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Abstract

Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured
tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin
was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of
wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of
reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments
performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in
keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-
1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure
were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing
and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and
neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be
improved by HO-1 gene transfer.
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Introduction

The repair of wound is a complex process engaging activity of

various cell types, tightly orchestrated by specific cytokines. The

molecular and cellular machinery, which is switched on in

response to destructive stimuli, is very similar in case of burn,

cutaneous wounds, myocardial infarction, spinal-cord damage,

and visceral injuries [1]. Noteworthy, chronic nonhealing wounds,

leading very often to ulceration, necrosis and amputation, are one

of the severe consequences of diabetes, which result in significant

morbidity. Especially in this case, the new avenues for therapeutic

approaches of deep skin injuries are urgently needed.

In mammals, skin wound healing occurs in three overlapping

phases: inflammation, granulation tissue formation and remodel-

ing [2]. Briefly, the injury causes immediate blood vessel

constriction and activation of coagulation cascade. When the

blood clot is formed, neutrophils and monocytes enter the wound

site. Then, keratinocytes and fibroblasts are stimulated to

proliferate and migrate over the provisional matrix, so the

granulation tissue formation begins. During the final phase of

wound healing the granulation tissue is replaced with an acellular

scar, when myofibroblastic and vascular cells in the wound

undergo apoptosis [3].

Vascularization of wound, achieved both by angiogenesis

(formation of blood vessels from preexisting ones) and vasculo-

genesis (formation of blood vessels from endothelial progenitor

cells), is necessary for quick and effective tissue repair. It has been

shown that endostatin, an angiogenesis inhibitor, delayed wound

healing through attenuation of granulation tissue formation and

vascularization in mice [4], and impaired maturation of blood

vessels during the restoration of skin integrity [5], although

reepithelialization of wound was not affected [4,5]. Moreover,

neutralizing antibodies against vascular endothelial growth factor

(VEGF), the major angiogenic and vasculogenic mediator,

inhibited formation of granulation tissue and decreased number

of blood vessels [6], whereas VEGF overexpression by ex vivo

expanded keratinocyte cultures promoted matrix formation,

angiogenesis, and healing in porcine full-thickness wounds [7].
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Also diabetic wound healing was accelerated in response to VEGF

via increased angiogenesis and recruiting bone marrow-derived

cells [8]. Finally, transplantation of endothelial progenitor cells

(EPCs) improved dermal wound healing, showing the potency of

blood vessel-directed cell therapy [9].

One of the important molecular mediators of new blood vessel

formation is heme oxygenase-1 (HO-1). This cytoprotective

enzyme, strongly induced by pro-oxidants and inflammatory

agents, degrades heme to three compounds: CO, free iron and

biliverdin, which is subsequently reduced to bilirubin by biliverdin

reductase [10]. Previous studies have revealed the significance of

HO-1 in regulation of synthesis and activity of VEGF [11–14] and

its role in angiogenesis [15,16]. Recently we have indicated an

importance of HO-1 in stromal cell derived factor-1 (SDF-1)-

dependent neovascularization, showing delayed wound closure

and poor vascularity of wounded skin in 3-month old HO-1

knockout mice [17].

It has been shown that HO-1 is rapidly induced in the wounded

tissues [18,19]. Keeping in mind its pro-angiogenic, anti-

inflammatory and cytoprotective properties, as well as its influence

on cell proliferation and migration [20], one can suppose that

expression of HO-1 may play a role in the process of wound

healing. The aim of our study was to verify this hypothesis. We

evidenced the significance of HO-1 in skin repair, and demon-

strated that delayed HO-1 induction may contribute to the

impairment of wound healing in diabetes. Accordingly, we showed

that HO-1 gene transfer may facilitate wound closure and

neovascularization in diabetic mice.

Results

Effect of SnPPIX on wound closure
First experiments were performed in vitro on human keratinocyte

cell line HaCaT, using a scratch assay model. Incubation of cells

with tin protoporphyrin (SnPPIX, a competitive inhibitor of heme

oxygenases, 10 mmol/mL) significantly slowed down the closure of

gap created on the confluent cell monolayer (Fig. 1A,B). Most

likely this resulted from reduction of keratinocyte migration, not

proliferation, as all experiments were performed in the presence of

10 mM hydroxyurea, a cell cycle blocker.

Then we investigated the wound healing process in vivo, in 3-

month old C57BL wild type mice. Two circular wounds (4 mm in

diameter) on the dorsum of each animal were created using biopsy

punch. In the first step we checked the effect of wounding on HO-

1 expression. By means of western-blotting we investigated the

level of HO-1 protein in the tissue lysates prepared from healthy

and wounded skins. As shown in Fig. 2A, expression of HO-1 in

the healthy tissue was relatively low. Upon injury it was rapidly

Figure 1. Effect of SnPPIX (10 mmol/L) on time of gap closure by HaCaT cells cultured in vitro in the presence of hydroxyurea
(10 mmol/L). Scratch assay. A – Quantitative data. Each point represents mean6SD of 3 experiments done in duplicates. * P,0.05 in comparison to
control. B – representative pictures. Scale bar = 200 mm.
doi:10.1371/journal.pone.0005803.g001
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Figure 2. A - Expression of HO-1 protein in healthy and wounded skin. H - healthy skin, PC - positive control (HaCaT cells stimulated with
10 mmol/L of hemin for 24 h). Western blot analysis. Tubulin was used as a housekeeping gene to control the protein loading. One of 3 similar blots.
B - Effect of SnPPIX (45 mmol/kg of body weight) injected subcutaneously (once a day for 10 days) on wound closure in C57BL mice. C – Effect of
SnPPIX (45 mmol/kg of body weight), injected intraperitoneally (once a day for 10 days) on wound closure in C57BL mice. Each bar represents
mean+SD; N = 10 animals per group. * P,0.05, ** P,0.01 in comparison to control, vehicle injected animals. D – representative pictures taken
immediately after wounding, and on the 3rd and 7th days. Scale bar = 1 mm.
doi:10.1371/journal.pone.0005803.g002
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upregulated and remained very high on day 1st, 2nd, and 3rd, then

gradually decreased.

