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Cerebrospinal fluid hemoglobin drives
subarachnoid hemorrhage-related
secondary brain injury
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Abstract

Secondary brain injury after aneurysmal subarachnoid hemorrhage (SAH-SBI) contributes to poor outcomes in patients

after rupture of an intracranial aneurysm. The lack of diagnostic biomarkers and novel drug targets represent an unmet

need. The aim of this study was to investigate the clinical and pathophysiological association between cerebrospinal fluid

hemoglobin (CSF-Hb) and SAH-SBI. In a cohort of 47 patients, we collected daily CSF-samples within 14 days after

aneurysm rupture. There was very strong evidence for a positive association between spectrophotometrically deter-

mined CSF-Hb and SAH-SBI. The accuracy of CSF-Hb to monitor for SAH-SBI markedly exceeded that of established

methods (AUC: 0.89 [0.85-0.92]). Temporal proteome analysis revealed erythrolysis accompanied by an adaptive mac-

rophage response as the two dominant biological processes in the CSF-space after aneurysm rupture. Ex-vivo experi-

ments on the vasoconstrictive and oxidative potential of Hb revealed critical inflection points overlapping CSF-Hb

thresholds in patients with SAH-SBI. Selective depletion and in-solution neutralization by haptoglobin or hemopexin

efficiently attenuated the vasoconstrictive and lipid peroxidation activities of CSF-Hb. Collectively, the clinical association

between high CSF-Hb levels and SAH-SBI, the underlying pathophysiological rationale, and the favorable effects of

haptoglobin and hemopexin in ex-vivo experiments position CSF-Hb as a highly attractive biomarker and potential

drug target.
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Introduction

Aneurysmal subarachnoid hemorrhage (aSAH)

accounts for only 5-10% of all strokes,1 but the asso-

ciated morbidity and socioeconomic burden exceed

those of ischemic strokes due to the younger age of

affected patients.2 In addition to early brain injury

within the first 72 hours,3 patient outcomes are deter-

mined by delayed secondary brain injury (SAH-SBI),

which often occurs between days 3 and 14 after aneu-

rysm rupture.4 Two-thirds of patients develop
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angiographic vasospasm (aVSP) in the large cerebral
arteries.5 Delayed cerebral ischemia (DCI) with radio-
logic demarcation of ischemic brain areas and clinically
evident delayed ischemic neurologic deficits (DINDs)
are found in one-third of patients with aSAH.6 The
pathophysiology of SAH-SBI is multifactorial, involv-
ing macro- and microvascular dysfunction, microthom-
bosis, neuroinflammation, neuronal apoptosis, and
pathological electrical brain activity.4,7–10 The delay
between aneurysm rupture and the onset of SAH-SBI
provides a window of opportunity for preventive and
therapeutic interventions. However, to date, the only
preventive intervention for SAH-SBI that has been
shown to moderately improve neurological outcomes
is oral nimodipine.11,12 In already symptomatic
patients, the therapeutic options are limited to non-
causal rescue therapies to improve cerebral perfusion,
such as the adaptation of blood pressure targets or
angioplasty.11,12 Therefore, methods to identify
patients at high risk for SAH-SBI as well as novel ther-
apeutic targets represent an unmet need.

Hemoglobin has been implicated as a potential
driver of SAH-SBI for decades.7,13,14 However, only
recent preclinical studies have begun to demonstrate
clear pathophysiological links between Hb and mecha-
nisms of SAH-SBI.15,16 We propose the following path-
ophysiological sequence to underlie the increased risk
for SAH-SBI: red blood cells (RBCs) decompose in the
subarachnoid hematoma, cell-free Hb is generated in
the CSF (CSF-Hb), Hb tetramers dissociate into
dimers, and finally small CSF-Hb dimers delocalize
into vulnerable anatomical sites of the cerebral arteries
and brain. There, nitric oxide (NO) scavenging pro-
motes vasoconstriction15,17 and potentially oxidative
neuronal damage. In experimental models, these
adverse effects of CSF-Hb were mitigated by intraven-
tricular administration of the Hb scavenger protein
haptoglobin.15 Collectively, this prior evidence suggests
CSF-Hb as a biomarker that may allow the risk of
SAH-SBI to be estimated by directly monitoring a
potentially targetable pathophysiological process.

The main objective of this study was to investigate
the clinical association of CSF-Hb with SAH-SBI and
the diagnostic accuracy of daily CSF-Hb measure-
ments. Furthermore, we performed an in-depth CSF
proteome study and ex-vivo functional assays to ratio-
nalize the role of CSF-Hb as a pathophysiological
driver of and potential therapeutic target for SAH-SBI.

Material and methods

General

This study was approved by and all procedures were
performed in accordance with the Ethics Committee of

the Canton of Zurich, Switzerland (KEK ZH 2016-
00439) and with the guiding principles of the 2008
Declaration of Helsinki. Written informed consent
was obtained from all patients or their legal represen-
tatives. The results are reported in accordance with the
STROBE statement (von Elm et al., 2007).

Study population

Clinical data and CSF samples were obtained from a
prospective consecutive cohort of aSAH patients
admitted to the Neurointensive Care Unit of the
Department of Neurosurgery, University Hospital
Zurich over a 3-year period (April 2017 to March
2020). The eligibility criteria are given in the
Supplementary Methods.

Clinical data acquisition

Patient data collection was performed by the treating
physician blinded to the CSF measurements. Baseline
features of the patients were assessed at the time of
diagnosis and are given in the Supplementary
Methods (Supplementary Figure 1(a)). Clinical data
was collected prospectively during the 14-day high-
risk phase for SAH-SBI based on standardized moni-
toring at the Neurointensive Care Unit and as part of
the 3-month follow-up. General patient management
conformed to current guidelines of the Neurocritical
Care Society and the American Heart
Association.11,12 The presence of DIND, DCI and
aVSP was assessed on a daily basis during the 14-day
sampling period. The definitions of DIND, DCI and
aVSP are given in the Supplementary Methods. SAH-
SBI was defined as the composite outcome of DIND,
DCI and aVSP. In addition, flow velocity in the bilat-
eral middle, anterior and posterior cerebral arteries was
assessed daily using Transcranial Doppler (TCD)
sonography. Complications were assessed daily
during the 14-day sampling period (details see
Supplementary Methods). Chronic hydrocephalus
(ventriculoperitoneal shunt dependency) and function-
al status (Glasgow Outcome Scale-Extended [GOSE]
and modified Rankin Scale [mRS]) were evaluated at
the 3-months follow-up.

