. For setting, location, predictors and outcome, a 
similar categorisation was used. If data on study character-
istics were not reported in the primary external validation 
studies, these were either categorised as ‘unclear’ (in case 
of categorical study variables), or the study was excluded 
from the analyses of that (missing) study characteristic 
(in case of continuous study variables, such as sample 
size). In order to improve comparability between reviews, 
we standardised continuous study variables separately 
for each systematic review, that  is for every variable, we 
subtracted the mean and divided by the SD of all external 
validations identified from the same systematic review.

Statistical analyses
We used a two-staged approach to study the possible 
association between study characteristics and predictive 
performance.

In the first stage, we fitted a univariable meta-regression 
model for every study characteristic within each systematic 
review with the logit c-statistic or log OE ratio as outcome 
variable.18 The regression coefficients estimated from this 
meta-regression model indicate the difference in logit 
c-statistic or log OE ratio between a certain category of a 

study characteristic and a chosen reference category (ie, 
the category that was present in most systematic reviews) 
of that characteristic.

In the second stage, these regression coefficients 
were pooled by the use of a random effects model. This 
reflected the average influence of the study characteristic 
on model performance across all systematic reviews. For 
continuous characteristics, the regression coefficients 
obtained in the first stage were jointly pooled across 
reviews, using bivariate meta-analysis.19 20 For categor-
ical characteristics, the results of univariable meta-anal-
yses are presented. We planned to perform multivariable 
analyses to assess the association between various study 
characteristics in combination and the performance of 
prognostic models, but due to the paucity of data, we 
were not able to do so. All analyses are described in more 
detail in online supplementary 3.

Patient and public involvement
Patients and public were not involved in the design, 
recruitment or conduct of the study.

Results
Identification and selection of studies
The search identified 2392 studies, of which 555 were 
included in the database and screened on full text, and 
79 were further assessed (figure  1). Finally, 10 system-
atic reviews were included.21–30 These reviews addressed 
external validations of the following prognostic models: 
ABCD2,31 Essen Stroke Risk Score (ESRS),32 EuroSCORE,33 
Framingham,34 FRAX,35  Injury Severity Score  (ISS),36 
model for end-stage liver disease (MELD),37 Pneumonia 
Severity Index (PSI),38  Revised Cardiac Risk Index 
(RCRI)39 and Simplified Acute Physiology Score (SAPS) 
340 (table 1). The reviews included 248 primary external 
validation studies with 274 external model validations 
(one study could describe multiple model validations). 
During data extraction, 73 of 274 validations were even-
tually excluded (most often for not reporting a perfor-
mance measure), and 20 additional external model 
validations were identified (figure 1). This resulted in the 
inclusion of 224 external validations, of which 221 could 
be included in the analyses of the c-statistic, and 124 in 
the analyses of the total OE ratio. For the total OE ratio, 
only validations of the EuroSCORE, Framingham, FRAX, 
PSI, RCRI and SAPS 3 prognostic models were included, 
due to the very low number of reported OE ratios in the 
validations studies for the other four prognostic models.

Description of included validations
The number of external validations per systematic review 
ranged from 11 to 30 (table 1), and the median (IQR) 
sample size and number of events were 1069 (418–3043) 
and 92 (36–248), respectively. Most studies used an 
existing registry (n=104, 46%) or existing cohort (n=74, 
33%) to validate the prognostic model. The median (IQR) 
c-statistic and total OE ratio were 0.73 (0.64–0.82) and 
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0.92 (0.64–1.26), respectively. Predictive performance of 
the models was highly heterogeneous, even for external 
validations of the same prognostic model, as indicated by 
the wide prediction intervals (table 1).

Not all information on the study characteristics was 
reported for all external validations (see online  supple-
mentary table 1). Information was often unclear (eg, 
for outcome definitions [n=83, 37%]) and handling of 
missing data [n=105, 47%]) or missing (eg, case-mix 
information such as mean age [n=28, 13%] and gender 
distribution [n=16, 7%]).

Discrimination
Pooled models
The pooled analyses across all systematic reviews (figure 2, 
see online  supplementary figures 1 and 2) showed that 

validation in a continent different from the development 
study was associated with a higher c-statistic, compared 
with validation in the same continent, and multicentre 
versus single centre validation studies were associated 
with a lower c-statistic. Comparable eligibility criteria for 
participant inclusion were also associated with higher 
c-statistics compared with narrower criteria, whereas 
a broader setting was associated with a lower c-statistic 
compared with a setting comparable to the development 
study. Although not statistically significant, validations 
with changes made to the predictors (ie, substitution 
or deletion of a predictor), or in which it was unclear 
whether all predictors were correctly measured, tended 
to have lower c-statistics compared with validations where 
no changes were made. In various reviews, we found an 