In the second step we examined the effect of SnPPIX on wound

healing. To this end, immediately after wounding, mice were divided

into four groups and injected every day for 10 consecutive days

either intraperitoneally (i.p.) or subcutaneously (s.c.) with SnPPIX or

with vehicle. The animals were photographed every day to measure

the wound surface. Analysis of images revealed that mice treated s.c.

with SnPPIX showed a delayed wound closure compared to mice

injected with the vehicle, which was evident throughout the whole

process of healing, beginning from day 1st (Fig. 2B,D). The first fully

closed wounds in control mice were found on the 7th day after

wounding, whereas in SnPPIX-treated group they appeared earliest

on day 8th. In case of i.p. injected animals, the delay did not become

apparent until the 3rd day after injury, which might be associated

with less effective penetration of the inhibitor to the wounded tissue

than after local injection. However, similarly as in the s.c. treated

individuals, the delayed wound healing was clearly visible

(Fig. 2C,D). Again, in the vehicle injected mice the fully closed

wounds appeared first on the 7th day after wounding, whereas in the

SnPPIX treated group on the 8th day. Thus, s.c. and i.p. injections of

SnPPIX result in impaired wound closure in mice, which may

suggest that HO-1 plays a role in the process of wound healing.

Effect of HO-1 deficiency on wound healing
SnPPIX is commonly used to suppress HO-1 activity in cell culture

and animal experiments. However, it exerts also a variety of non-

specific, HO-1 independent effects [21,22]. Therefore, to confirm the

importance of HO-1, we investigated the wound healing process in

C57BLxFVB mice of normal level of HO-1 (HO-1+/+) and mice

lacking one (HO-1+/2) or both (HO-12/2) HO-1 alleles.

As we have already noticed in the earlier paper [17], lack of

HO-1 was associated with significantly delayed wound closure in

the 3-month old HO-12/2 mice compared to the wild type

animals of the same age (Fig. 3A). Noteworthy, the most

pronounced differences were observed during the first phases of

healing, between 1st and 6th day after injury, at the time of the

strongest induction of HO-1 in the wounded skin (Fig. 2A). The

rate of wound healing in the heterezygous (HO-1+/2) animals, was

similar to that in HO-1+/+ mice (Fig. 3A).

Effect of HO-1 deficiency on wound healing in the older, 6-month

old animals, was remarkable. Time required for wound closure in the

wild type mice did not differ significantly compared to the younger

ones. However, lack of even one functional HO-1 allele resulted in a

potent delay in wound healing (Fig. 3B). In some individuals (both

HO-1+/2 and HO-12/2) wounds did not cure at all and their surface

increased with time forming large unhealing lesions (Fig. 3C). Such

animals had to be subjected to euthanasia before the planned end of

experiment. Immunohistochemical staining of CD31-positive endo-

thelial cells, carried out on the day 17th after injury, demonstrated

that number of blood vessels was lower in nonhealing than in healing

skins of HO-1 deficient individuals (9.7661.64 versus 11.8461.66 of

vessels per surface unit, P = 0.035). Necrotic areas were also visible

within the wounds. However, the mechanism behind reduced

vascularization is not clear, as we did not observe any significant

differences in concentration of VEGF, SDF-1 or tumor necrosis

factor-a (TNFa) in the tissue lysates prepared from the healing and

nonhealing wounds (data not shown).

Effect of SnPPIX and HO-1 deficiency on production of
inflammatory mediators

Since restoration of tissue integrity and function is strongly

dependent on inflammation, we compared the influence of

subcutaneous injection of SnPPIX and HO-1 deficiency on a

profile of cytokines in the blood serum of mice on the 3rd day post-

wounding, using a protein macroarrays (RayBiotech).

We found that SnPPIX strongly decreased concentrations of

many inflammatory mediators in the blood of wounded mice

(Tab. 1). Some of those effects were possibly HO-1 dependent, as

similar downregulations were observed in HO-1+/2 and HO-12/2

animals. Namely, the coherent results were obtained for soluble

CD40 antigen (sCD40), granulocyte-macrophage colony stimulat-

ing factor (GM-CSF), interferon-c (IFNc), interleukin-2 (IL-2), IL-

17, and KC (murine ortholog of IL-8). One can suppose that

reduction of some of these mediators may potentially contribute to

impairment of wound healing in response to pharmacological or

genetic inhibition of HO-1.

In case of VEGF we observed decreased concentration in HO-

1+/2 and HO-12/2 mice, but not in animals treated with SnPPIX,

where inhibition of HO-1 might be too weak. Tendency for reduced

production of VEGF in HO-1 deficient mice was confirmed by

ELISA performed in cell lysates prepared from the wounded skins 3

days after injury, where VEGF concentration in comparison to HO-

1+/+ animals was decreased to 62.4641.0% (P = 0.075) and to

74.9616.2% (P = 0.071) for HO-1+/2 and HO-12/2, respectively.

Interestingly, we also observed significant decrease in amount of

SDF-1, which reached 44.6621.9% (P = 0.005) in HO-1+/2 and

35.6618.0% (P = 0.002) in HO-12/2 mice, in comparison to values

measured in wild type individuals.

Finally, several effects of SnPPIX were clearly HO-1 indepen-

dent, being opposite to the results of HO-1 deficiency, as

demonstrated for soluble CD30T antigen, chemokine CXCL-10,

IL-10, IL-12 or IL-13. Keeping in mind that both pharmacological

and genetic HO-1 inhibition impairs wound healing, we suppose

that those mediators are not involved in the process studied.

Effect of skin-specific HO-1 overexpression on wound
healing

We decided to investigate whether local overexpression of HO-

1 may facilitate wound healing. Therefore, we created the

transgenic mice (HO-1Tg) bearing human HO-1 gene under

control of the human keratin 14 promoter to overexpress HO-1

specifically in keratinocytes, in the epidermal layer of the skin.

Analysis of the primary keratinocytes isolated from such mice and

cultured in vitro evidenced the upregulated HO-1 expression both

at mRNA level, as shown by RT-PCR (Fig. 4A), and at protein

level, as visualized by immunohistochemical staining (Fig. 4B) and

quantified by ELISA (Fig. 4C). Such overexpression was not

observed in other cell types analyzed (data not shown).

