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ABSTRACT Genomic prediction is a statistical method to predict phenotypes of polygenic traits using
high-throughput genomic data. Most diseases and behaviors in humans and animals are polygenic traits.
The majority of agronomic traits in crops are also polygenic. Accurate prediction of these traits can help
medical professionals diagnose acute diseases and breeders to increase food products, and therefore
significantly contribute to human health and global food security. The best linear unbiased prediction
(BLUP) is an important tool to analyze high-throughput genomic data for prediction. However, to judge the
efficacy of the BLUP model with a particular set of predictors for a given trait, one has to provide an
unbiased mechanism to evaluate the predictability. Cross-validation (CV) is an essential tool to achieve this
goal, where a sample is partitioned into K parts of roughly equal size, one part is predicted using parameters
estimated from the remaining K – 1 parts, and eventually every part is predicted using a sample excluding
that part. Such a CV is called the K-fold CV. Unfortunately, CV presents a substantial increase in compu-
tational burden. We developed an alternative method, the HAT method, to replace CV. The new method
corrects the estimated residual errors from the whole sample analysis using the leverage values of a hat
matrix of the random effects to achieve the predicted residual errors. Properties of the HAT method were
investigated using seven agronomic and 1000 metabolomic traits of an inbred rice population. Results
showed that the HAT method is a very good approximation of the CV method. The method was also
applied to 10 traits in 1495 hybrid rice with 1.6 million SNPs, and to human height of 6161 subjects with
roughly 0.5 million SNPs of the Framingham heart study data. Predictabilities of the HAT and CV methods
were all similar. The HAT method allows us to easily evaluate the predictabilities of genomic prediction for
large numbers of traits in very large populations.
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Many diseases, anatomic structures, physiological characteristics, and
behaviors in humans are polygenic traits. Most agronomic traits in
agriculture, e.g., yield, are also polygenic. These complex traits require
whole-genome study to understand the genetic mechanisms and to
genetically improve the quality and quantity of agricultural products
(de los Campos et al. 2009, 2013a,b). Genomic prediction (selection) is
a statistical method of whole-genome study (Meuwissen et al. 2001). It

can lead to earlier detection of acute polygenic cancers (Vazquez et al.
2012). Genomic prediction is also an effective tool to select superior
cultivars in plant breeding (Heffner et al. 2009). Genomic hybrid pre-
diction will provide an opportunity to evaluate all potential hybrids and
allow breeders to select superior hybrids that will have little chance to be
discovered based on traditional hybrid breeding schemes (Xu et al.
2014). Genomic selection has been very successful in the dairy cattle
industry (Goddard and Hayes 2007) and will soon become a routine
procedure for breeding of a vast number of agricultural species.

Among the commonly usedmethods for genomic prediction, BLUP
(Henderson 1975) is one of a few suitable methods for handling high-
throughput genomic data with millions of genetic variants (VanRaden
2008). Reproducing kernel Hilbert spaces (RKHS) regression (Gianola
et al. 2006) is another method with such an ability, but RKHS has not
been as well recognized as the BLUP method. Although variable selec-
tion approaches such as Bayes B (Meuwissen et al. 2001) and LASSO
(Tibshirani 1996) are optimal for traits with a few detectable loci of
large effects plus many undetectable modifying loci under low and
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intermediate marker density, BLUP is the most robust method and one
of themost commonly used genomic selectionmethods (de los Campos
et al. 2013b). More importantly, the computational speed does not
depend on marker density because it takes a marker-inferred kinship
matrix (covariance structure) as the input data, albeit computing kin-
ship matrix taking additional time. To evaluate the predictability of the
BLUP model, one has to resort to some other tools, such as validation
or CV, where individuals predicted do not contribute to estimated
parameters that are used to predict these individuals. If individuals
predicted are not excluded from the training sample, serious bias will
occur in prediction.