Subarachnoid hematoma segmentation and
volumetric analysis

Based on the initial CT scan, the volume of the sub-
arachnoid hematoma was manually delineated using
3DSlicer 4.11.0.18 The preprocessing prior to delinea-
tion consisted of brain extraction whereby the largest
cavity from a 200 HU thresholded skull mask was
extracted.19 Subsequently, the brain mask was multi-
plied with the original CT scan and median filtered
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with a 5�5�3 kernel (Supplementary Figure 1(b)). The
volume of the hemorrhage was calculated by multiply-

ing the voxel size by the number of segmented voxels.

CSF sampling

CSF samples were collected from the EVD by investi-

gators blinded to the clinical data. The decision regard-
ing the insertion of an EVD was made independently of
this study and according to the clinical standard of

care. 1ml of CSF was sampled on a daily basis at
approximately the same time (morning). A sampling
duration from day 1 (the day after aSAH) to day 14

was used. If the patient’s EVD was removed prior to
day 14, the CSF sampling was discontinued.
Immediately after sample collection, the CSF was cen-

trifuged (Capricorn CEP 2000 Benchtop centrifuge,
Capricorn labs, UK) at 1500 �g for 15minutes, and
the supernatant was stored at -80�C for further analysis

(Supplementary Figure 1(c)).

Spectrophotometry of CSF-Hb and heme

metabolites

Absorption spectra in the visual range between 350 and
650 nm of all CSF samples were measured on a

Shimadzu UV-1800 spectrophotometer (Shimadzu,
Japan). Quantification of different Hb species and
their metabolites in the CSF (oxyHb [hereafter referred

to as CSF-Hb], metHb, bilirubin, biliverdin) was per-
formed using spectral deconvolution. Therefore,
extinction curves for the individual substances with

known concentrations were fitted to the extinction
curve of CSF using a nonnegative least squares algo-
rithm as described previously.20

LC-MS/MS CSF proteomic analysis

Using LC-MS/MS based label-free quantification, the
CSF proteomes of 18 patients were obtained at five

sequential time points during the observation period
(0, 0.5, 1, 1.5 and 2weeks after aSAH) (Supplementary
Figure 1(c)). Details of the proteomics workflow, sample

preparation and data analysis are included in the
Supplementary Methods. Temporal changes in the
CSF proteome were clustered using k-means analysis,

whereby the optimal number of clusters was determined
visually with an elbow diagram (Supplementary Figure 1
(d)) using the factoextra package.21

Neurovascular function

The neurovascular function assay (Supplementary
Figure 1(e)) was performed using fresh porcine basilar

arteries obtained from a local abattoir (n¼ 12).15

Methodological details are given in the

Supplementary Methods and the sequence of the exper-
iment is illustrated in Supplementary Figure 1(f). An
initial series of experiments was conducted to evaluate
the vasoconstrictive potential of patient CSF during
the high-risk phase for SAH-SBI and to assess the spe-
cific role of Hb in this process. For this purpose,
patient CSF collected between days 3 and 14 after
aSAH was selectively depleted of CSF-Hb using a hap-
toglobin affinity column as previously described.15 In
the initial phase of the experiment, the vessels were
immersed in Hb-depleted CSF. Subsequently, the pre-
cise amount of Hb that had been removed from the
CSF was restored, in order to determine the specific
impact of CSF-Hb on vascular tension. In a second
series of experiments, the influence of increasing Hb
exposure on vascular tension was assessed. For that
purpose, the vessels were immersed in Krebs-
Henseleit buffer and exposed to increasing concentra-
tions of Hb (10�4 M to 10�8 M Hb in half log10 steps).
To evaluate the effect of the hemoglobin-scavenger
haptoglobin, a third series of experiments was per-
formed with identical Hb concentrations, but an equi-
molar amount of haptoglobin was added.

Hb, haptoglobin, hemopexin and reconstituted
lipoprotein (rLP)

Hb for use in ex-vivo experiments was purified from
expired human blood concentrates as previously
described.22 Hb concentrations were determined by
spectral deconvolution as described above and are
given as molar concentrations of total heme (1M Hb
tetramer is equivalent to 4M heme). For all Hb used in
these studies, the fraction of ferrous Hb (HbFe2þO2)
was always greater than 98%, as determined by spec-
trophotometry. Purified haptoglobin (phenotype 1-1)
and hemopexin from human plasma, as well as recon-
stituted lipoprotein (rLP) were obtained from CSL
Behring, Bern, Switzerland.

Thiobarbituric acid-reactive substances (TBARS)
assay

The oxidative potential of the CSF samples was quan-
tified by measuring the formation of malondialdehyde
(MDA), the final product of lipid peroxidation, after
incubation with rLP (Supplementary Figure 1(g)).
Methodological details are given in the
Supplementary Methods.

Statistical analyses

Statistical analyses were performed using R 3.6.3.23

The detailed statistical methods as well as the versions
of the used R-packages are given in Supplementary
Methods. Descriptive statistics are presented as
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absolute numbers (n) and proportions (%) for categor-
ical variables, whereas continuous variables are shown
as mean and standard deviation (SD). The Shapiro-
Wilk test was used to test for normality. Due to the
exploratory nature of the study, no level of statistical
significance was defined; instead, the results were inter-
preted based on the level of evidence for an association
as follows: p< 0.001: very strong evidence; p< 0.01:
strong evidence; p< 0.05 evidence; p< 0.1 weak evi-
dence; and p> 0.1: no evidence.24

Data and code availability

The authors confirm that the data supporting the find-
ings of this study are available within the article and its
Supplementary Materials. In addition, all anonymized
datasets used in this study along with the statistical
code are provided in the Supplementary Materials
(for an overview, see Supplementary Table 3). The
use of dynamic reporting guarantees full reproducibil-
ity of the results given data and code.