Interestingly, the augmented expression of HO-1 accelerated

the closure of scratch in a monolayer of primary transgenic

keratinocytes, as demonstrated by in vitro wound healing assay

(Fig. 5A). This indicates that HO-1 improves migration of

keratinocytes. Cells isolated from transgenic mice displayed also

a tendency to increased proliferation, however this did not reach

statistical significance (Fig. 5B). Finally, HO-1 overexpression

improved viability of cells kept for 24 h under hypoxic conditions

(1% O2) (Fig. 5C), and slightly increased production of VEGF

induced by hypoxia (Fig. 5D).

Wound healing experiments performed in vivo on HO-1Tg mice

showed that increased expression of HO-1 in keratinocytes is

enough to accelerate significantly the wound closure throughout

the whole process of healing, starting from day 1st (Fig. 6A).

Effect of HO-1 expression on vascularization of wounds
Vascularization of wounds was assessed in 3-month old mice of

different genotypes by immunohistochemical staining of endothe-

lial cells using anti-CD31 antibodies. It turned out that density of

HO-1 Accelerates Wound Healing
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blood vessels, measured three days after injury, reflected very well

the rate of wound healing. Vascularization was the same in the

HO-1+/+ and HO-1+/2 mice, whereas in HO-12/2 animals the

number of vessels was significantly lower. Accordingly, overex-

pression of HO-1 in the HO-1Tg mice was associated with strongly

increased angiogenesis (Fig. 6B).

Figure 3. Closure of cuteneous wounds in the HO-1+/+ (WT), HO-1+/2 (HT), or HO-12/2 (KO) C57BLxFVB mice. A – 3-month old animals.
B – 6-month old animals. Each point represents individual animal (N = 4–5), lines connect the median values. Crossed points represent animals
subjected to euthanasia. * P,0.05, ** P,0.01 in comparison to WT. C – representative pictures showing the wounds in 6-month old animals
immediately after wounding and on day 10th. Scale bar = 5 mm.
doi:10.1371/journal.pone.0005803.g003
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Expression of HO-1 during wound healing in diabetic
mice

Wound healing is impaired in diabetes. We wanted to examine

the expression of HO-1 in diabetic wounds. To this end, we

performed experiments in hyperglycemic db/db mice, which are a

model of human type 2 diabetes. As expected, db/db mice

exhibited delayed wound closure compared to wild type animals

(Fig. 7A). This retardation was evident throughout the whole

process of healing, starting form the 1st day. Wound closure in

diabetic animals was completed 15 days after wounding, 5 days

later than in their wild type counterparts.

Delayed healing was associated with significantly decreased

tissue vascularization. In healthy skins, numbers of vessels in the

wild type and db/db mice were similar, as revealed by CD31

staining. In both cases tissue injury induced angiogenesis, and

vessel density reached the highest level on the 3rd day. However,

this increase was much weaker in diabetic mice compared to wild

type animals (Fig. 7B,C). When wound healing process was

ending, nonfunctional capillaries underwent regression and the

number of vessels decreased in both groups.

Western blot analyses showed that expression of HO-1 was

upregulated after injury both in wild type and db/db mice.

However the time course of this process was different. In the wild

type animals HO-1 expression reached the highest level during

first three days post-wounding, whereas in db/db mice the

maximal HO-1 induction was postponed, with the highest level of

expression on day 8 (Fig. 7D). Thus, during the first phases of

response to injury, expression of HO-1 was weaker in diabetic

than in wild type animals. Such impaired induction of HO-1 we

observed also after intradermal injection of hemin, a substrate and

potent inducer of HO-1 expression. In wild type animals local

injection of hemin resulted in a strong upregulation of HO-1

protein in the healthy skin. In contrast, the same treatment led to a

very weak response in the skin of db/db mice (Fig. 7E).

Effect of HO-1 gene transfer on wound healing in
diabetic mice

Because expression of HO-1 was disturbed in the wounds of

diabetic mice, we investigated whether transfer of HO-1 gene into

the injured tissue may improve the healing process. To address this

question, we produced adenoviral vectors harboring rat HO-1

cDNA (AdHO-1) or control GFP cDNA (AdGFP) under control of

CMV promoter. In vitro experiments evidenced that these carriers

provided high level of transgene expressions (data not shown).

Immediately after injury db/db mice were injected intrader-

mally at four sites around the wounds either with AdGFP or

AdHO-1 vectors (2.36107 IU per wound). This treatment did not

induce any noticeable side effects, as evidenced by unchanged level

of aspartate aminotransferase in the blood of animals (data not

shown). The presence of transduced cells in the skin was confirmed

by GFP expression on the 3rd day in the injured tissue (Fig. 8A).

We did not find GFP-positive cells in any other organ analyzed

(liver, kidney, lungs, spleen), which indicates that transgene

localized only near the site of injection. However, the level of

transgene expression was low and we were unable to detect the

differences in HO-1 protein concentration in tissue lysates

prepared from the wounded skin of AdHO-1 and AdGFP injected

animals on day 3 after injection (Fig. 8B). Importantly, RT-PCR

with primers specific for rat HO-1 evidenced transgene expression

at mRNA level already on day 1 and also on day 3 after injection

(Fig. 8C). This was fully confirmed by quantitative, real-time RT-

PCR (signal undetectable in AdGFP injected wounds; HO-1/EF2

Table 1. List of genes differently expressed in animals with pharmacologically or genetically inhibited HO-1, 3 days after
wounding.

