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HMGB1, a highly conserved non-histone nuclear protein, is widely expressed in
mammalian cells. HMGB1 in the nucleus binds to the deoxyribonucleic acid (DNA) to
regulate the structure of chromosomes and maintain the transcription, replication, DNA
repair, and nucleosome assembly. HMGB1 is actively or passively released into the
extracellular region during cells activation or necrosis. Extracellular HMGB1 as an alarmin
can initiate immune response alone or combined with other substances such as nucleic
acid to participate in multiple biological processes. It has been reported that HMGB1 is
involved in various inflammatory responses and autoimmunity. This review article
summarizes the physiological function of HMGB1, the post-translational modification of
HMGB1, its interaction with different receptors, and its recent advances in rheumatic
diseases and strategies for targeted therapy.
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INTRODUCTION

High mobility group proteins were first extracted and identified from the bovine thymus in 1973 (1).
Then it was further divided into HMGA, HMGB, and HMGN3 families (2), and among them, the
HMGB family included high mobility group box 1 (HMGB1), HMGB2, and HMGB3. HMGB1 is
highly conserved in evolution, with 99% homology between rodents and human amino acid
sequences (3). In the 1990s, the DNA binding domain in the amino acid sequence of HMGB1 was
found to play an essential role in maintaining the structure of chromatin and regulating gene
transcription (4, 5). In some cases, HMGB1 can be transferred from the nucleus to the cytoplasm
and extracellular to perform immunological functions (6). Extracellular HMGB1 as a danger-
associated molecular pattern, alone or with partners, activates multiple receptors such as the
receptor of advanced glycation end-products (RAGE), toll-like receptor 2 (TLR2), and TLR4 to
participate in proliferation, tissue repair, inflammation, and cell death (7). Furthermore, HMGB1 is
closely related to sterile inflammation and can promote autoimmune diseases as an endogenous
adjuvant (8). Because of its potential povital function, increasing research has been paid to the role
of HMGB1 in inflammation and autoimmune diseases. Various strategies targeting HMGB1 have
also been developed, including neutralizing antibodies, truncated HMGB1 box A protein, soluble
RAGE (sRAGE), and small molecule inhibitors. This review mainly describes the new advances of
HMGB1 in rheumatic diseases.
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BIOLOGICAL FUNCTION OF HMGB1

Structural Characteristics of HMGB1
HMGB1 is highly conserved in evolution, and the only difference
between human and murine in the amino acid sequence of
HMGB1 is that human Glu189 and Asp202 is replaced
by Asp189 and Glu202 in mice, respectively (7). HMGB1
contains 215 amino acid residues, including two nuclear
localization sequences (NLS1, 27-43AA; NLS2, 178-186AA), two
homologous L-type DNA-binding regions (A-box and B-box),
and one acidic C-terminal tail (containing aspartic acid and
glutamic acid repeats) (Figure 1). The B box of HMGB1
showed a pro-inflammatory effect, while the A box displayed an
anti-inflammatory effect by the antagonism of the B box (9, 10).
The A box and B box of HMGB1 are positively charged with three
helices, they are both capable of nonspecific binding to DNA. In
addition, HMGB1 has a DNA secondary structure-specific
binding site being an essential structure for binding deformed
DNA, which can loosely bind to the small slot of DNA in a non-
sequence-dependent manner (11). The structural characteristics of
HMGB1 enable it to play a role in the nucleus and allow it to be
released into the cytoplasm and extracellular to perform more
complex functions.
Frontiers in Immunology | www.frontiersin.org 2
Different Modifications and Redox
State of HMGB1
HMGB1 can be modified post-translationally by different
enzymes. Typical modifications include acetylation,
phosphorylation, methylation, adenosine diphosphate (ADP),
ribosylation, and N-glycosylation (11). The first three
modifications affect the binding ability of HMGB1 with DNA,
and modification by poly (ADP-Ribosyl) results in the inhibition
of efferocytosis of macrophages (12). In activated monocytes, the
acetylation of lysine residues in NLS resulted in the translocation
of HMGB1 from the nucleus to the cytoplasm (13, 14). Classical
protein kinase C-mediated phosphorylation of NLS was also
crucial for cytoplasmic localization of HMGB1 (15). In addition,
methylation of HMGB1 leading to the cytoplasmic translocation
of HMGB1 was observed in neutrophils (16). The cytoplasmic
HMGB1, lacking a leader sequence, could only be secreted into
the extracellular region by the non-classical lysosomal
pathway (6).