The predictability of a model is often represented by the squared
correlation coefficient between the observed and predicted phenotypic
values (Xu et al. 2014). This squared correlation is approximately equal
to R2 ¼ 12PRESS=SS, where PRESS is the predicted residual error
sum of squares and SS is the total sum of squares of the phenotypic
values. Allen (1971, 1974) proposed to use PRESS as a criterion to
evaluate a regression model, in contrast to using the estimated residual
error sum of squares (ERESS) as the criterion. To calculate PRESS,
Allen (1971, 1974) used an approach that is now called the leave-
one-out cross-validation (LOOCV) or ordinary CV (Craven and
Wahba 1979), in which an individual is predicted using parameters
estimated from the sample that excludes this individual. When the
sample size (n) is large, LOOCV presents a high computational cost
because one will virtually have to analyze the data n times. The K-fold
CV (Picard and Cook 1984) is an extension of LOOCV in which the
sample is partitioned into K parts of roughly equal size. Individuals in a
part are predicted simultaneously using all individuals in the remaining
K 2 1 parts. Eventually, all parts are predicted once and used to esti-
mate parameters K2 1 times. When K is small, there are many differ-
ent ways of partitioning the sample, leading to variation in the
calculated predictability. This variation can be very large for small
sample sizes. Therefore, people often repeat the K-fold CV a few times
and use their average values to reduce the error due to random parti-
tioning. If possible, LOOCV (also called the n-fold CV, a special case of
K-fold CV when K = n and n is the sample size) is recommended
because it eliminates all problems associated with this random parti-
tioning variation. However, such a CV is not realistic for large samples
under themixedmodel methodology. Although a simple split CV (50%
training and 50% test) should suffice with very large samples, still 50%
of the sample is wasted. The LOOCVmethod may slightly overpredict
the model compared with the K-fold CV when K is substantially
smaller than n (Hastie et al. 2008).

Cook (1977, 1979) developed an explicit method to calculate PRESS
by correcting the deflated residual error of an observation using the
leverage value of the observation without repeated analyses of the par-
titioned samples. This method applies to least square regression under
the fixedmodel framework, where the predicted y is a linear function of
the observed y as shown below,

ŷ ¼ Xb̂ ¼ X
�
XTX

�21
XTy ¼ Hy (1)

where

H ¼ X
�
XTX

�21
XT (2)

is called the hatmatrix. The predicted residual error for observation j is
ej ¼ êj=ð12 hjjÞ where êj ¼ yj 2Xjb̂ is the so-called estimated resid-
ual error and hjj is the leverage value of the jth observation (the jth
diagonal element of the hat matrix). It is the contribution of the pre-
diction for an individual from itself and may be called the conflict of

interest factor. The predicted residual error is the estimated residual
error after correction for the deflation. The sum of squares of the
predicted residual errors over all individuals is the PRESS, which is
a well-known statistic in multiple regression analyses. To find an
explicit expression of PRESS for a mixed model, we need to identify
a random effect version of the hat matrix and use the leverage value of
the jth observation to correct for the deflated residual error.

TheHATmethod is a fast algorithm for the ordinary CV for a linear
model (Allen 1971, 1974) because the regression analysis is only done
once on the whole sample and then the estimated residual errors are
modified afterward. Extension of the HATmethod tomixedmodel has
been made by Golab et al. (1979) in finding the optimal ridge factor in
ridge regression (Hoerl and Kennard 1970a,b). It is well known that
ridge regression can be formulated as a mixed model problem with the
variance ratio replaced by a given ridge factor. Golab et al. (1979)
proposed a generalized cross-validation (GCV) method to find the
optimal ridge factor so that the generalized residual error variance
is minimized. These authors showed that the GCV-calculated residual
error sum of squares is a rotation-invariant version of Allen’s PRESS.
The residual error variance obtained from the GCV method is equiv-
alent to calculating the residual error variance by dividing the ERESS by
an “effective” degree of freedom. Properties of the GCV method have
been extensively studied by Li (1987). Jansen et al. (1997) applied GCV
to wavelet thresholding. When performing genomic prediction, we
prefer to see the actual predicted residual errors (errors in prediction
of future individuals) obtained from the ordinary CV because the re-
sidual errors obtained via GCV may not be intuitive to most of us. The
important gain from the GCV method of ridge regression analysis to
genomic selection is the HAT matrix of the random model when the
genomic variance is given.

There is rich literature on smoothing spline analysis that also helped
us to develop the fast HAT method for evaluation of mixed model
predictability (Wahba 1975, 1980, 1990, 1998; Wahba and Wold
1975a,b; Craven and Wahba 1979; Wahba et al. 1995, 2000; Wahba
and Luo 1997; Wang 1998a,b; Hastie et al. 2008). In smoothing spline
curve fitting, a response variable is fitted to a predictor with an arbitrary
functional relationship. The common approach is to fit the curve using
B-spline or another type of nonparametric approach. Several spline
bases (more than necessary) are constructed from the original predic-
tor. These bases are considered as new predictors, which are then used
to fit the response variable with linear relationship. The regression
coefficients are then estimated using a penalized shrinkage method
such as the ridge regression. The ridge parameter in smoothing splines
is then called the smoothing parameter ðlÞ; which is often found so
that the GCV residual error variance is minimized (Craven andWahba
1979; Wahba 1980). Given the smoothing parameter, the predicted
responses of all individuals are linear functions of all observed re-
sponses. Hastie et al. (2008) collectively called these linear functions
the smoother matrix and denoted it by Sl: This smoother matrix is the
random effect version of the HAT matrix,