Gene C57Bl WT+PBS C57Bl +SnPPIX C57BlxFVB WT C57BlxFVB HT C57BlxFVB KO

CD40 + 2 + 2 2

GM-CSF + 2 + 2 2

IFNc + 2 + 2 2

IL-2 + 2 + 2 2

IL-17 + 2 + 2 2

KC + 2 + 2 2

VEGF + + + 2 2

Lymphotactin + + + 2 2

CCL-24 + + + + 2

Leptin + + + + 2

CCL-27 + + 2 + +

CXCL-16 + + 2 + +

CXCL-13 + + 2 2 +

IL-3 + + 2 2 +

CD30T + 2 2 + +

CXCL-10 + 2 2 + +

IL-13 + 2 2 + +

IL-10 + 2 2 2 +

IL-12 p70 + 2 2 2 +

Presence of proteins in the serum of mice was analyzed using RayBiotech arrays followed by densitometric measurements. Data are shown as semiquantitative
estimations of signals: + indicates OD.0.1 of value measured for positive control.
doi:10.1371/journal.pone.0005803.t001
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ratio 0.01460.0097 P,0.0132 for AdHO-1 treated wounds on

day 1st). On the other hand, real-time RT-PCR with primers

recognizing both murine and rat HO-1, indicated the tendency for

increased expression of total HO-1 mRNA, but the differences

between AdGFP and AdHO-1 injected mice did not reach

statistical significance. Namely, HO-1 to EF2 reference gene ratio

was 0.05260.020 in AdGFP and 0.07160.031 in AdHO-1

(P = 0.056) on day 1 and 0.05460.026 in AdGFP and

0.06560.009 (P = 0.230) on day 3. Possibly, transgene expression

is masked by significant induction of endogenous enzyme in

response to injury, as the HO-1/EF2 ratio in healthy skin was

0.01360.012. It appears however, that local expression of HO-1

in the transduced cells can be upregulated. This supposition is

supported by measurement of HO-1 protein at later time points,

when expression of endogenous HO-1 is already diminished.

Thus, although we observed similar upregulation of HO-1

expression on the 3rd day post-wounding both in AdGFP and

AdHO-1 treated wounds, the higher HO-1 protein concentration

on 14th day was observed in AdHO-1 injected wounds (Fig. 8B).

Despite the low level of transgene expression, wound closure

analysis showed accelerated wound healing in AdHO-1 injected

mice, visible during the earlier phases of healing, between days 1

and 7 after injury (Fig. 9A). Moreover, improved wound healing

was accompanied by increased number of blood vessels within the

wounds, as shown by staining for CD31 (Fig. 9B,C). On the 3rd

day, much stronger vascularization was observed in AdHO-1

injected wounds than in AdGFP treated ones. The number of

capillaries decreased on 14th day post-wounding. Taken together,

HO-1 gene transfer may improve wound healing in db/db mice,

which is associated with increased blood vessel formation.

Discussion

HO-1 is a cytoprotective enzyme playing a role in regulation of

angiogenesis and in modulation of immune response [11–

17,23,24]. Its involvement in proper function of cardiovascular

system, efficient neovascularization of ischemic tissues or progres-

sion of tumors is relatively well known [24]. However, significance

of HO-1 in wound healing has not been established. Our study

demonstrates that: i) pharmacological or genetic inhibition of HO-

1 impairs healing of cutaneous wounds in mice; ii) induction of

HO-1 in response to injury is impaired in diabetic mice, in which

wound healing is delayed; iii) this delay may be partially reversed

by HO-1 overexpression, the effect associated with increased

vascularization of the wounded tissue.

Wounding leads to hemolysis and release of toxic free heme,

which is a potent inducer of HO-1 expression, and a physiologic

trigger to start inflammatory processes [25]. It has been suggested

that HO-1 could be involved in the control of wound healing and

might serve as a protective agent against oxidative and

Figure 4. HO-1 overexpression in murine keratinocytes. A – Expression of human HO-1 mRNA in the skin of HO-1+/+ and transgenic HO-1Tg

mice C57BL mice. Electrophoresis of RT-PCR products (2% agarose gel). EF2 was used as a housekeeping gene. One of 4 similar analyses. B –
Representative pictures of immunocytofluorescent staining for HO-1 in primary murine keratinocytes isolated from newborns and cultured in vitro.
Scale bar = 100 mm. C – Concentration of HO-1 in lysates of primary murine keratinocytes isolated from newborns and cultured in vitro. ELISA. Each
bar represents mean+SD of 6 measurements. *** P,0.001 in comparison to HO-1+/+.
doi:10.1371/journal.pone.0005803.g004
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inflammatory insults [18,25]. This suggestion has been supported

by observation that pharmacological induction of HO-1 was

associated with a significant acceleration of wound healing and

attenuation of the inflammatory response in injured corneal

epithelium [26]. Also a clinical analysis of sickle cell anemia

patients, which showed a connection between a higher HO-1

activity, reflected by serum bilirubin, and protection against leg

ulcers might suggest a role of HO-1 in wound healing [27].

In our model of excisional wound, the rapid upregulation of

HO-1 mRNA and protein was observed upon injury (Fig. 2A),

corroborating the earlier reports [18,19]. To elucidate the role of

HO-1 induction we applied two models i) pharmacological

inhibition of HO-1 using SnPPIX and ii) HO-1 deficient mice.

In both cases decrease in HO-1 activity impaired wound healing.

In mice injected subcutaneously with SnPPIX or in HO-1

deficient individuals, the delay was statistically significant already

on the first day after wounding, while in case of intraperitoneal

injections of SnPPIX it became apparent on the 3rd day. Probably

after s.c. application the inhibitor was instantaneously in contact

with the injured tissues while after i.p. delivery the saturation point

of SnPPIX in the organism was reached later. It should be also

kept in mind that SnPPIX, being a competitive inhibitor of HO-1,

may in the same time induce HO-1 expression. Therefore it

decreases enzymatic activity of HO-1, but usually is unable to

block it completely. We suppose that this is a reason of much

weaker effect of pharmacological than genetic inhibition of HO-1

on wound healing.

Interestingly, the effect of HO-1 deficiency increased with age

and was much stronger in 6-month old than in 3-month old

animals (Fig. 3A,B). Moreover, we did not observe significant

delay in wound closure in younger heterozygous mice, whereas the

effect of decreased level of HO-1 in older heterozygotes was

strong, leading to complete inhibition of reepithelialization and

formation of skin lesions in some individuals. Similar effects of

aging in HO-1 deficient mice have been observed earlier in studies

on endotoxemic stress [28], kidney inflammation [29], fibrosis and

hepatic injury [30]. Disease symptoms typical for HO-1 deficiency,

including anemia, iron-loading, lipid peroxidation, and chronic

inflammation, that were not detectable at 6–9 weeks of age,

became first evident by around 20 weeks [28].