In addition, there are three cysteine residues (Cys23, Cys45,
and Cys106) in the amino acid sequence of HMGB1, and the
redox status of HMGB1 depends on the form of the three
cysteine residues in different tissue microenvironments (17).
Cys23 and Cys45 can form disulfide bonds, while Cys106 can
only be in a reduced state or be oxidized alone. So, there are three
forms of isomers (Figure 1). When the three cysteine residues
were in the thiol state (reduced type), HMGB1, by interacting
with CXCL12, could induce leukocyte chemotaxis via CXCR4 (7,
18). When Cys23 and Cys45 formed disulfide bonds and Cys106
was in reduced form, HMGB1 could interact with TLR4 to exert
a pro-inflammatory effect (19). Mutation without forming
disulfide bonds or further oxidation of the disulfide isoform
could abolish the ability of HMGB1 to induce cytokine
production (20). When Cys23, Cys45, and Cys106 were all
oxidized, the function of sulfonated HMGB1 could not induce
inflammation (7). This is consistent with the situation that
Cys106 is in the reduced state during necrosis and in the
oxidation state during apoptosis. Furthermore, homo-
dimerization of HMGB1 at Cys106 has been found in the
nucleus and extracellular, but its biological significance
remains unclear (21).

Release Characteristics of HMGB1
HMGB1 is located in the nucleus and can be released during cell
activation or death. Activated immune cells [macrophages,
dendritic cells (DCs)] and tissue cells (endothelial cells
neurons, astrocytes) actively secreted HMGB1 (21). The release
of HMGB1 from the nucleus to the cytoplasm depends on the
activation of the Janus kinase (JAK) signal transducer and
activator of transcription 1 (STAT1) pathway, or the balance
of the histone acetylase (HAT) activity and histone deacetylase
(HDAC) activity, or the formation of disulfide HMGB1 via
peroxidase I and II (14, 21). Then HMGB1 was packaged in
vesicles and released extracellular via lysosomal pathway (6). In
addition, different forms of cell death could cause the release of
HMGB1. Necrotic cells could passively release large amounts
of disulfide HMGB1. Pyroptosis, characterized by the activation
FIGURE 1 | Structure and redox reaction of HMGB1. HMGB1 is composed of
A box, B box, c-terminal tail, two nuclear localization sequences (NLS1, 27-43
AA; NLS2, 178-186 AA), and two homologous L-type DNA-binding regions.
HMGB1 has three cysteine residues, Cys23, Cys45, and Cys106, and has
three different redox forms. When all three cysteine residues are in reduced
form, the main extracellular function of HMGB1 is chemotaxis. When Cys23
and Cys45 form intramolecular disulfide bonds, and Cys106 is in reduced form,
the main extracellular function of HMGB1 is to promote the production of
proinflammatory factors. When all three cysteine residues are oxidized, the main
extracellular function of HMGB1 is unable to induce inflammation. NLS, nuclear
localization sequences; AA, amino acid. Cys, cysteine.
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of inflammasome and caspase-1/caspase-11, could produce
reduced and disulfide isomers of HMGB1 (22, 23). Under
normal circumstances, apoptotic cells did not release HMGB1.
When phagocytes failed to clear the apoptotic cells, secondary
necrosis occurred, which resulted in the release of sulfonated and
disulfide HMGB1, so this process was also harmful to the host
(24, 25). In addition, activated platelets produced large amounts
of disulfide isomers of HMGB1 to promote thrombosis and
neutrophil activation (26–28) (Figure 2).

Interaction With Different Receptors and
Cleavage of HMGB1
A total of 15 types of HMGB1 receptors were described in the
literature (29). RAGE was the first HMGB1 receptor to be
discovered. HMGB1 with other pro-inflammatory partner
molecules could interact with RAGE to enter the endosomal
and lysosomal system, then HMGB1 disrupted the lysosomal
membrane at low pH, and the partner molecules bound to
homologous receptors in the cytosol to mediate the synthesis
of pro-inflammatory mediators (21). HMGB1 could also interact
with TLRs (TLR2, TLR4) to activate the NF-kB and IRF
pathways and then produce cytokines and chemokines for the
inflammation and immune response (30). When HMGB1 bound
to the TIM-3 on DCs, it blocked the anti-tumor effects of DNA
vaccines and chemotherapy drugs (30). HMGB1 also
synergistically stimulated N-methyl-D-aspartate receptor
(NMDAR) receptors with IL-1b, leading to calcium influx in
the central nervous system or peripheral tissues (31). The
HMGB1-CXCR12 complex could also bind to CXCR4 to
recruit inflammatory cells to damaged tissues (18). HMGB1
promoted the interaction between RAGE on endothelial cells
and Mac-1 on neutrophils and then neutrophil recruitment (32).
In addition to its pro-inflammatory effects, HMGB1 mediated
anti-inflammatory effects under certain circumstances. HMGB1
interaction with CD24 and siglec-10 (siglec-G in mice) inhibited
the activation of NF-kB and prevented cytokine release (33).
Disulfide HMGB1 inhibited the release of inflammatory
cytokines in sepsis by binding to haptoglobin to induce heme
oxygenase-1 (HO-1) and IL-10 production in a CD163+

dependent manner (34). HMGB1 interacts with various
receptors, playing different roles in immunity and inflammation.