Figure 1  Flow chart of study selection. c, concordance; MA, meta-analysis; NR, not reported; OE, observed expected; SR, 
systematic review.
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Figure 2  Associations between study characteristics and logit c-statistic with regard to a reference category across 221 
external validation studies and 10 different prediction models. CIs not including 0 are marked with an *. Online supplementary 
figure 1 shows these differences on the original scale if we assume a c-statistic of 0.70 in the reference category. For example, 
for comparability of eligibility criteria, if we assume a c-statistic of 0.70 in the reference category (narrower), this would result in 
c-statistics of 0.74 (0.72 to 0.77), 0.73 (0.66 to 0.79), 0.77 (0.68 to 0.84) and 0.77 (0.59 to 0.89) in the categories comparable, 
mixture, broader and unclear, respectively. c, concordance; CI, confidence interval; dev, development; diff, difference; incr, 
incremental value; RCT, randomised controlled trial; ref, reference category; val, validation. 

https://dx.doi.org/10.1136/bmjopen-2018-026160
https://dx.doi.org/10.1136/bmjopen-2018-026160
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association between the c-statistic and numerous other 
study characteristics, such as the study design, compara-
bility of outcome definition, prediction horizon, sample 
size and number of events and mean age of study partic-
ipants (figure 3, see online supplementary figures 2 and 
3), only these were often not statistically significant when 
pooled together.

Variation across reviews
Across reviews, we found associations of many study char-
acteristics with the c-statistic although this was rather 

heterogeneous, and confidence intervals often over-
lapped (figure 3 and see online supplementary figure 3). 
For example, for study design, in six systematic reviews, 
a higher c-statistic was found for validations that used an 
existing registry compared with an existing cohort, while 
in three reviews, a lower c-statistic was found. In three 
systematic reviews. we found a higher c-statistic in valida-
tions by independent investigators, while in five, a lower 
c-statistic was found.

For other study characteristics, directions of associ-
ations were more consistent. For example, for most 

Figure 3  C-statistic for categories of study design, pooled using univariable meta-regression analyses within each systematic 
review. N represents the number of external validation studies in a specific category. C diff represents the difference in 
c-statistic with regard to a reference category (indicated with ‘ref’). ESRS, Essen Stroke Risk Score; ISS, Injury Severity Score; 
MELD, model for end-stage liver disease; PSI, Pneumonia Severity Index; RCRI, Revised Cardiac Risk Index; RCT, randomised 
controlled trial; SAPS, Simplified Acute Physiology Score 3.

https://dx.doi.org/10.1136/bmjopen-2018-026160
https://dx.doi.org/10.1136/bmjopen-2018-026160
https://dx.doi.org/10.1136/bmjopen-2018-026160
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systematic reviews, validation studies with eligibility 
criteria narrower compared with the criteria used in the 
development study had a lower c-statistic while broader 
eligibility criteria were associated with higher c-statistics 
(see online supplementary figure 3). C-statistics were also 
(slightly) higher in external validations with a setting 
comparable to the development study. Validation in a 
continent other than the development study in general 
was associated with a higher c-statistic, and multicentre 
studies had lower c-statistics compared with single centre 
studies. External validations in which it was unclear if 
there were changes made to the predictors had lower 
c-statistics (see online supplementary figure 3).

Calibration
Pooled analyses
We found a significant association between study design 
and the total OE ratio (figure  4); using data from a 
case-control study (although known to be an inferior 
design for prognostic model research1 6) resulted in 
higher OE ratios, compared with using data from an 
existing cohort (though based on three external valida-
tions). Furthermore, higher OE ratios were found for 
studies in which the outcome was assessed by a panel of 
clinicians as compared with using a registry. In various 
reviews, we found an association between the total OE 
ratio and numerous other study characteristics, such 
as the duration of follow-up, year in which recruitment 
was started, sample size, SD of age and setting (figure 4, 
see  online  supplementary figures 5 and 6), only these 
were not statistically significant when pooled together.

Variation across reviews
For other categories of study design (other than the use 
of a case-control design), heterogeneous associations 
were found across systematic reviews (figure 5). The asso-
ciations of most other study characteristics with the OE 
ratio were also most often not consistent across systematic 
reviews (see online supplementary figures 5 and 6). For 
example, for two systematic reviews, external validations 
with appropriate handling of missing data had OE ratios 
closer to one compared with inappropriate handling of 
missing data, while in two reviews, OE ratios were further 
away from 1. Only for the continent in which the model 
was validated, directions were more consistent; OE ratios 
were closer to 1 if the continent was comparable to the 
development, compared with validations in different 
continents (see online supplementary figure 6).