Noteworthy, anemia is known to impair wound healing, as

demonstrated in older people [31] or in sickle cell disease patients

[27]. It is also a very frequent complication of diabetes, occurring

in about 20% of patients, in whom it constitutes a significant

additional burden, accompanied by systemic inflammation [32].

Increasing severity of symptoms in aging mice may suggest that

effect of HO-1 deficiency on wound healing is not only direct, but

may be also indirect, resulting from progressing hemolytic anemia

or augmented injury of tissues caused by continues inflammatory

reaction and oxidative stress.

While HO-1 inhibition impairs healing of excisional wounds,

overexpression of HO-1 may facilitate this process. We demon-

strated that tissue-specific upregulation of HO-1 in keratinocytes is

enough to accelerate wound closure and augment vascularization.

It seems important, as keratinocytes can be relatively easily

isolated from patients and expanded in vitro. Such keratinocyte

preparations are already used in clinic for treatment of burn

injuries [33]. Our study may suggest that pharmacological HO-1

upregulation or gene delivery of HO-1 to the cultured cells could

further improve their therapeutic potential. Indeed, as we have

shown previously, HO-1 upregulates VEGF synthesis and

angiogenic potential of cultured human keratinocytes [34]. The

application of HO-1 by-products can be also considered, as both

CO and biliverdin were demonstrated to upregulate VEGF

production in endothelial cells [13] and keratinocytes [24],

respectively.

Importantly, we found that expression of HO-1 can be reduced

in diabetic animals. We observed impaired induction of HO-1 in

response to hemin in the skin of db/db mice, when compared to

the wild type counterparts. Western-blot analysis suggested also

some delay in induction of HO-1 in wounded skin. Interestingly,

the reduced response to hemin has been already observed in

myocardium of diabetic rats [35].

Data describing effect of diabetes on HO-1 expression are,

however, conflicting. It has been demonstrated, especially in

chemically induced diabetes in alloxan- or streptozotocin-injected

animals, that HO-1 is upregulated in different cell types, soon after

induction of hyperglycemia [36–40]. This was possibly associated

Figure 5. Activity of primary murine keratinocytes isolated
from HO-1+/+ and HO-1Tg newborns and cultured in vitro. A –
Migration of cells measured by time of gap closure in the presence of
hydroxyurea (10 mmol/L). Scratch assay. B – Spontaneous proliferation
of cells cultured for 48 h. BrdU incorporation assay. C – Viability of cells
cultured in hypoxia (1% O2) for 24 h. MTT reduction assay. D –
Concentration of VEGF in media harvested from cell cultures after a
24 h incubation. Each bar represents mean+SD of 3–5 experiments. *
P,0.05, ** P,0.01 in comparison to HO-1+/+.
doi:10.1371/journal.pone.0005803.g005

HO-1 Accelerates Wound Healing

PLoS ONE | www.plosone.org 8 June 2009 | Volume 4 | Issue 6 | e5803



with increased oxidative stress, as HO-1 upregulation could be

reduced by antioxidants [37]. However, it has been suggested that

diabetes-induced oxidative stress is, in part, due to pro-oxidant

activity of HO-1, mediated by increased redox-active iron [41].

Induction of HO-1 was also reported in spontaneously diabetic

rats [42] and in type 2 diabetic patients, especially those with

nephropathy or atherosclerosis [43–45].

On the contrary, there are many reports demonstrating

downregulation of HO-1 expression in diabetes. Thus, the

impaired levels of HO-1 were found within the ciliary bodies

[46], cardiac tissue [35] or aortas [47–49] of streptozotocin-

hyperglycemic rats and in the brain of Goto-Kakizaki rats [50].

Reduced basal expression of HO-1 was also demonstrated in type

2 diabetes patients in retinal pigment epithelium [51], leukocytes

[52], and skeletal muscles [53].

Experiments carried out in animals treated with HO-1 inducers

or inhibitors suggest that HO-1 may play a beneficial role in

diabetes, attenuating the hyperglycemia-related complications.

Thus, pharmacological activation of HO-1 in streptozotocin-

injected rats led to protection of endothelial cells [47], restoration

Figure 6. A – Closure of cutaneous wounds in the HO-1+/+ wild type and HO-1Tg mice. Each bar represents mean+SD. N = 10 animals per
group. * P,0.05, ** P,0.01, *** P,0.001 in comparison to HO-1+/+ mice. B – Representative pictures demonstrating CD31 staining of endothelial cells
in the wounded skin (3 days after wounding) in the 3-month old mice of different genotypes. Scale bar = 100 mm. C – Number of vessels in wounded
skin (3 days after wounding, CD31 staining) in the 3-month old mice of different genotypes. Each bar represents analysis of samples from 5–8 animals.
Data are presented as mean+SD. * P,0.05 in comparison to HO-1+/+ animals.
doi:10.1371/journal.pone.0005803.g006
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Figure 7. A – Closure of cutaneous wounds in the wild type (WT) and db/db diabetic C57BL mice. Each bar represents mean+SD; N = 10
animals per group. ** P,0.01, *** P,0.001 in comparison to WT animals. B – Number of vessels in healthy and wounded skin in the WT and db/db
mice. Each bar represents analysis of samples from 10 animals. Data are presented as mean+SD. * P,0.05 in comparison to healthy skin (day 0); #
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of normal rates of endothelial progenitor cell recruitment [49], and

decreased production of proinflammatory cytokines after ischemia

reperfusion stress [35]. This could be associated with higher

concentration of serum bilirubin and reduced production of

reactive oxygen species [47]. Similar finding, namely decreased

oxidant production and oxidative-mediated injury was reported in

patients with high HO-1 expression [44,48].