There are also enzymatic cleavage sites in the structure of
HMGB1, such as that cathepsin G cleaved HMGB1 rapidly
(within 5 min) in vitro, suggesting rapid extracellular clearance
of HMGB1 under inflammatory conditions (35). HMGB1 was
also predicted to be degraded by other proteases, but further
validation was needed. Studies about HMGB1 cleavage are
meaningful to provide new therapeutic strategies for
various diseases.

Immunological Characteristics of
Extracellular HMGB1
The extracellular HMGB1 not only mediated the repair of muscle
tissue (skeletal muscle and cardiac muscle tissue) but also
regulated many kinds of innate immune cells (neutrophils,
macrophages, DCs) and adaptive immune cells (effector and
Frontiers in Immunology | www.frontiersin.org 3
regulatory T cells) (Figure 3) (36). HMGB1 promoted neutrophil
migration and amplified neutrophil activity to accelerate the
formation of neutrophil external traps (NETs) to aggravate tissue
damage (37, 38). Lipopolysaccharide (LPS) stimulated
macrophages released HMGB1 and HMGB1 alone or
combined with LPS further activated macrophages (39, 40).
HMGB1 not only activated macrophages to produce
chemokines and inflammatory factors but also induced
macrophage apoptosis in a dose- and time-dependent manner
(41, 42). In addition, HMGB1 was involved in the pyroptosis of
macrophages (43) and the maturation and differentiation of DCs
(44–46). HMGB1 enhanced the sensitivity of mature DCs in
response to CCL21 and then the migration to lymph nodes, and
HMGB1 secreted by mature DCs up-regulated the costimulatory
molecules level (CD80, CD83, and CD86) in an autocrine
manner (8, 47). In addition to the effect on innate immune
cells, HMGB1 could also directly act on T lymphocytes.
HMGB1 had a dual impact on T lymphocytes, increasing
CD4+ T lymphocyte, especially CD4+Th17 activity at low
concentration, while inhibiting T lymphocyte activity at high
concentration (36, 48, 49). In addition, HMGB1 was related to T
cells apoptosis and mitochondrial apoptosis (50). Although
HMGB1 was beneficial to the migration and survival of
regulatory T cells, it inhibited the activity of regulatory T cells
by RAGE or TLR4 pathway (51, 52). Further study showed that
HMGB1 significantly down-regulated the expression of Foxp3
and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on
regulatory T cells of the spleen in mice (53). These results
indicate that HMGB1 has an extensive effect on immune cells
and is involved in the disease process of inflammatory response.
HMGB1 IN RHEUMATIC DISEASES

Rheumatic diseases are characterized by the enhanced
autoimmune response and the production of autoantibodies.
Although the research on the pathogenesis of rheumatic diseases
continues to deepen and the biological agents continue to break
through, new therapeutic targets still need to be explored. In the
past 20 years, the role of HMGB1 in rheumatic diseases has been
extensively studied. Here we summarize the characteristics and
new insights of HMGB1 in rheumatic diseases (Table 1).

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a kind of erosive arthritis involving
the synovium. It is a common autoimmune disorder and is often
accompanied by extra-articular symptoms (109). Immune
disorders of RA include the production of autoantibodies,
tissue infiltration of effector T cells, impaired function of the
tissue-protective macrophages, and the transition of synovial
stromal cells into pathogenic cells (54). However, current
treatments still only slow the progression of the disease. There
are several studies about the relationship between HMGB1 and
RA. It has been reported that HMGB1 levels were increased in
synovial tissue and synovial fluid of RA patients, and HMGB1
concentration in serum of RA patients was higher than that of
February 2022 | Volume 13 | Article 815257
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FIGURE 3 | Effects of HMGB1 on immune cells. HMGB1 can regulate both innate and adaptive immunity. HMGB1 can promote the release of pro-inflammatory
factors from macrophages and induce apoptosis and pyroptosis of macrophages. HMGB1 can promote the differentiation and maturation of DCs and up-regulate
the level of costimulatory molecules (CD80, CD86) of DCs. HMGB1 also promotes the neutrophil release of NETs, and HMGB1 is also abundant in NETs. HMGB1
can form a complex with a nucleic acid to promote the recognition of innate immune cells and T helper cells and stimulate B cells to secrete autoantibodies. Different
concentrations of HMGB1 can exert different functions on effector T cells. Low concentration HMGB1 promotes the activation of T cells, while high concentration
HMGB1 inhibits and even induces T cell apoptosis. HMGB1 can also directly act on Treg cells to promote their migration and survival. Teff., effector T cell; NETs,
neutrophil extracellular traps.
A B