Results

Study population

Out of 52 consecutively screened patients fulfilling
the eligibility criteria, 47 were included, since for

five patients informed consent was refused. Table 1

summarizes the baseline features of the patient

cohort.

Spectrophotometry demonstrates delayed

accumulation of CSF-Hb and heme metabolites in

patient CSF

We used spectrophotometry with spectral deconvolu-

tion to quantify CSF-Hb, its downstream metabolites

biliverdin and bilirubin, and the primary Hb oxida-

tion product metHb (Figure 1(a)). The individual tem-

poral profiles and peak concentrations of CSF-Hb

(0.6 mM to 242.2 mM) were highly variable

(Supplementary Figure 2). In most patients, CSF-Hb

remained very low over the first 2 to 3 days after

aSAH, followed by a strong increase, a plateau

between days 9 and 12, and a decrease thereafter.

Bilirubin was already elevated on day 1 and increased

at the greatest rate within the first 3 to 5 days before it

reached a plateau. Levels of the intermediate metab-

olite biliverdin markedly increased from day 4 and

peaked on day 12. MetHb levels showed a delayed

increase with a peak on day 11 after aSAH. Hence,

high levels of CSF-Hb develop with a delay after the

acute bleeding and coincide with the high-risk phase

for SAH-SBI.

Table 1. Baseline cohort characteristics. Demographic, clinical and radiological cohort
features at baseline are shown.

Total n 47 WFNS grade [n (%)]

Age [mean (SD)] 60.1 (12.9) 1 5 (10.6)

Male gender [n (%)] 19 (40.4) 2 12 (25.5)

Aneurysm location [n (%)] 3 2 (4.3)

Anterior communicating artery 19 (40.4) 4 10 (21.3)

Basilar artery 6 (12.8) 5 18 (38.3)

Internal carotid artery 1 (2.1) Hunt and Hess grade [n (%)]

Middle cerebral artery 8 (17.0) 1 1 (2.1)

Posterior communicating artery 6 (12.8) 2 13 (27.7)

Pericallosal artery 2 (4.3) 3 7 (14.9)

Posterior inferior cerebellar artery 4 (8.5) 4 10 (21.3)

Vertebral artery 1 (2.1) 5 16 (34.0)

Aneurysm sizea [mean (SD)] 6.9 (4.4) BNI grade [n (%)]

Blood volumeb [mean (SD)] 66.8 (40.6) 2 5 (10.6)

Intraventricular hemorrhage [n (%)] 20 (42.6) 3 7 (14.9)

Initial GCS [mean (SD)] 8.9 (4.8) 4 13 (27.7)

Treatment [n (%)] 5 22 (46.8)

Bypass 2 (4.3) Fisher grade [n (%)]

Clipping 14 (29.8) 1 1 (2.1)

Coiling 31 (66.0) 3 26 (55.3)

4 20 (42.6)

aMaximal diameter in mm.
bVolume in cm3.

BNI: Barrow Neurological Institute; GCS: Glasgow Coma Scale; SD: standard deviation; WFNS:

World Federation of Neurosurgical Societies.

Akeret et al. 3003



LC-MS/MS analysis of CSF proteins delineates

erythrolysis and a dynamic macrophage response in

the subarachnoid space

We performed a quantitative LC-MS/MS analysis of

85 CSF samples from 18 patients collected at 5 time

points after aSAH. Figure 1(b) illustrates the temporal

course of the levels of 757 CSF proteins that were

assigned to four clusters by a k-means algorithm.
Figure 1(c) shows a volcano plot of the normalized
signal intensities summed across all samples per
patient, providing an overall view of protein accumu-
lation or depletion within the two-week period after
aSAH. Cluster 2 (green) comprised proteins whose
intensity remained mostly unchanged over time.
Cluster 3 (yellow) represents proteins with decreasing

Figure 1. Changes in the cerebrospinal fluid proteome after aneurysmal subarachnoid hemorrhage. (a) Temporal cerebrospinal fluid
(CSF) oxyhemoglobin (CSF-Hb), bilirubin, biliverdin and methemoglobin (metHb) profiles. (b) K-means clustering of proteins in the
CSF after aneurysmal subarachnoid hemorrhage (aSAH) identified with LC-MS/MS. (c) Volcano plot showing the overall fold change
and combined p-value for the CSF proteome. The color indicates the respective cluster, the size of each dot represents the raw mean
intensity of the protein (not normalized). (d) Enrichment plot showing the top negatively enriched hallmark gene sets for coagulation
identified by gene set enrichment analysis (GSEA) of the CSF proteome after aSAH. (e) Temporal course of the normalized protein
intensities for haptoglobin (HP), haptoglobin-related protein (HPR), hemopexin (HPX) and albumin (ALB) in the CSF after aSAH. (f)
Enrichment plot of the top positively enriched hallmark gene set for glycolysis identified by GSEA of the CSF proteome after aSAH. (g)
Temporal course of the normalized protein intensities for carbonic anhydrase 1 (CA1), carbonic anhydrase 2 (CA2), catalase (CAT)
and aldolase A (ALDOA) in the CSF. (h) Enrichment plot of the hallmark gene set for heme metabolism identified by GSEA of the CSF
proteome after aSAH. (i) Temporal course of the normalized protein intensities for CD163, colony stimulating factor 1 receptor
(CSF1R), CD14 and metalloproteinase inhibitor 1 (TIMP1) in the CSF. The box in the boxplots bounds the interquartile range (IQR)
divided by the median, while the whiskers extend to the highest and lowest value within the 1.5� IQR, respectively.
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intensity over time. These were mainly plasma proteins
that likely entered the subarachnoid space with the
bleeding and were subsequently cleared from the
CSF. GSEA of the ranked proteins assigned the top
negatively enriched hallmark gene set to coagulation
(ES¼ -0.66, FDR¼ 0.007, Figure 1(d)). Figure 1(e) dis-
plays the levels of four selected plasma proteins (HP,
HPR, HPX and ALB) over time. Cluster 1 (violet)
contained proteins that showed pronounced accumula-
tion over time, and cluster 4 (blue) contained proteins
whose levels showed a moderate increase. GSEA iden-
tified glycolysis (ES¼ 0.78, FDR¼ 0.021, Figure 1(f))
and heme metabolism (ES¼ 0.74, FDR¼ 0.096, Figure
1(h)) as the top enriched hallmark gene sets, indicating
the lysis of RBCs with subsequent release of cytoplas-
mic proteins and the breakdown of Hb by macro-
phages, respectively. Figure 1(g) displays levels of the
RBC proteins carbonic anhydrase 1 (CA1) and 2
(CA2), catalase (CAT), and aldolase A (ALDOA)
over time. Figure 1(i) shows the macrophage proteins
CD163, CSF1R, CD14, and TIMP1. The accumulation
of these proteins suggests a pronounced macrophage
influx into the subarachnoid space within the first
days after hemorrhage. Collectively, the proteome
dynamics in patient CSF after aSAH reinforced the
notion that erythrolysis and an adaptive macrophage
response are the two dominant processes in the CSF
space after aSAH.