Our data indicate for the first time that local delivery of HO-1

transgene by means of adenoviral vectors was sufficient to improve

healing of excisional wounds in diabetic db/db mice, despite a low

transduction efficacy. Unfortunately, we were unable to detect a

difference in concentration of HO-1 protein in lysates of injured

tissues between animals treated with therapeutic HO-1 or control

GFP cDNAs on the 3rd day after gene transfer. Possibly the

expression of transgene was masked by induction of endogenous

HO-1, induced by wounding, inflammatory response to adenovi-

ral vectors and by GFP expression [54]. The ELISA assay used for

measuring the HO-1 protein in tissue lysates appears to be not

sensitive enough to detect a subtle difference. We demonstrated,

however, that HO-1 level was sustained in AdHO-1 treated

animals on day 14th, when endogenous HO-1 was already

attenuated, which implies a successful gene delivery. Expression

of GFP in control wounds and presence of rat HO-1 mRNA in

AdHO-1 treated wounds, detected also on 3rd day, confirms that

adenoviral gene transfer was effective. It seems, that even such

local overexpression of HO-1 can still improve wound closure and

vascularization. Thus, a similar strategy could be proposed for

diabetic patients suffering from non-healing ulcers.

There are several possible mechanisms underlying the influence

of HO-1 on healing of wounds, since its products exert

proangiogenic, anti-apoptotic, cytoprotective and anti-inflamma-

tory effects. One potential pathway is an inhibition of production

of inflammatory cytokines. This may facilitate the wound healing

and increase the reepithelialization, as demonstrated in several

reports [55–57]. In our model, however, the effect of HO-1 on

inflammatory response is not so clear. Analysis of blood collected

three days after wounding showed that concentrations of many

cytokines or growth factors are higher in mice of normal level of

HO-1, whereas HO-1 deficiency or inhibition results in decreased

cytokine production. Such relation was observed for sCD40

antigen, IL-2, KC, IL-17, IFNc, and GM-CSF. One can suppose,

that the differences observed do not result from a direct effect of

HO-1 on cytokine expressions, but are rather the consequences of

different rate of wound closure, where at the same time the

progression of healing is delayed in animals of lower HO-1

activity. Experiments carried out in HO-1 overexpressing mice

seem to confirm lack or relatively weak influence of HO-1 on the

cytokine production in response to wounding, as level of cytokines

at the wound site was more dependent on wounding phase that on

HO-1 activity, while production of inflammatory cytokines in

transgenic keratinocytes was similar to control cells (data not

shown).

It has been also postulated that HO-1 is beneficial in wound

healing, due to protection of cells from toxic effects of reactive

oxygen species, which are intensively generated at the site of

injury, especially during first two days, in the inflammatory phase

[18,58]. Such a protective effect of HO-1 was demonstrated in

many models, including ischemia/reperfusion injury [59], ciga-

rette smoke-induced airway mucus hypersecretion [60], nephrop-

athy [61] or corneal inflammation [26].

Significance of reduction of oxidative stress is indicated by

experiments and clinical trials in which antioxidants improved

wound healing, leading to increased epithelial cell proliferation

and augmented angiogenesis [62–64]. Role of HO-1 in wounded

skin may be especially important, as in cutaneous wounds the

expressions of other antioxidative enzymes such as superoxide

dismutase, glutathione peroxidase, glutathione-S-transferase, or

catalase, as well as concentrations of ascorbic acid, vitamin D, and

glutathione were significantly decreased [65].

HO-1 may also directly influence keratinocytes, facilitating their

migration, improving survival in a stressful conditions of oxidative

stress or hypoxia and tending to augment their proliferation.

Cytoprotective and anti-apoptotic effects of HO-1 is very well

documented [24]. Similarly, the important role of HO-1 in

migration has been already shown in endothelial cells [13], and

endothelial progenitors [17]. It seems that pro-migratory effect

HO-1 depends on CO-induced phosphorylation and activation of

vasodilator-activated phosphoprotein (VASP), a cytoskeletal-asso-

ciated protein involved in motility, which is a downstream target

for SDF-1 or IL-8 [17]. Recent study on microvascular endothelial

cells has revealed that CO might regulate VASP phosphorylation

and vascular cell migration also in diabetic conditions [66]. Thus,

it seems that HO-1 dependent increase in migration and/or

survival of keratinocytes and fibroblasts might contribute to

improved wound closure.

One of the crucial processes influencing tissue regeneration is

angiogenesis. Thus, disturbed blood vessel formation, for example

in mice with inhibited VEGF production in epidermal keratino-

cytes leads to delay in wound closure [5,67]. Several studies,

including those performed in diabetic animals, have demonstrated

the importance of neovascularization not only in excisional

wounds [7–9,17,68], but also in burn injuries [69] or hind limb

ischemia [70]. Thus, induction of angiogenesis by VEGF [4] or

basic fibroblast growth factor (bFGF) [71] can be proposed as a

therapeutic strategy improving wound healing. Importantly,

induction of HO-1 in human keratinocytes upregulates their

angiogenic potential and may restore the VEGF production

impaired by high glucose level [33].

HO-1 may augment tissue neovascularization through in-

creased production and/or activity of proangiogenic mediators,

such as VEGF, monocyte chemotactic protein-1 (MCP-1),

transforming growth factor-1 (TGF-b) or SDF-1, and decreased

synthesis of anti-angiogenic agents, like soluble VEGF receptor 1

(sVEGFR1), soluble endoglin (sEng) or IL-10 [11,13,17,24,33].

Hence, HO-1 gene transfer to the rat ischemic muscle [15] or to

pancreatic carcinoma [16] can improve angiogenesis.