C

FIGURE 2 | Characteristics of HMGB1 release. (A) HMGB1 is translocated from the nucleus to the cytoplasm by the JAK-STAT pathway, by increasing the activity
of HAT and decreasing the activity of HDAC, or by oxidation of nuclear peroxiredoxins I or II. (B) Activated inflammatory cells can actively secrete HMGB1 through
the lysosomal pathway. Necrosis, pyroptosis, and secondary necrosis following apoptosis can also release HMGB1. (C) Activated platelets produce large amounts
of HMGB1 to promote thrombosis and neutrophil release of NETs. HAT, histone acetylase; HDAC, histone deacetylase; Prdxs, peroxiredoxins; RBC, red blood cell;
NETs, neutrophil extracellular traps.
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osteoarthritis (OA) patients and was related to disease activity
score (55–59). Furthermore, Cecchinato et al. found that vascular
and synovial cells produced high levels of Thioredoxin-1 and
Thioredoxin reductase, accompanied with local COX2/PEG2
and JAK/STAT signaling cascades to promote the activity of
the CXCL12/HMGB1 heterocomplex on monocyte maintaining
the inflammatory condition (60). In the mouse model of
collagen-induced arthritis (CIA), immunohistochemical
staining of synovial tissues revealed HMGB1 expression in
various cell types, including fibroblast, synovial cell,
macrophage and vascular endothelial cell, with significant
cytoplasmic and extracellular localization (110). HMGB1
induced the expression of hypoxia-inducible factor 1a (HIF-
1a) and vascular endothelial growth factor (VEGF) in
synoviocytes of RA patients in vitro while neutralizing
antibody treatment decreased the level of HIF-1a and
angiogenesis (111). Furthermore, HMGB1 participated in
osteoclast formation and pro-inflammatory factors production
and accelerated the activity of metalloproteinases and tissue
fibrinogen activators (62, 110). In addition, HMGB1 was
Frontiers in Immunology | www.frontiersin.org 5
involved in neurogenic inflammation. In the CIA model,
HMGB1 released by nociceptors (peripheral sensory neurons)
exacerbated inflammation and pain responses in peripheral
tissues (61). All these results suggest that HMGB1 plays a
pivotal role in RA and is a potential target for the therapy of RA.

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a chronic autoimmune
disorder with multiple organ involvement and unknown
etiology. SLE affects the patient’s skin, joint, heart, lung,
gastrointestinal system, and nervous system, leading to tissue
damage and clinical symptoms (63). Serum HMGB1 levels in
SLE patients were elevated and correlated with disease
activity (112). In addition, anti-HMGB1 autoantibodies
could be detected in the serum of SLE patients, and anti-
A-box antibodies showed high specificity for SLE. These
two autoantibodies were related to the Systemic Lupus
Erythematosus Disease Activity Index (SLEDAI) and anti-
double strand DNA (anti-dsDNA) antibody level (64). High
levels of HMGB1 induced macrophage polarization towards the
TABLE 1 | The role of HMGB1 in rheumatic diseases.

Disease The role of HMGB1 in disease pathogenesis References

RA HMGB1 levels were increased in the serum, synovium, and synovia. HMGB1 levels in serum of RA patients were higher than that of OA
patients and correlated with disease activity scores. HMGB1 promoted osteoclast and proinflammatory factor production and accelerated the
activity of metalloproteinases and plasminogen activators. HMGB1 synergized with CXCL12 in active RA patients contributing to the influx of
pro-inflammatory cells. In the model of CIA, HMGB1 was also involved in neurogenic inflammation.

(54–62)

SLE HMGB1 levels in serum of SLE patients were increased and correlated with disease activity scores. High levels of HMGB1 converted
monocytes into M1 type, promoted inflammation, and reduced the clearance of apoptotic cells. HMGB1 could also activate pDC and mDC
and promote the release of NETs from neutrophils. HMGB1 could promote the rapid and abundant aggregation of ALD-DNA in macrophages
through clathrin/alveolar protein-1. Serum HMGB1 could be used as a biomarker of NPSLE.

(63–69)

IIM HMGB1 levels in serum of PM and DM patients were higher than that of healthy controls and higher in patients with Interstitial lung disease.
Patients with high levels of HMGB1 had lower overall survival and disease-free survival. HMGB1/RAGE axis was involved in the amyloid
deposition in muscle tissue of IBM patients. HMGB 1 could promote inflammation muscle fatigue and induce expression of MHC1 molecules in
the early stage of the disease but promote the protection and regeneration of muscle tissue in the late stage of the disease.

(70–76)

SS The expression of HMGB1 was increased in labial glandular tissue and serum of SS patients. Serum HMGB1 levels were higher in SSA positive
or extra-glandular involvement. Treatment with anti-HMGB1 antibodies improved xerostomia and xerophthalmia in mouse models.

(77–81)

SSc HMGB1 and sRAGE levels were elevated in SSc patients and mouse models. Platelets-derived particles expressed HMGB1, which promoted
autophagy of neutrophils, enhanced proteolytic enzyme activity, and generated neutrophils extracellular traps. HMGB1 promotes the
expression of a2AP in fibroblasts and contributes to tissue fibrosis. HMGB1 may be an independent risk factor for SSC-ILD or a new
biomarker for SSc patients.