Hematoma volume, day after aSAH and presence of
IVH as relevant determinants of CSF-Hb

To estimate determinants of CSF-Hb concentration,
we applied a GAM with non-linear spline-fit (4
knots) for time (day after aSAH) and a random-effect
for the individual patients. The partial dependence
plots are shown in Figure 2(a). Larger aneurysm size
was not associated with higher CSF-Hb. Among aneur-
ysms at different locations, middle cerebral artery
aneurysms showed strong evidence for a negative asso-
ciation with CSF-Hb (partial dependence¼ -0.57,
SD¼ 0.20, p¼ 0.0044). There was very strong evidence
for a positive association between hematoma volume
and CSF-Hb (p< 0.001). A rendered example of the
subarachnoid blood clot is given in Figure 2(b).
Volumetric analysis was performed in only 46 of the
47 patients, as one patient had an initial MRI (and not
a CT scan) and was therefore excluded from this anal-
ysis. There was very strong evidence (p< 0.001) for an
association between the time point of sampling (day)
and CSF-Hb, whereas the partial dependence was neg-
ative in the first 3-5 days after aSAH, and positive in
subsequent days. This association most likely reflects
the delayed onset of erythrolysis and CSF-Hb libera-
tion in the subarachnoid space after aSAH. Also, there

was very strong evidence for a positive association
between the presence of IVH and CSF-Hb (partial
dependence¼ 1.1, SD¼ 0.15, p< 0.001). With IVH,
CSF-Hb levels increased early and then reached a pla-
teau, whereas in the absence of IVH, this increase was
more delayed and gradual, but a plateau was reached at
comparable peak concentrations around day 12
(Figure 2(c)). This most likely represents a CSF com-
partment effect, since the EVD used to sample the CSF
is in direct proximity to the blood clot when IVH is
present, while the EVD lies distant to the blood clot, if
IVH is absent (illustrated in Figure 2(c)). In summary,
these findings indicate that hematoma volume, day
after aSAH and the presence of IVH are relevant deter-
minants of CSF-Hb levels.

Increased CSF-Hb levels are associated with SAH-SBI

The cohort outcome parameters representative of
SAH-SBI, rescue therapies, complications, mortality,
and functional status at the 3-month follow-up are
summarized in Supplementary Table 2. The CSF-Hb
levels stratified by aVSP, DCI, DIND and SAH-SBI
are shown in Figure 3(a) and Supplementary Figure 3.
As expected, given their strict clinical definitions, the
status of DIND, DCI and aVSP is missing on many
time points (denoted as not available (NA)).
Supplemental Figure 3 shows the CSF-Hb values of
the NAs for DINDs, DCI and aVSPs compared to
the CSF-Hb. Within the NAs, the CSF-Hb values
were found distributed along the entire measurement
spectrum without an unidirectional trend, as opposed
to those with or without DIND, DCI or aVSP. A
GAM with spline fit (5 knots) for time (day after
aSAH) and a random-effect for the individual patients
provided very strong evidence (p< 0.001) for a positive
association between CSF-Hb and SAH-SBI. The par-
tial dependence of SAH-SBI on CSF-Hb and the day
after aSAH are given in Figure 3(b).

To estimate the diagnostic accuracy of daily CSF-
Hb measurements to monitor for SAH-SBI, we calcu-
lated the ROC curves and AUCs for SAH-SBI and the
individual outcomes aVSP, DCI and DIND (Figure 3
(c), Supplementary Figure 4(a) to (c)). The high diag-
nostic accuracy of CSF-Hb remained unaltered in a
recalculated model with data limited to the high-risk
period (days 4-14), avoiding potential bias introduced
by the generally low Hb levels in the first 3 days after
aSAH (Supplementary Figure 4(d)). Bilirubin, biliver-
din and metHb had a lower diagnostic accuracy than
CSF-Hb (Supplementary Figure 4(e) to (h)).
Computation of the optimal Youden index yielded a
CSF-Hb value of 7.1 mM for SAH-SBI (Figure 3(c)).
For the individual outcomes of aVSPs, DCI and
DINDs, the optimal Youden indices were 3.4, 5.5,

Akeret et al. 3005



and 7.1 mM, respectively (Supplementary Figure 4(a) to

(c)). TCD measurements demonstrated a high specific-

ity for SAH-SBI (0.97 [0.88 to 1.00]), DIND (0.96 [0.87

to 1.00]), DCI (0.93 [0.76 to 0.99]) and aVSP (0.96 [0.78

to 1.00]). However, the sensitivity of daily TCD meas-

urements was minimal (SAH-SBI: 0.28 [0.17 to 0.42],

DIND: 0.32 [0.18 to 0.48], DCI: 0.15 [0.03 to 0.38],

aVSP: 0.17 [0.05 to 0.37]).
CSF-Hb values stratified by good and poor func-

tional outcome at 3-month follow up based on GOSE

and mRS score are shown in Figure 3(d) and

Supplementary Figure 4(h), respectively. A GAM

with spline fit (4 knots) for time (day after aSAH)

and a random-effect for the individual patients provid-

ed very strong evidence for a positive association of

CSF-Hb to a poor functional outcome at 3-month

follow up, as expressed by the GOSE (partial depend-

ence¼ 0.71, SD¼ 0.10, p< 0.001) and mRS (partial

dependence¼ 0.72, SD¼ 0.10, p< 0.001).