As expected, we observed impaired vascularization both in HO-

1 deficient mice and in db/db mice, in which induction of HO-1

upon injury was weaker. Importantly, HO-1 gene transfer, leading

to faster wound closure, resulted also in significantly augmented

neovascularization in diabetic animals. Similarly, overexpression

of HO-1 in keratinocytes in transgenic animals was associated with

increased number of blood vessels in injured tissue. This suggests

that beneficial role of HO-1 in wound healing may result from its

P,0.05 in comparison to WT animals. C – Representative pictures showing blood vessels in healthy and wounded skin of WT and db/db mice.
Immunohistochemical staining for CD31. Scale bar = 100 mm. D – Western blot analysis of HO-1 protein expression in healthy and wounded skin of
the WT and db/db mice. One of 5 similar blots. E – Western blot analysis of HO-1 protein expression in healthy skin of the wild type and db/db mice
24 h after intradermal injection with hemin (10 mg/kg of body weight). One of 2 similar blots. Tubulin was used as a housekeeping gene to control
the protein loading.
doi:10.1371/journal.pone.0005803.g007
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Figure 8. Expression of GFP and HO-1 transgenes in skin. A – Representative pictures showing the expression of GFP in the wounded skin of
db/db diabetic mice, 3 days after local injection with AdGFP adenoviral vectors (2.36107 IU). Bright field and fluorescence microscopy. Scale
bar = 100 mm. B – Concentration of HO-1 protein in tissue lysates of healthy and wounded skin of db/db mice, measure on the 3rd and 14th days after
AdGFP and AdHO-1 vector delivery. Each bar represent mean+SD for 5–8 animals. # P,0.05 in comparison to healthy skin; * P,0.05 in comparison to
AdGFP injected animals. C – RT-PCR analysis of rat HO-1 mRNA and total (rat/murine) mRNA in wounded skin, measured on the 1st and 3rd days after
AdGFP and AdHO-1 vector delivery. Electrophoresis of RT-PCR products in 2% agarose gel. NC-negative control, HS-healthy skin.
doi:10.1371/journal.pone.0005803.g008
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proangiogenic activity. We confirmed decreased level of VEGF in

the blood of HO-1 deficient animals three days after wounding,

and tendency for reduced VEGF production in the wounded skin.

Additionally, overexpression of HO-1 in keratinocytes was

associated with slight, but statistically significant increase in VEGF

synthesis in hypoxia. Stimulatory effect of HO-1 was also reported

for hypoxia-induced VEGF expression in human keratinocytes

[33]. Interestingly, in mice injected with SnPPIX, we did not

observe decreased expression of VEGF in the blood (Table 1).

Moreover, there was no difference in expression of VEGF in

wounded skin and in number of blood vessels (data not shown).

This may suggest that many effects of SnPPIX are HO-1

independent and that inhibition of wound closure by SnPPIX

and by HO-1 deficiency relies on distinct mechanisms. Similar

observations were reported in studies on effects of pharmacological

or genetic HO-1 inhibition in cancer progression [72].

We found the reduced concentration of soluble CD40 antigen

and IL-17 in HO-1 deficient mice. Both proteins may stimulate

angiogenesis [73,74]. Similar decrease was observed for proangio-

genic IL-2 and KC, the cytokines which can accelerate the wound

Figure 9. Effect of HO-1 transgene delivery on wounds. A – Effect of HO-1 transgene delivery on wound closure in the db/db diabetic mice.
Adenoviral vectors (2.36107 IU in 100 mL of PBS) were injected subcutaneously near the wound immediately after injury. Control animal were
injected with the same amount of AdGFP carriers. Each bar represents mean+SD; N = 5–8 animals per group. * P,0.05 in comparison to control,
AdGFP treated mice. B – representative pictures showing blood vessels in the wounded skin of db/db mice injected with AdHO-1 or AdGFP vectors.
CD31 staining of the skin cross-section. Scale bar = 100 mm. C – Number of vessels in wounded skin in the db/db mice injected with AdHO-1 or
AdGFP, on the 3rd and 14th days after wounding. Analysis of specimens stained for CD31 to visualize endothelial cells. Each bar represents mean+SD
values for 5–8 animals. * P,0.05 in comparison to control, AdGFP injected animals.
doi:10.1371/journal.pone.0005803.g009
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healing process through stimulating the proliferation of dermal

fibroblasts or through augmenting the maturation of granulose

tissue, respectively [75,76]. Finally low activity of HO-1 led to

decreased level of GM-CSF, the proangiogenic growth factor

which facilitates wound contraction and induces keratinocyte

proliferation and migration [77]. One could suggest that reduction

of those mediators might contribute to wound healing impairment

observed in HO-1 deficient mice.

In summary, our study indicates that activation of HO-1

accelerates wound healing in normoglycemic and diabetic mice,

what can be associated with augmented angiogenesis, increased

migratory capacities and improved survival of keratinocytes.

Overexpression of HO-1 by in vivo gene transfer or ex vivo

transduction of keratinocytes may be proposed as a strategy for

improvement of wound healing in diabetic patients.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the Local

Ethical Committee for Animal Research at the Jagiellonian

University.

Reagents
SnPPIX was from Frontier Scientific (Carnforth, UK); Mouse

Cytokine Antibody Array kit from Ray-Biotech (Norcross, GA);

Anti-mouse CD31 and rhodamine-conjugated rat anti-mouse

antibodies from BD Biosciences (Franklin Lakes, NJ); Rabbit anti-

HO-1 antibody from Stressgen (Ann Arbor, MI); goat anti-rabbit-

HRP antibody from CellSignaling Technology (Danvers, MA);

Dispase, trypsin-EDTA, glutamine, sodium pyruvate, nonessential

amino acids, penicillin, streptomycin, b-mercaptoethanol,

DMEM, and FCS from Gibco (Carlsbad, CA); Epidermal

Keratinocyte Medium from CELLnTEC (Bern, Switzerland);

Kit for ASPAT measurement from Biomerieux (Marcy l’Etoile,

France); ELISA for VEGF from R&D (Minneapolis, MN); QIAzol

from Qiagen (Valencia, CA); Turbo DNA Free Kit from Ambion

(Austin, TX); M-MLV and oligo(dT)15 primers from Promega

(Madison, WI); DNAzyme-II DNA polymerase from Finnzymes

(Espoo, Finland); Cell Proliferation Kit from Roche (Basel,

Switzerland); Adeno-X Virus Production Kit, Adeno-X Virus

Purification Kit, and Adeno-X rapid titer ELISA from Clontech

(Mountain View, CA); All other reagents were from Sigma-

Aldrich (St. Louis, MO). All materials were approved for

investigational-use only.

Cell culture
HaCaT cells (immortalised human keratinocytes), kindly

provided by Dr. Robert Fusening (Heidelberg University,

Germany), were grown in DMEM medium, supplemented with

FBS (10%), penicillin (100 U/ml) and streptomycin (10 mg/ml).