(82–87)

AS HMGB1 levels in peripheral blood of AS patients were increased. HMGB1 levels were associated with disease activity scores, inflammatory
markers, and HMGB1 receptor expression in PBMC. HMGB1 could be used as a laboratory indicator to reflect the therapeutic response of
AS. Extracellular HMGB1 stimulated the expression of RANK in macrophages and promoted the differentiation of osteoclasts.

(88–91)

AAv Serum HMGB1 levels were higher in AAV than healthy controls. HMGB1 enhanced the ability of neutrophils to burst, degranulate, and form
NETs. HMGB1 increased the level of meosin in the GEnC and promoted the injury of GEnC. HMGB1 enhanced the proliferation of B cells and
TLR9 levels in plasma cells in PBMC from patients with AAV, and the latter was positively correlated with Birmingham vasculitis activity score.

(92–99)

LVV One study found that HMGB1 levels did not change in healthy controls and LVV patients, as well as during disease activity and remission,
while another found HMGB1 levels increased in patients with Takayasu arteritis.

(100, 101)

MVV HMGB1 levels in children with KD were higher. HMGB1 levels in patients with PAN were higher and positively correlated with hypersensitivity-
CRP, serum creatinine, and 24-hour proteinuria.

(101, 102)

BD HMGB1 levels in peripheral blood of BD patients were significantly increased. (103, 104)
AOSD Serum HMGB1 levels in AOSD patients were higher than those in healthy controls and correlated with CRP levels and the systemic score.

Levels of serum HMGB1 were also found to decrease after the patient’s disease activity subsided. HMGB1 presented in the NETs of patients
with skin lesions and high fever of AOSD patients.

(105, 106)

Gout The expression of HMGB1 in PBMC of patients with acute gout was elevated.
Macrophages stimulated by MSU resulted in the translocation and release of HMGB1.
The absence of C5aR2 inhibits the activation of NLRP3 inflammasome and the release of HMGB1.

(107, 108)
February 2022 | Volume 13 | A
RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; IIM, idiopathic inflammatory myopathy; SS, Sjögren’s Syndrome; SSc, systemic sclerosis, AS, ankylosing spondylitis; AAV,
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides; LVV, large vessel vasculitis; MVV, medium vessel vasculitis; BD, Behcet’s disease; AOSD, Adult-onset still disease.
OA, osteoarthritis; CIA, collagen-induced arthritis; ALD-DNA, activated lymphocyte-derived DNA; NPSLE, neuropsychiatric systemic lupus erythematosus; RAGE, the receptor of
advanced glycation end-products; ILD, interstitial lung disease; RANK, receptor activator of nuclear factor-kB; NETs, neutrophil external traps; GEnC, glomerular endothelial cell; KD,
Kawasaki disease; PAN, polyarteritis nodosa.
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M1 phenotype, which reduced the clearance of apoptotic cells
(65). HMGB1 also promoted the activation of pDC and mDC,
which up-regulated pro-inflammatory factors (IL-1b, IL-6, and
TNF-a) and costimulatory molecules (HLA-DR, CD40, and
CD86) production (66, 67). Furthermore, HMGB1 from the
NETs of neutrophils was positively associated with the
progression of lupus nephritis (113). HMGB1 could combine
with other molecules (nucleic acid, IgG, immune complex, etc.),
which stimulated innate immunity to produce inflammatory
factors and type 1 interferon to exacerbate autoimmune
response (114). In the skin lesions of SLE patients, HMGB1
expression was increased and positively correlated with TNF and
IL-1b level, and UV radiation increased levels of cytoplasmic and
extracellular HMGB1 in the skin (115, 116). In patients with
lupus nephritis (LN), HMGB1 induced proliferation of
glomerular mesangial cells through TLR2, and HMGB1+

microparticles of urine could distinguish active and inactive
LN (117, 118). In vitro and in vivo studies showed that
HMGB1 increased the production of inflammatory cytokines
in renal macrophages through RAGE (68, 119). In addition,
HMGB1 promoted the rapid and abundant accumulation of
lymphocyte-derived DNA (ALD-DNA) via clathrin/caveolin-1,
and activated ALD-DNA promoted macrophage activation in
LN (69). Serum HMGB1 levels were also increased in patients
with psychiatric lupus and were positively correlated with disease
activity but had little effect on psychotic lupus-related seizures.
SerumHMGB1 could be used as a biomarker in neuropsychiatric
systemic lupus erythematosus (NPSLE). In addition, in patients
with psychiatric lupus, impaired blood-brain barrier led to the
entry of anti-DNA antibodies into the central nervous system
(CNS). The anti-DNA antibodies subset could cross-react with
NMDAR to impair spatial memory. Further studies found that
extracellular HMGB1 was also bound to NMDARs and formed a
C1q-HMGB1-NMDARs complex on the dendrites of
neurons. The complex interaction with RAGE/TLR4 on
microglia led to neuronal dendrite damage and cognitive
dysfunction (120). These results suggest that targeting HMGB1
in SLE is promising, but more investigations are needed.