Basilar artery vasoconstriction and lipid peroxidation

occur in the concentration range of patient CSF-Hb

Our clinical data suggested CSF-Hb as an upstream

mediator of SAH-SBI. To further investigate a poten-

tial pathophysiological association, we studied whether

ex-vivo vasoconstriction and lipid peroxidation with

Hb exposure correlated with the range of CSF-Hb con-

centrations observed in our cohort. We established a

new model of vascular function with porcine basilar

arteries that were precontracted with PGF2a and dilat-

ed by an intrinsic endothelial NO synthase (eNOS)

Figure 2. Determinants of cerebrospinal fluid hemoglobin. (a) Partial dependence of cerebrospinal fluid hemoglobin (CSF-Hb) levels
on aneurysm size, aneurysm location, hematoma volume, the presence of intraventricular hemorrhage (IVH), and number of days
post-SAH according to a generalized additive model (GAM). (b) Example of 3D-rendered subarachnoid hematoma. (c) Left: Schematic
illustration of a subarachnoid hemorrhage originating from a ruptured anterior communicating artery aneurysm with IVH absent (blue
inset) or present (red inset). Right: The temporal course of CSF-Hb after aSAH stratified by the presence of IVH. The box in the
boxplots bounds the interquartile range (IQR) divided by the median, while the whiskers extend to the highest and lowest value within
the 1.5� IQR, respectively.
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response. This setup allowed us to study the effect of
Hb on endogenous NO reserve capacity. In contrast to
our prior proof-of-concept studies,15 which were not
designed to validate the pathophysiological effects of
predefined Hb concentrations, no supplemental NO
donor was used. Figure 4(a) demonstrates the sigmoid
dose-response curve, which shows a steep increase in
vascular tension between 10�6.5 and 10�6 M Hb and
maximum contraction near 10�5 M Hb.

An almost identical curve was obtained when we
plotted the max-TCD-scaled values of our patient
cohort against the measured CSF-Hb concentrations
(Figure 4(b)). The samples from those patients with
aVSPs (red dots) in the majority contained CSF-Hb
at concentrations of 10�5 M or more.

To investigate the oxidative potential associated
with CSF-Hb, we measured the generation of MDA

in a mixture of Hb and rLP containing unsaturated
phosphatidylcholine, which is the main physiological
lipid substrate for in-vivo Hb peroxidation reactions.20

The dose-response curves shown in Figure 4(c) demon-
strates that the steepest increase in MDA formation
also occurred with Hb at concentrations between
10�5.5 and 10�5 M with reaction incubation times rang-
ing from 0.5 to 4 h.

Figure 4(d) plots the patient’s CSF-Hb concentra-
tions stratified by the presence of SAH-SBI. This dem-
onstrates that the optimal Youden index of CSF-Hb
for SAH-SBI, which arithmetically yields the optimal
ratio between sensitivity and specificity, nearly coin-
cides with the CSF-Hb concentration at maximal bas-
ilar artery vasoconstriction, the maximum TCD values
and the concentration at which the rate of TBARS
generation is highest.

Figure 3. Association between cerebrospinal fluid hemoglobin and secondary brain injury after aneurysmal subarachnoid hemor-
rhage. (a) Cerebrospinal fluid hemoglobin (CSF-Hb) in patients after aneurysmal subarachnoid hemorrhage (aSAH) stratified by
angiographic vasospasm (aVSP), delayed cerebral ischemia (DCI), delayed ischemic neurological deficit (DIND) and the composite
outcome SAH-related secondary brain injury (SAH-SBI) per day after aSAH (day post-SAH). (b) Partial dependence of SAH-SBI on
CSF-Hb (log-scale) and the number of days post-SAH according to a generalized additive model (GAM). (c) Receiver operating
characteristic (ROC) curves and area under the curves (AUC) of CSF-Hb for DIND, DCI and aVSP (left). ROC curve of CSF-Hb for
SAH-SBI, with the corresponding CSF-Hb measurements. (d) The temporal course of CSF-Hb stratified by GOSE score at the 3-
month follow-up. The box in the boxplots bounds the interquartile range (IQR) divided by the median, while the whiskers extend to
the highest and lowest value within the 1.5� IQR, respectively.
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Collectively, the results of the vascular function and

lipid peroxidation studies reveal critical inflection

points for toxic Hb-effects at concentrations overlap-

ping the CSF-Hb concentrations found in patients with

SAH-SBI.