HR ¼ X
�
XTX þ lQ

�21
XT (3)

where Q is a known diagonal matrix. A HAT matrix under the ran-
dommodel was also given by de los Campos et al. (2013b) in the form
of ŷ ¼ ðGþ lIÞ21y ¼ Hy; although it was not derived for calculating
PRESS. The HAT matrix of the fixed model introduced in Equation
2 is then denoted by HF : The difference between the two HAT ma-
trices is clear in form. Hastie et al. (2008) stated that both HR and
HF are symmetric and positive semidefinite, HF is idempotent
(HFHF ¼ HF) but HR is not, and HF has a rank of m (number of

896 | S. Xu



predictors) whileHR has a rank of n (number of observations). So, the
HAT matrix for a random model has been defined by the smoothing
splines community. We may implement this HAT matrix in our
BLUP prediction to evaluate the predictability of our models and
avoid the lengthy CV analysis. The smoothing parameter (our vari-
ance ratio) should be given a reasonable value and the REML estimate
from the whole sample is a natural choice. However, replacing the
prechosen l by a data-driven estimate makes the HAT matrix a
complicated function of the data. The question is, what is the differ-
ence between the HAT method (when l is estimated from the whole
sample) and the actual CV (when l is estimated anew within each
fold)? This becomes the main objective of this study.

When revising this manuscript, a similar study was published in the
same journal (G3: Genes| Genomes | Genetics) by Gianola and Schon
(2016). They also recognized the approximation nature of the new
method and stated that using the whole-sample-estimated l in place
of the prechosen l will not affect the result too much, especially when
the LOOCV is compared, because the training sample only differs
from the whole sample by one observation. However, this is only a
speculation (most likely true) and they did not explicitly investigate the
difference. Since the new method represents a significant technical
improvement in genomic selection, the community must be aware of
the difference before widely adopting the new method to evaluate a
genomic selection program. In this study, we explicitly answer this
question by analyzing several agronomic traits and 1000 metabolomic
traits from two rice populations. Further comparison was also made in
genomic prediction of human height from the Framinghamheart study
data (Dawber et al. 1951, 1963).

METHODS

Fixed model
The HATmethod for calculating PRESS under the fixedmodel is given
by Cook (1977, 1979) for the LOOCV scenario but not for the leave nk
out CV (the K-fold CV). We extended Cook’s method to leave nk out
for weighted least squares regression analysis. The predicted y is a linear
function of the observed y as shown below,

ŷ ¼ Xb̂ ¼ X
�
XTWX

�21
XTWy ¼ Hy (4)

where

H ¼ X
�
XTWX

�21
XTW (5)

is the hat matrix. This H matrix is still idempotent. In a K-fold CV
analysis, let nk be the number of observations in the kth fold for
k ¼ 1; . . . ;K and

PK
k¼1nk ¼ n: Define Xk as an nk · p matrix of in-

dependent variables for individuals in the kth fold, where p is the
number of independent variables. The “leverage” value for the kth
fold is defined as an nk · nk matrix,

Hkk ¼ Xk
�
XTWX

�21
XT
k Wk (6)

where Wk is the nk · nk subset of matrix W corresponding to the kth
fold. This matrix must appear in the end, not in the beginning, of the
above equation. Let

êk ¼ yk 2Xkb̂ (7)

be the estimated residual errors where b̂ is estimated from the whole
sample. The predicted residual errors for the nk individuals in the kth
fold is

ek ¼ ðI2HkkÞ21êk: (8)

Therefore, the PRESS is defined as

PRESS ¼
XK
k¼1

eTk Wkek ¼ êTk ðI2HkkÞ21WkðI2HkkÞ21êk (9)

which is the weighted sum of squares of the predicted residual errors.
Derivation of Equation 9 is given in Appendix A.