Idiopathic Inflammatory Myopathy
Idiopathic inflammatory myopathy (IIM) is a group of
autoimmune diseases that affect the striated muscle, including
polymyositis (PM), dermatomyositis (DM), and inclusion body
myositis (IBM) (70). Serum HMGB1 levels were elevated in PM
and DM patients and higher in IIM patients with interstitial lung
disease. In addition, patients expressing high levels of HMGB1
had lower overall and disease-free survival rates (71, 72). The
pro-inflammatory effect of HMGB1 in myositis was mainly
mediated by TLR4. In the mouse model of experimental
autoimmune myositis (EAM), TLR4 and HMGB1 were
elevated in affected muscle tissue. Treatment of the PBMC of
EAMmice with TLR4 or HMGB1 antibodies down-regulated the
expression of TNF, IL-6, and MHC-I (73). Extracellular HMGB1
also promoted muscle fatigue through TLR4 in patients and mice
with myositis (74). But HMGB1 promoted amyloid deposition
by acting on RAGE in patients with IBM (75). In patients with
myositis, HMGB1 presented with cytoplasmic and extracellular
Frontiers in Immunology | www.frontiersin.org 6
translocation in both endothelial cells and infiltrated immune
cells. After corticosteroid treatment, the cytoplasmic and
extracellular HMGB1 in inflammatory cells were decreased,
while the staining intensity of endothelial cells was similar
before and after treatment (76).

On the other hand, the injection of HMGB1 in muscle tissue
promoted the regeneration of muscle and blood vessels (121).
These results suggest that HMGB1 plays a dual role in idiopathic
myositis. In the early stage, HMGB1 promoted inflammation by
up-regulating the expression of MHC-I molecule and also
accelerated muscle fatigue. In contrast, during the progressive
phase, HMGB1 promoted the regeneration of muscle tissue.
However, further experiments are still needed to confirm,
especially the mechanism of HMGB1 in promoting muscle
tissue regeneration.

Sjögren’s Syndrome
Sjögren’s Syndrome (SS) is characterized by exocrine glands
involvement, which presents with xerophthalmia and
xerostomia. This disease can also show extra-glandular
manifestations and even B cell lymphoma. The treatment for SS
includes artificial tears, artificial saliva, glucocorticoid, and
immunosuppressants (77). Ek et al. found that extracellular
HMGB1, TNF-a, and IL-1b were increased around the
infiltrated mononuclear cells by staining the labial glandular
tissue in SS patients. TNF-a and IL-1b could promote the
secretion of HMGB1 from monocytes, and HMGB1, in turn,
acted with RAGE and TLR4 to further induce the release of TNF-
a and IL-1b (78). Dupire et al. found that serum HMGB1 levels
were increased significantly compared with healthy controls and
were higher in SS patients with positive SSA autoantibody (79). In
another study, serum HMGB1 and sRAGE were elevated and
associated with the EULAR Sjögren’s Syndrome Disease Activity
Index (ESSDAI) in patients with SS, and HMGB1 levels were
much higher in patients with extra-glandular involvement (80).
Studies in the mouse model found that subconjunctival injection
of anti-HMGB1 antibody improved the symptoms of ocular
dryness by regulating the level of innate lymphoid cells 3 in
draining lymph nodes. Intraperitoneal injection of the anti-
HMGB1 antibody also alleviated xerostomia by downregulating
the HMGB1/TLR4/NF-kB signaling pathway and improved
aquaporin protein 5 expression (81, 122). Although the detailed
mechanism of SS needs to be further confirmed, therapies
targeting HMGB1 are promising.

Systemic Sclerosis
Systemic sclerosis (SSc) is a systemic autoimmune disease
characterized by vasculitis and fibrosis, mainly affecting the
skin and internal organs (82). Ayumi et al. found that serum
levels of HMGB1 and sRAGE were increased in SSc patients and
were higher in patients with organ involvement and immune
abnormalities. In addition, serum HMGB1 levels were positively
correlated with Modified Rodnan total skin thickness score and
negatively correlated with lung function (83). In the bleomycin-
induced mouse scleroderma model, the HMGB1 and sRAGE
levels in peripheral blood were increased compared with control
mice (83). Norma et al. further explored the source of HMGB1 in
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the vascular system of SSc patients. They observed that platelet-
derived particles expressing HMGB1 might be involved in
microvascular injury and continuous activation of endothelial
cells (84). Subsequently, oxidized HMGB1 in the blood of SSc
patients could promote the activation of neutrophils (85).