Discussion
Principal findings
Using a comprehensive meta-analytical approach, we 
studied the association between study characteristics of 
prognostic model validation studies and the estimated 
model performance across 10 clinical domains. We 
focused on objective study characteristics that can be 
extracted from published reports. The reporting of the 

primary external validation studies was often incom-
plete and inadequate. Key study characteristics, such as 
outcome definitions, handling of missing data, and even 
model calibration estimates were infrequently reported. 
Still, we found associations between various study charac-
teristics and a model’s predictive performance. Changes 
in a model’s predictive performance were notably found 
in relation to validation studies with a case-control (vs 
cohort) design, with differences in case-mix, in continent 
(in which the model is validated), in eligibility criteria, 
in clinical setting, in number of centres (included in the 
validation study), in differences in outcome definitions 
and assessments and in predictor substitutions.

Explanations, strengths and weaknesses
Based on findings in meta-epidemiological studies on the 
effect of study characteristics and the efficacy of inter-
ventions7–10 and diagnostic test accuracy,11 12 we antici-
pated to find more statistically significant associations 
between study characteristics and model performance 
across the included systematic reviews from different 
domains. Although we included every systematic review 
that described at least 10 external validation studies of 
the same prognostic model, resulting in more than 200 
validations from 10 reviews, our analyses appeared to 
still be hampered by relatively low numbers of external 
validations per systematic review, combined with poor 
reporting and substantial heterogeneity within and across 
systematic reviews.

Conceptually, there are many potential sources of 
heterogeneity in model performance, such as differences 
in population characteristics, predictor and outcome 
definitions and measurements, and in many aspects of 
the statistical analyses (eg, dealing with missing data, 
sample size and selective loss to follow-up). All these char-
acteristics may act in isolation but could also be related 
to each other. The individual strength of the association 
of one characteristic with model performance is ideally 
addressed by adopting multivariable (meta)-regression 
models with the observed model performance estimates 
of the validation studies as dependent variable and the 
characteristics of multiple design features as indepen-
dent variables.10 12 Unfortunately, this approach was not 
feasible here due to the limited number of available, 
well-reported, validation studies within the individual 
reviews, rendering the effective sample size too small for 
multivariable meta-regression analyses.

A general limitation of all meta-epidemiological 
studies, is the possibility that the effect of a certain study 
characteristic differs across systematic reviews which 
may nullify the effect when pooled together.41 We also 
found numerous conflicting associations between a study 
characteristic and the reported predictive performance 
measures across reviews that were cancelled out in the 
pooled analyses.

Also, it is possible that the effect caused by individual 
study characteristics is small and therefore difficult to 
detect. Moreover, there might be some misclassification 

https://dx.doi.org/10.1136/bmjopen-2018-026160
https://dx.doi.org/10.1136/bmjopen-2018-026160
https://dx.doi.org/10.1136/bmjopen-2018-026160
https://dx.doi.org/10.1136/bmjopen-2018-026160
https://dx.doi.org/10.1136/bmjopen-2018-026160
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of study characteristics, caused either by our misinterpre-
tation of what is reported, or by a lack of reporting, which 
could have diluted the effects of the study characteris-
tics. Indeed, the c-statistic is often considered to be an 
insensitive measure to quantify changes in model perfor-
mance.42–44 In previous simulation studies, the c-statistic 
and OE ratio appeared to be strongly influenced by 

case-mix differences,14 45 46 which may mask the possible 
(smaller) effects from design-related characteristics. 
Other measures that are less sensitive to case-mix differ-
ences, such as the calibration slope, could, however, 
not be studied here simply because they were (almost) 
never reported in our retrieved studies, as was also shown 
previously.3

Figure 4  Associations between study characteristics and ln OE ratio with regard to a reference category across 124 external 
validation studies and 6 different prediction models. CIs not including 0 are marked with an *. Online supplementary figure 
4 shows these differences on the original scale if we assume an OE ratio of 1.00 in the reference category. For example, for 
comparability of eligibility criteria, if we assume an OE ratio of 1.00 in the reference category (narrower), this would result in 
OE ratios of 0.83 (0.66 to 1.05), 1.11 (0.72 to 1.70), and 0.92 (0.54 to 1.58) in the categories comparable, mixture, and broader, 
respectively. CI, confidence interval; dev, development; diff, difference; incr, incremental value; OE, observed expected; RCT, 
randomised controlled trial; ref, reference category; val, validation. 

https://dx.doi.org/10.1136/bmjopen-2018-026160
https://dx.doi.org/10.1136/bmjopen-2018-026160
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We found greater variation in the methods used by 
external validation studies between models than within 
validations of the same model. For example, multiple 
imputation is the preferred method for handling missing 
data in prediction modelling.47 48 However, in the field 
of cardiovascular disease, it seems common to handle 
missing data by performing a complete case analysis, 
while in the field of mortality prediction in surgical 
patients, typically researchers fill in ‘normal’ values if a 
value is missing.

Finally, given the explorative nature of our analyses to 
identify potential areas of further research, we did not 
correct for multiple testing, though we tried to minimise 
the number of exploratory analyses.