Isolation and culture of primary keratinocytes
Skins were excised from 1-5-day old pups, purified of fat,

washed in PBS with penicillin (100 U/ml) and streptomycin

(100 mg/ml), and incubated overnight with dispase (6 U/ml).

Epidermis was removed with forceps, placed in 0.05% trypsin-

EDTA solution for a few minutes, and neutralized using complete

DMEM with 10% FCS. Cell suspension was centrifuged at 200 g

for 5 minutes at room temperature. The isolated keratinocytes

were cultured in serum free CnT-07 PCT Epidermal Keratinocyte

Medium.

Detection of human and rat HO-1 mRNA in the skin
RNA was extracted from homogenized healthy or wounded

skins using QIAzol and purified with Turbo DNA FreeTM kit.

Two micrograms of total RNA was used for reverse transcription

with M-MLV and oligo(dT) primers. PCR was performed with

primers for human HO-1 (F: 59-GGAGGTCATCCCCTACA-

CACC-39; R: 59-CTGGGAGCGGGTGTTGAGTG-39), and

constitutive human EF2 (F: 59-GACATCACCAAGGGTGTG-

CAG-39; R: 59-TCAGCACACTGGCATAGAGGC-39) or with

primers for rat HO-1 (F: 59-AGAGTCCCTCACAGACA-

GAGTTT-39; R: 59-CCTGCAGAGAGAAGGCTACATGA-39),

murine/rat HO-1 (F: 59-CTTTCAGAAGGGYCAGGTGWCC-

39; R: 59-GTGGAGMCGCTTYACRTAGYGC-39) and consti-

tutive murine EF2 (F: 59GACATCACCAAGGGTGTGCAG-39;

R: 59-TCAGCACACTGGCATAGAGGC-39). Real-time PCR

reaction was done in cycles: 95uC for 30 s, 60uC for 60 s, 72uC for

45 s; data were analyzed with DCt method. In regular PCR the

reaction was done in cycles: 95uC for 45 s, 60uC for 30 s, 72uC for

60 s. We did 25 cycles for total (murine/rat) HO-1, and 35 cycles

for rat HO-1.

Cell proliferation assay
Spontaneous cell proliferation was assessed by BrdU incorpo-

ration colorimetric assay performed according to the manufactur-

er’s protocol. Cells (5,000 per well) were seeded in 96-well plate

and assayed 48 h later.

Migration assay
Cells were grown to full confluence and treated with 10 mM

hydroxyurea to block proliferation. A scratch was generated with a

pipette tip. Photographs were taken at different time points, always

from the same place, and analyzed using ImageJ programme

(National Institute of Health, http://rsb.info.nih.gov/ij).

MTT reduction assay
Thiazolyl blue tetrazolium bromide solution was added to the

cells (0.5 mg/ml) for 0.5–1 h. Then, medium was removed and

100 ml of 2-propanol with 5 mM HCl were added to dissolve the

formazan crystals. Optical density was measured at 560 nm.

Preparation of adenoviral vectors
Adenoviral vectors containing rat HO-1 cDNA (Ad-HO1) were

kindly gifted by Dr. Gisa Tiegs (Erlangen, Germany). Control

vectors harboring GFP cDNA (Ad-GFP) were produced using the

Adeno-X system. Both vectors were propagated in 293 cells,

purified using Adeno-X Virus Purification kit, and titrated with

Adeno-X rapid titer ELISA kit.

Animals and wound healing model
Mice were anesthetized with isoflurane, wiped with 70%

ethanol and shaved. Once the skin was exposed, two full-thickness

(including panniculus carnosus) circular wounds (4 mm in

diameter) on each animal were created using disposable biopsy

punch. Each wound was photographed every day and analyzed

using ImageJ software. For biochemical or immunohistochemical

analysis wounded skin, together with a margin of healthy skin, was

excised using 8 mm-diameter biopsy punch.

Injection with SnPPIX. Immediately after wounding, mice

(C57Bl/6, 3-month old) were divided into four groups and injected

daily either intraperitoneally or subcutaneously with SnPPIX

(45 mmol/kg of body weight, dissolved in 0.2 M NaOH), or with a

vehicle (0.2 M NaOH in PBS).
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Adenoviral-mediated HO-1 gene transfer. Mice (db/db,

3-month old) were injured and injected intracutaneously at 3

points near the wound with AdGFP or AdHO-1 (100 ml,

2.36108 IU/ml per wound). Each mouse received the same

vector/vehicle in both wounds to avoid possible effects from

leakage.
HO-1 induction in skin in mice after injection with

hemin. C57BL wild type and C57BL db/db mice were

injected intradermally with hemin (10 mg/kg of body weight).

Animals were sacrificed after 24 hours and HO-1 expression was

determined by immunoblotting.

Protein isolation and western blotting
Skin was homogenized, lysed in 200 ml of ice-cold lysis buffer

(PBS with 1% Triton X-100, 0.1 mg/ml PMSF, 1 mg/ml leupeptin

and 1 mg/ml aprotinin), incubated on ice for 30 minutes, and

centrifuged at 10,000 rpm at 4uC for 10 min. Supernatants were

stored at 280uC. Samples were subjected to SDS-PAGE and

immunoblotting as described earlier [13].

CD31 staining
The wounds were cut into 8 mm slides. Cryosections were dried

and blocked for at least 1 h with 10% goat serum, 0.05% Tween

and 0.1% Triton 6100 in PBS. Either rat anti-mouse CD31 or

isotypic antibodies 1:100 in 106 diluted blocking buffer were

applied for 1.5 h and then sections were washed with PBS.

Secondary antibodies conjugated with rhodamine 1:1000 in PBS

were applied for 0.5 h and the sections were washed with PBS.

Slides were analyzed under the fluorescent microscope. Capillaries

were counted in panniculus carnosus layer, in the direct vicinity of

granulation tissue, at 4006magnification.

Mouse cytokine antibody array
Cytokines in blood serum were analyzed using Ray-Biotech

Mouse Cytokine Antibody Array kit, according to vendor’s

protocol.

Statistical analysis
Statistical analysis was done using Student’s t test or ANOVA

followed by Tukey test. Data are presented as a mean6SD of 3–6

experiments.
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