Furthermore, it has been reported that activated platelets
from SSc patients could interact with neutrophils by
promoting autophagy to up-regulate the activity of proteolytic
enzymes and neutrophil extracellular traps (NETs) production.
However, these changes on neutrophils were reduced after the
treatment of HMGB1 A box (28). In another bleomycin-induced
mouse scleroderma model, local M2-macrophage-derived
HMGB1 contributed to the development of tissue fibrosis by
producing a2-antiplasmin via RAGE receptors on fibroblasts
(86). Zheng et al. found that serum calpain activity and HMGB1
levels were significantly higher in SSc patients with interstitial
lung disease (ILD) than those in non-ILD SSc patients. Serum
calpain activity and HMGB1 levels might be independent risk
factors for SSc-ILD or novel biomarkers for patients with SSc
(87). These results suggest that HMGB1 plays an essential role in
the development and progression of SSc. In the future, the
therapeutic efficacy of targeting HMGB1 in SSc patients should
be reasonably evaluated to provide more evidence for
clinical transformation.

Ankylosing Spondylitis
Ankylosing spondylitis (AS) is a chronic inflammatory
rheumatic disease that mainly affects the spine and sacroiliac
joints (123). Severe cases could develop spinal deformity and
rigidity. The initial study found that serum HMGB1 levels were
increased in patients with AS but were not associated with
erythrocyte sedimentation rate (ESR), C-reactive protein
(CRP), Bath Ankylosing Spondylitis Disease Activity Index
(BASDAI), Bath Ankylosing Spondylitis Functional Index
(BASFI), or ASQoL scores (123). However, our previous work
found that HMGB1 levels were not only increased in AS patients
but also significantly positively correlated with BASDAI,
Ankylosing Spondylitis Disease Activity Score (ASDAS),
BASFI, CRP, and ESR, and were correlated with the expression
of HMGB1 receptors such as TLR2, TLR4, and IL-1RACP in the
PBMC of AS patients (89). These differences may be related to
the sample size and gender composition. A follow-up study of
147 patients with AS who were treated with TNF-a inhibitor or
oral non-steroidal anti-inflammatory drug plus sulfasalazine
revealed a consistent trend in disease activity with the level of
HMGB1 before and after treatment, which suggest that HMGB1
could reflect the disease activity of AS to some extent and could
be used as a laboratory indicator to reflect the therapeutic
response (90). Hou et al. further found that the ratio of
oxidized low-density lipoprotein and low-density lipoprotein
(ox-LDL/LDL) was increased in peripheral blood of AS
patients, and ox-LDL induced cytoplasmic translocation of
HMGB1. Extracellular HMGB1 induced receptor activator of
nuclear factor-kB (RANK) expression in CD68 monocyte by
reacting with RANKL to induce its differentiation into osteoclast
(91). Although the study about the role of HMGB1 in AS is still
limited, the existing research has proved that HMGB1
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participated in the development of AS. Further research and
clinical trials are needed to support these results.

Systemic Vasculitides
Systemic vasculitides are a group of diseases characterized by
inflammation and fibrinoid necrosis of vascular walls or
perivascular tissue. Anti-neutrophil cytoplasmic antibody
(ANCA)-associated vasculitis (AAV), Takayasu arteritis (TA),
giant cell arteritis (GCA), polyarteritis nodosa (PAN), Kawasaki
disease (KD), and Behcet’s disease (BD) all belong to the category
of systemic vasculitis (124). The role of HMGB1 has been
extensively studied in AAV, and the level of HMGB1 in the
serum of AAV patients was higher than that in healthy controls
(92, 93). Further studies found that serum HMGB1 levels were
higher in patients with renal involvement or granulomatous
presentation (93–96). Subsequent studies found that HMGB1
enhanced the ability of neutrophils to burst, degranulation, and
form NETs after ANCA stimulation, and HMGB1 was positively
correlated with endothelial activation marker (sICAM-1, VEGF)
levels, as well as HMGB increased the level of meosin protein in
the glomerular endothelial cell (GEnC), which participated in the
cross-reaction of anti-MPO antibody and promoted the injury of
GEnC (97, 98). In addition, HMGB1 enhanced the TLR9
levels and proliferation of B cells in plasma cells from PBMC of
patients with AAV, and the latter was positively correlated with
Birmingham vasculitis activity score (99). The research on
HMGB1 in other vasculitides is few. De Souza et al. found that
serum HMGB1 levels in TA and GCA patients were comparable
to those in healthy controls, and there was no difference between
active and remission stages (100). Another study found that
peripheral blood HMGB1 level was higher in TA patients than
in healthy controls (101). Hoshina et al. found that the HMGB1
levels in children with KD were higher than that in healthy
controls, and the highest levels were in the acute phase with a
gradual decrement after defervescence (102). Zhu et al. found that
the serum HMGB1 levels in PAN patients were significantly
higher than those in AAV and TA patients and positively
correlated with hypersensitivity-CRP, serum creatinine, and 24-
hour proteinuria (101). Ahn et al. found serum HMGB1 levels
were elevated in BD patients and even higher in patients with
intestinal involvement but were not correlated with disease activity
(103). Another study found HMGB1 levels were not different
among patients in the active disease, patients receiving treatment,
and patients in remission without treatment (104). These results
provide evidence for targeting HMGB1 in the treatment of
vasculitis, but more relevant studies and clinical trials are
needed to verify.