Depletion and neutralization of CSF-Hb mitigates

pathological vasoconstriction and lipid peroxidation

To mechanistically link CSF-Hb in patients with SAH-

SBI, we performed Hb depletion and neutralization

experiments. Porcine basilar artery segments that

were immersed in CSF depleted of Hb with a hapto-

globin affinity column (Figure 5(a)) had a lower rela-

tive tension than segments immersed in the same CSF

sample in which the original CSF-Hb concentration

had been restored with highly purified Hb (Figure 5

(b)). This experimental setup controlled for potential

nonspecific removal of vasoactive substances by the

haptoglobin affinity column. Additionally, we repeated

a Hb dose-response experiment to confirm the anti-

vasospastic effect of soluble haptoglobin (phenotype

1-1, Hp 1-1). Across the Hb concentration range, Hp

1-1 attenuated the contractile force of basilar arteries

(Figure 5(c)). We also quantified the oxidative poten-

tial of CSF samples from patients after aSAH. We

found variable increases in MDA after lipoprotein

exposure between CSF samples that were collected

during the high-risk phase (weeks 0.5-2) compared to

baseline CSF samples (collected on day 1) (Figure 5

(d)). The addition of the Hb-scavenger Hp 1-1 at equi-

molar concentrations to CSF-Hb effectively attenuated

MDA formation. The addition of the heme-scavenger

hemopexin at an equimolar concentration to CSF-Hb

attenuated MDA formation to an even greater extent.

These ex-vivo experiments show the effectiveness of Hb

and heme scavengers in mitigating the vasoconstrictive,

as well as the oxidative effects of CSF-Hb, and thereby

support further evaluation for their clinical application

of patients after aSAH.

Discussion

The main objective of this study was to investigate the

clinical association of CSF-Hb with SAH-SBI and the

diagnostic accuracy of daily CSF-Hb measurements for

SAH-SBI. Based on a prospective cohort of 47 patients

and 415 CSF samples, we provide very strong evidence

for a positive association between CSF-Hb and the

occurrence of SAH-SBI. In addition, CSF-Hb marked-

ly exceeded the diagnostic accuracy of established pre-

diction methods. Also, we aimed to rationalize the role

of CSF-Hb as a targetable driver of SAH-SBI. We

showed that, within a clinically relevant concentration

range, CSF-Hb induced vasoconstriction and oxidized

unsaturated lipids ex-vivo, suggesting that it might act

as an upstream toxin. The Hb-scavenger haptoglobin

and the heme-scavenger hemopexin effectively counter-

acted both toxicity mechanisms within the clinically

relevant dose range. Collectively, the strong clinical

association between high CSF-Hb levels and SAH-

SBI, the underlying pathophysiological rationale and

the favorable effects of haptoglobin and hemopexin

position CSF-Hb as a highly attractive biomarker

and potential drug target.

Figure 4. The vasoconstrictive and oxidative potential of
hemoglobin. (a) Relative tension dose-response curve for
hemoglobin (Hb). (b) Patient Transcranial Doppler (TCD)
velocity (max-TCD-scaled) correlated to CSF-Hb levels. The
presence of angiographic vasospasms (aVSP) is displayed as a
color overlay. (c) Formation of malondialdehyde (MDA) in
response to different concentrations of Hb determined by a
TBARS assay. (d) Correlation between measured CSF-Hb and
the presence of secondary brain injury (SAH-SBI). The box in the
boxplots bounds the interquartile range (IQR) divided by the
median, while the whiskers extend to the highest and lowest
value within the 1.5� IQR, respectively.
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CSF-Hb as a biomarker for SAH-SBI

In this study, EVD sampling-based CSF-Hb showed a
diagnostic accuracy for SAH-SBI that considerably
exceeded that of existing methods. While often used

in clinical practice, established clinical (WFNS, Hunt
& Hess) and radiological (BNI, modified Fisher) scores
show a limited predictive accuracy for SAH-SBI.25–28

The performance of combined scores or machine-
learning-based models for predicting SAH-SBI is also
only slightly better than that of the established clinical
and radiological scores.29,30 The value of daily assess-
ments of arterial flow velocity in the large cerebral
arteries using TCD is controversial because of its lim-
ited diagnostic precision and high interrater variabili-
ty31,32 and because it cannot be applied in one-fifth of
patients due to anatomical reasons.33 Due to the lack
of superior alternatives, however, TCD is recom-
mended by current guidelines and has been adopted
by many clinical centers.11,34 In our cohort, the diag-
nostic accuracy of TCD for SAH-SBI was clearly
below that of CSF-Hb. Moreover, literature-reported
performance measures of proposed biomarkers for
SAH-SBI are also substantially inferior to CSF-
Hb.35,36 In addition to its high diagnostic accuracy
for SAH-SBI, CSF-Hb is characterized by its simple
and reliable analytics. Precise CSF-Hb values could
be determined bedside with a simple two-step proce-
dure consisting of a centrifugation step to remove
cells and debris from the CSF and subsequent spectro-
photometry with automated spectral deconvolution.
Furthermore, spectrophotometry allows the absolute
quantification of CSF-Hb without parallel measure-
ments of calibration samples or to generate standard
curves. Collectively, these advantages significantly
reduce analytical costs and turnaround times and
may enhance the widespread applicability and use of
CSF-Hb quantification.

CSF-Hb as a pathophysiological driver of SAH-SBI

Despite the fact that Hb has long been considered a
relevant pathophysiological factor in the development
of SAH-SBI,7,13,14 only recently preclinical studies have
experimentally determined that CSF-Hb induces path-
ophysiological processes reflecting specific features of
SAH-SBI, such as vasospasm, lipid oxidation, and neu-
ronal damage.15–17 However, a significant limitation of
prior studies was that the explored Hb and heme con-
centrations were not based on a rational assessment of
relevant CSF-Hb concentrations in patients. Indeed,
our previous experiments in a sheep vasospasm
model15 defined effects of CSF-Hb at concentrations
at least tenfold above the critical inflection point
implied by our current patient data. Furthermore,
our previous ex-vivo vasospasm model was incapable
of defining physiologically relevant vasoconstrictive
Hb concentrations because we used exogenous NO
donors and, therefore, artificially set the concentration
threshold at which Hb interrupted vasodilatory NO