Comparison to previous research
Despite above considerations, our findings, that is, the 
trends in the associations between study characteristics 
and model performance measures (though not always 
statistically significant), are in agreement with various 
previous simulation studies in this field.14 45 47–49 For 
example, we confirmed that studies with more variation 
in case-mix show higher c-statistics, and lower c-statistics 
when a predictor was omitted from the model. However, 
we found lower c-statistics in studies with a broader 
setting and when the number of centres in a study was 
higher. The lower c-statistic in multicentre studies might 
be caused by increased variation in predictor definitions 
and methods to measure predictors compared with single 

centre studies, where it is more likely that definitions 
and measurement methods have been standardised. This 
might result in increased measurement error in multi-
centre studies, which is known to lower discriminative 
ability of a model.50 51

We also found a higher total OE ratio in studies with 
a case-control design. Both simulation studies and 
meta-epidemiological studies in the fields of diagnostic 
tests and (mainly diagnostic) prediction models, have 
shown biased effect measures in studies using a case-con-
trol design.11–14 This confirms that case-control studies 
should not be used to study certain aspects of model 
calibration. Further, we found that the total OE ratio 
was influenced by the method of outcome assessment, in 
agreement with previous studies that showed that higher 
diagnostic odds ratios were found in studies with differen-
tial outcome verification.13 We also expected to find lower 
OE ratios when the validation population differed from 
the development population (eg, in terms of case-mix).14 
We could not systematically confirm this across all reviews, 
likely caused by heterogeneity between systematic reviews 
as indicated by the wide confidence intervals. Finally, we 
could not fully confirm the association between sample 
size and model performance that was previously found,13 
although we found similar trends in part of the reviews.

Implications for future research
In agreement with many previously conducted system-
atic reviews on prediction models,3 52–56 we still and 

Figure 5  Total OE ratio for categories of study design, pooled using univariable meta-regression analyses within each 
systematic review. N represents the number of external validation studies in a specific category. OE diff represents the 
difference in OE ratio with regard to a reference category (indicated with ‘ref’). OE, observed expected; PSI, Pneumonia Severity 
Index; RCRI, Revised Cardiac Risk Index; RCT, randomised controlled trial; SAPS, Simplified Acute Physiology Score. 
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again found poor reporting of prediction model studies. 
Meta-epidemiological studies of prediction model studies 
would highly benefit from complete reporting according 
to the TRIPOD statement.16 17 We recommend at least 
the following information, essential for comparing and 
interpreting the results of external validation studies, to 
be reported by every external validation study: eligibility 
criteria for participant inclusion, details of predictor and 
outcome definitions and measurements, a clear refer-
ence to the model that is being validated and any changes 
made to this validated model compared with the model as 
presented in the development study, estimates of model 
discrimination and calibration performance (including 
calibration slope and intercept) and corresponding stan-
dard errors for the original model and, if applicable, for 
any updated model.

We also believe that more research is urgently needed 
to evaluate under which circumstances certain design 
choices may lead to heterogeneity in prediction model 
performance and to incorporate these issues in the 
appraisal of prediction model studies. There is a need for 
more guidance on how to score items of critical appraisal 
checklists for prediction model studies, such as the 
CHARMS checklist.15

Several options exist to gain more empirical insight 
in design-related bias in prediction model studies. First, 
meta-epidemiological researchers can collect more 
external validation studies and try to correct for all 
issues that cause variation in performance of a model. 
We believe, however, that this is currently not feasible as 
we already included every systematic reviews describing 
at least 10 validations of the same prognostic model. A 
second and much more efficient option is to collect the 
individual participant data (IPD) for all studies included 
in this review to directly study the effect of study charac-
teristics on model performance.57–61 Using IPD, it will also 
be possible to study different performance measures, like 
the case-mix adjusted c-statistic45 62 and calibration slope.14 
Third, new simulation studies could be performed to get 
more insight in design-related bias in prediction model 
performance. Researchers could for example study the 
effect of using a different outcome definition or predic-
tion horizon on the c-statistic of a model.

Conclusion
In this comprehensive meta-epidemiological study, we 
found empirical evidence for an association between 
study characteristics and predictive performance of prog-
nostic models. We found that predictive performance 
of prognostic models on external validation is highly 
heterogeneous, but sensitive to various study character-
istics, such as study design, case-mix, eligibility criteria, 
setting, methods of outcome definition and measure-
ment and predictor substitution. It is important that these 
characteristics are thus emphasised in the reporting and 
appraisal of prediction model studies. However, for a large 
part the observed heterogeneity in model performance 

remained unexplained, which is likely caused by the high 
number of factors that cause heterogeneity in predictive 
performance and may act in opposite directions whereas 
a multivariable meta-regression analysis across reviews 
simply was not possible.
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