Other Rheumatic Diseases
Adult-onset Still disease (AOSD) is a rare multigenic systemic
autoinflammatory disorder characterized by high fever, rash,
joint pain, hepatosplenomegaly, and elevated white blood cells
in peripheral blood. It has been reported that serum HMGB1
level was higher in patients with AOSD than that in healthy
controls, especially those with rashes and sore throats. This
increased HMGB1 levels were related to CRP and the systemic
score (105). However, serum HMGB1 levels were decreased in
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dong et al. HMGB1 in Rheumatic Diseases
the follow-up patients with reduced disease activity (105).
Another study found that higher HMGB1 levels were observed
in peripheral blood NETs of AOSD patients with skin lesions and
a high fever (106).

Gout is an inflammatory joint disease caused by the
deposition of uric acid crystals in the joints. It has been
reported that the transcription levels of IL-1b, IL-18, caspase-1,
and HMGB1 in PBMC of patients with active gout were
significantly higher than those in non-active patients or
healthy controls. Monosodium urate crystal (MSU) stimulation
of U937 macrophages resulted in the translocation and release of
HMGB1. Inhibition of caspase-1 by siRNA could reduce the
MSU-induced release of HMGB1 (107). Another study reported
that a lack of C5AR2 inhibited the activation of the NLR family,
pyrin domain-containing protein 3 (NLRP3) inflammasome,
and the release of HMGB1 in a mouse model and that C5AR2
activated MAPK, ERK, and type 1 interferon pathways to
amplify dsRNA-dependent protein kinase R expression to
promote the activation of NLRP3 inflammasome (107). These
results suggest that HMGB1 is involved in AOSD and gout in a
pro-inflammatory fashion and that targeting HMGB1 may be a
promising therapeutic approach.
TARGETING HMGB1 THERAPY

Currently, various strategies that inhibited HMGB1 expression,
release, and associated signaling have been investigated in the
literature, including neutralizing HMGB1 antibodies, HMGB1 A
box protein, peptide P5779, glycyrrhizin, resveratrol, platinating
agent (like cisplatin), quercetin, dexmedetomidine, ethyl
pyruvate, thrombomodulin, haptoglobin, metformin, diflunisal,
sRAGE, triptolide, etc. (39, 125). Targeting HMGB1 therapy has
been extensively studied in sepsis, ischemia-perfusion injury,
organ transplantation, and tumors (126–129). In rheumatic
diseases, anti-HMGB1 mAb (m2G7) was a relatively well-
studied antibody that played an anti-inflammatory role in
collagen-induced arthritis (130). This m2G7 could bind to the
53-63 amino acids of the HMGB1 sequence and impede the
interaction of HMGB1 with RAGE or TLR4 to reduce
inflammation (130). Intrathecal injection of m2G7 could
relieve chronic pain in the model of collagen-induced arthritis
(131). The treatment of m2G7 had no effect on lupus nephritis in
MRL/LPR mice, but another monoclonal antibody to HMGB1
has been reported to play a beneficial role (132, 133). In addition,
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neutralizing HMGB1 antibodies have been reported to alleviate
xerostomia and xerophthalmia in mouse models (81, 122).
Recombinant Box A protein has been used in vivo to
antagonize HMGB1 induced cell migration, leukocyte
recruitment, and inflammation and has been shown to play a
beneficial role in animal models of IBM and experimental
arthritis (39, 75, 134). Future treatment needs to be considered
both in blocking the functional epitopes of HMGB1 and
inhibiting the binding ability of HMGB1 to other molecules to
eliminate the role of HMGB1 as a pro-inflammatory and
endogenous adjuvant.
DISCUSSION

HMGB1 is a multi-functional protein and plays a pivotal role in
regulating transcription, inflammation, and repair. HMGB1
plays critical biological functions alone and forms a complex
with exogenous substances such as LPS to enhance immune
response and form a complex with endogenous substances such
as nucleic acid or autoantigen to act as an endogenous adjuvant
to mediate the inflammatory and autoimmune response. Thus,
targeting HMGB1 is a promising therapeutic strategy for treating
rheumatic diseases. However, we should also recognize the
complexity of the role of HMGB1 in rheumatic diseases and
the difficulty of extracellular HMGB1 detection. Only by
breaking through these limitations and detecting the level of
HMGB1 more sensitively can we ensure that targeting HMGB1
will bring more benefits to patients with rheumatic diseases.
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