Figure 5. Protective effects of scavenger proteins against the
vascular and oxidative effects of hemoglobin. (a) Depletion of Hb
from CSF using a haptoglobin (Hp) affinity column. (b) Vascular
tension of vessels immersed in Hb-depleted CSF and Hb-
restored CSF. (c) Dose-response curve for Hb with (data from
Figure 4(a)) or without Hp. (d) The oxidative potential of patient
CSF over time after aneurysmal subarachnoid hemorrhage
(aSAH) with and without the addition of Hp or hemopexin
(Hpx), as assessed by malondialdehyde (MDA) quantification with
a thiobarbituric acid-reactive substances (TBARS) assay. The box
in the boxplots bounds the interquartile range (IQR) divided by
the median, while the whiskers extend to the highest and lowest
value within the 1.5� IQR, respectively.
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signaling. To address these issues, we redesigned our
ex-vivo model to investigate how CSF-Hb interferes
with an intrinsic vasodilator response. This was
achieved by combining an algorithm-based prestretch-
ing protocol PGF2a as a pre-contracting agent, which
induced endogenous, endothelial NO synthesis. With
this new model, we confirmed that Hb is the major
vasoconstrictor in patient CSF by comparing the vaso-
constrictive effect of Hb-depleted and Hb-restored
CSF. Additionally, we were able to determine that
the active dynamic range of Hb concentrations in the
ex-vivo vasospasm model overlaps with critical inflec-
tion points that determine TCD flow velocities in large
cerebral arteries and the presence or absence of SAH-
SBI in our patient cohort. Within the same clinically
relevant concentration range, we found that CSF-Hb
was highly active as a lipid oxidant, indicating oxida-
tive Hb toxicity to contribute to nonischemic neuronal
damage. We attributed the lipid oxidation activity in
patient CSF to the downstream Hb metabolite heme.
Its selective neutralization with hemopexin virtually
blocked the formation of MDA, while haptoglobin
partially inhibited MDA formation.

CSF proteome dynamics after aSAH

Although our study followed a strongly hypothesis-
driven approach, we attempted to further assess the
phenomenon of CSF-Hb accumulation and toxicity
within the broader context of biological processes
reflected by the temporal dynamics of the CSF prote-
ome. Based on LC-MS/MS analysis of Hb-depleted
CSF from the two weeks high-risk phase for SAH-
SBI, we found the strongest signals for those proteins
suggestive of RBC lysis and macrophage accumulation.
RBC lysis was indicated by an increase in erythrocyte
glycolytic and antioxidant enzymes (e.g., CA1, CA2,
CAT, and ALDOA) over time, while lineage-specific
soluble cell surface receptors (e.g., CD163, CD14,
CSF1R and TIMP-1) indicated the rapid and sustained
accumulation of macrophages. Prior studies have sug-
gested that leptomeningeal macrophages with
enhanced expression of the Hb scavenger receptor
CD163 accumulate in the subarachnoid space after
aSAH.37,38 In in-vitro studies and in hemolytic mice,
macrophages exposed to damaged RBCs, Hb, or heme
acquired an idiosyncratic phenotype supporting an
adaptive response consisting of heme detoxification,
iron sequestration, and inflammatory suppression,
aiming at promoting hematoma resolution and
wound healing.39–42 The time course of the macro-
phage protein signatures in our patients coincided
well with the early peak in CSF bilirubin, which reflects
metabolic heme degradation by heme oxygenase.43 We
found bilirubin to reach a plateau on days 3 to 4 after

aSAH, followed by an increase in CSF biliverdin. This

implies a saturation of the cumulative metabolic capac-

ity of resident and recruited macrophages in the sub-

arachnoid space at that time point (Figure 6).

Therefore, the delayed increase in CSF-Hb concentra-

tions to toxic levels appears to be the combined result

of the accelerated lysis of RBCs and the saturated

capacity of erythrophagocytic and Hb-clearing macro-

phages. The accumulation of RBC- and macrophage-

proteins occurred even with the rapid depletion of

plasma proteins, such as apolipoproteins, coagulation

factors and haptoglobin, reflecting rapid protein clear-

ance from the CSF during the initial days after aSAH.

CSF-Hb as a therapeutic target for SAH-SBI

Our data reinforce the idea of CSF-Hb as an attractive

drug target to prevent and treat SAH-SBI. This is sup-

ported by the strong clinical association between CSF-

Hb and SAH-SBI, the underlying pathophysiological

rationale behind this association, and the favorable

functional effects of haptoglobin and hemopexin in

neutralizing CSF-Hb in a clinically relevant concentra-

tion range for toxicity ex-vivo. Haptoglobin is part of

the physiological scavenger system for extracellular

Hb, providing the most upstream antagonization of

Hb toxicity by preventing vascular and tissue translo-

cation of the large Hb-haptoglobin complex, blocking

heme release, stabilizing Hb radical reactions, and

accelerating Hb clearance by the macrophage CD163

receptor pathway.20,44–46 In our CSF analysis, endoge-

nous haptoglobin was shown to be cleared from the

CSF within the first few days after aSAH before the

subsequent release of relevant amounts of CSF-Hb.

Thus, the protective function of endogenous haptoglo-

bin seems negligible. In a previous animal study, intra-

ventricularly administered haptoglobin inhibited Hb

delocalization from the CSF into the brain parenchyma

and smooth muscle cell layer of cerebral arteries, pre-

venting Hb-induced aVSP.15 Our findings support this

protective function of haptoglobin by demonstrating

its anti-vasoconstrictive and antioxidant effects at a

clinically relevant Hb concentration range. The antiox-

idant function of the heme scavenger protein hemo-

pexin even surpassed that of haptoglobin. This

suggests that a fraction of heme had already been

released from oxidized or degraded CSF-Hb, forming

a pool of oxidative free heme that remained associated

with low-affinity heme-binding proteins. Therefore, it

appears reasonable that the therapeutic combination of

intraventricularly administered haptoglobin and hemo-

pexin may exert synergistic protection.
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Limitations and pertinent research questions

While we believe that a clinical stratification of SAH-

SBI into aVSP, DCI, and DIND is useful, it must be
recognized that the underlying pathophysiology of sec-

ondary injury after aSAH is multifactorial and should
not be arbitrarily simplified. While our ex-vivo assays

cover specific aspects of dose-dependent CSF-Hb tox-
icity that correlate with aVSP, DCI, and DIND in

patients, they cannot cover the entire spectrum of the
complex pathophysiology of SAH-SBI. For instance,

recent studies indicate that microthrombi formation
after aSAH contributes to the development of DCI

and DIND.47,48 CSF-Hb might be also involved in
this, as endothelial NO scavenging by Hb has been

shown to disinhibit platelet adhesion and aggrega-
tion.49–51 In addition, there may be an indirect link to
Hb-induced microvasospasms,15,17,52–56 promoting the

formation of microthrombi by resulting mechanical
endothelial damage. Furthermore, there is recent pre-

clinical evidence for acute and persistent loss of neuro-
vascular coupling after aSAH, which may be

pathophysiologically relevant both in the context of
early brain injury as well as the development of SAH-

SBI.9,57,58 Further studies are needed to determine the
role of CSF-Hb in this context. Another relevant path-

ophysiological aspect, which is not covered by our
ex-vivo assays, is the potential uptake of CSF-Hb by

neurons via CD163 and associated neuronal
damage.59–64 More investigations on the dose depen-

dency of this effect and the controversial effect of hap-
toglobin are needed.65–67 Further, it must be

emphasized that only indirect conclusions about eryth-
rophagocytosis by macrophages based on the examina-

tion of the CSF proteome can be drawn in our study.

No macrophages were isolated from the CSF. No con-
clusions can be drawn regarding the origin of the
responsible macrophages, although a distinction
between border-associated and peripheral macro-
phages in particular would be of pathophysiological
and therapeutic interest.68 In addition, it remains
unclear how Hb is cleared from the CSF.
Conceivable options are a clearing via meningeal lym-
phatic vessels or via the choroid plexus.69–72 After
SAH, the absorptive function of these structures
might be impaired. On the one hand, CSF-Hb may
play an etiological role as a toxin in this functional
impairment; on the other hand, its CSF concentration
may be influenced by a reduced clearance via these
structures. The fact that the CSF sampling in this
study was conducted via an EVD located in the lateral
ventricle may represent a certain limitation regarding
some of the pathophysiological conclusions. The mea-
sured CSF-Hb concentrations represent local condi-
tions in the lateral ventricle and do not necessarily
correspond to the conditions in other CSF compart-
ments (e.g., basal cisterns). Although, patients with
IVH showed a pattern with an early peak and subse-
quent plateau, patients without IVH reached compara-
ble CSF-Hb levels later on. This suggests the presence
of a considerable redistribution of CSF-Hb across the
whole CSF space, leading to a rather homogeneous
distribution over time. A potential limitation of the
clinical data results from the high number of missing
observations in the daily assessment of DIND, DCI or
aVSP. This is an intrinsic limitation in any study of
aSAH patients, as the neurological assessment of
patients with aSAH is frequently limited due to intu-
bation and sedation, and cranial imaging is not con-
ducted every day. The aim of using a strict definition of

Figure 6. The pathophysiology of cerebrospinal fluid hemoglobin and heme metabolites after aneurysmal subarachnoid hemorrhage.
(a) Schematic illustration of the pathophysiological processes in the cerebrospinal fluid (CSF) microenvironment after aneurysmal
subarachnoid hemorrhage (aSAH). Erythrophagocytosis and the consecutive intracellular processes of hemoglobin (Hb) degradation
and heme metabolization are shown at the bottom. The saturation of the biliverdin reductase and the erythrophagocytosis is indicated
by red bars. Erythrocytolysis in the subarachnoid CSF space is shown at the top. Liberated Hb is oxidized to methemoglobin (metHb)
before heme is released. (b) CSF concentrations of Hb (CSF-Hb), bilirubin, biliverdin and metHb over time with the assumed
saturation period of biliverdin reductase and phagocytosis indicated by a red shaded area, resulting in an increase of CSF-Hb (1) and
biliverdin (2) as well as the plateauing of bilirubin (3).
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DIND, DCI or aVSP was to exclude uncertainties in
the acquired data and to increase the reliability in the

association between CSF-Hb and SAH-SBI. The
homogeneous distribution of the measured CSF-Hb
values within the NAs argues against a systematic

error. In addition, our clinical study is limited by a
selection of severe clinical cases due to the inherent
need for an EVD. In our center, the indication for an

EVD in a patient with aSAH is an impending acute
hydrocephalus. Therefore, no conclusions can be
made about patients without hydrocephalic congestion.
Moreover, we cannot infer a potential relationship

between CSF-Hb and acute hydrocephalus. In order
to answer this question, a comparable study would
have to be performed in centers where also patients

without acute hydrocephalus receive EVD, e.g. to mon-
itor intracranial pressure. Furthermore, this study is
limited by the number of patients. While there is an

adequate statistical power for conclusions regarding
the association of daily CSF-Hb with both baseline
and outcome parameters (per day and per patient),

this does not apply to conclusions regarding the asso-
ciation of patient-specific baseline and outcome char-
acteristics, e.g. the association between gender and the
occurrence of SAH-SBI.73,74 Finally, this is an explor-

atory single center study intended to provide a solid
basis for a preregistered multicenter validation study.

Conclusions

In this study, we provide very strong evidence for a
positive association between CSF-Hb and the occur-

rence of SAH-SBI. Furthermore, CSF-Hb was shown
to exhibit a high diagnostic accuracy for SAH-SBI.
Within a clinically relevant concentration range, CSF-

Hb induced vasoconstriction and oxidized unsaturated
lipids ex-vivo, suggesting that it acts as an upstream
toxin released from the subarachnoid hematoma.
Based on these clinical and ex-vivo data, we provide

a plausible pathophysiological link between the initial
blood volume, the generation of toxic CSF-Hb and the
development of SAH-SBI. The Hb-scavenger haptoglo-

bin and the heme-scavenger hemopexin effectively
counteracted both toxicity mechanisms within the clin-
ically relevant dose range ex-vivo. Collectively, these

findings position CSF-Hb as a highly attractive bio-
marker and potential drug target.
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