Mixed model
The linear mixed model for genomic prediction is written as

y ¼ Xbþ j þ e (10)

whereXb represents the fixed effects, j is a vector of random (polygenic)
effects with an assumed Nð0;As2

jÞ distribution, and e � Nð0; Is2Þ is
a vector of residual errors. The expectation and variance of y are
EðyÞ ¼ Xb and varðyÞ ¼ V ¼ As2

j þ Is2; respectively, where A is a
marker-inferred kinship matrix (explained in detail below), s2

j is the
polygenic variance, and s2 is the residual error variance. The param-
eters are u ¼ fb;s2

j;s
2g and the variances are estimated using the

restricted maximum likelihood method (Patterson and Thompson
1971) by maximizing the following likelihood function,

LðuÞ ¼2
1
2
lnjVj2 1

2
ln
��XTV21X

��2 1
2
ðy2XbÞTV21ðy2XbÞ:

(11)

The estimated genomic heritability (de los Campos et al. 2015) from

themarkers is ĥ
2 ¼ ŝ2

j=ðŝ2
j þ ŝ2Þ: The best linear unbiased estimates

(BLUE) of the fixed effects are b̂ ¼ ðXTV21XÞ21XTV21y and the

BLUP of the polygenic effects are ĵ ¼ ŝ2
jAV

21ðy2Xb̂Þ: The fitted
phenotypic values are ŷ ¼ Xb̂þ ĵ; which is a conditional prediction
(not a marginal prediction). Corresponding to the predicted poly-

genic effect ĵ ¼ ŷ2Xb̂;we now define j ¼ y2Xb̂ as the “observed”

polygenic effect (it is indeed observed because b̂ is used). The model
goodness of fit (FIT) for the random effects is defined as the squared

correlation between j and ĵ:

Marker-inferred kinship matrix
The marker-inferred kinship matrix A is calculated from all markers of
the genome using the following equation,

A ¼ 1
a

Xm
k¼1

ZkZ
T
k (12)

where m is the total number of markers, a ¼ n21trðPm
k¼1ZkZT

k Þ is a
normalization factor to make the diagonal elements of matrix A as
close to unity as possible, and Zk is an n· 1 vector of genotype in-
dicator variables for all individuals at marker k. For individual j, the
numerical code for a genotype is

Zjk ¼
8<
:

21 for A1A1

0 for A1A2

þ1 for A2A2

(13)

where A1A1; A1A2, and A2A2 are the three genotypes of the marker.
People often standardize the Zk vectors before using them to calculate
the kinship matrix (see VanRaden 2008).
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Cross validation
For a K-fold CV, we randomly partitioned the sample into K parts of
roughly equal size. We then used K2 1 parts to predict the remaining
part. Let y ¼ �

yTk yT2k

�T
be the vector of phenotypic values that are

partitioned into yTk and y
T
2k;where y

T
k is a vector of phenotypic values of

all observations in the kth part (test sample) and yT2k is a vector of
phenotypic values for all individuals excluding observations in the kth
part (training sample). Corresponding to this partitioning of the sam-
ple, we have

EðyÞ ¼
�
Xkb
X2kb

�
(14)

and

varðyÞ ¼ V ¼
�

Vkk Vkð2kÞ
Vð2kÞk Vð2kÞð2kÞ

�

¼
"
Akks

2
j þ Is2 Akð2kÞs2

j

Að2kÞks2
j Að2kÞð2kÞs2

j þ Is2

#
: (15)

The predicted phenotypic values in the test sample are

E
�
yk
��y2k

� ¼ ŷk

¼ Xkb̂2k þ s2
jAkð2kÞ

	
Að2kÞð2kÞs2

j þ Is2

21

·
�
y2k2X2kb̂2k

�
: (16)

Let jk ¼ yk 2Xkb̂2k be the “observed” polygenic effect (phenotypes of
the test sample adjusted by the fixed effects or centered phenotypes) and

ĵ
CV
k ¼ ŝ2

jAkð2kÞ
	
Að2kÞð2kÞŝ2

j þ Iŝ2

21�

y2k 2X2kb̂2k

�
(17)

be the predicted polygenic effect for the test sample. After all parts of
the sample are predicted, we calculate the PRESS using

PRESS ¼
XK
k¼1

�
jk2ĵ

CV
k

�T�
jk 2 ĵ

CV
k

�
: (18)

The predictability is defined as

R2
CV ¼ 12PRESS=SS (19)

where

Figure 1 Comparison of predictabilities of the HAT
and CV methods for seven agronomy traits in inbred
rice. The first seven panels are the predictabilities of
the HAT (blue) and CV (red) for the seven traits. The
last panel shows the average predictabilities and the
95% confidence band of the HAT method for KGW
from 100 random partitionings of the sample.
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SS ¼
XK
k¼1

�
jk2�j

�T�
jk 2 �j

�
(20)

is the total sum of squares of y adjusted by the fixed effects.

The HAT method
With the HAT method, we first defined the adjusted or centered
phenotypic vector by the fixed effects j ¼ y2Xb̂ as the “observed”
j and define ĵ ¼ ŷ2Xb̂ as the predicted j; where b̂ is estimated from
the whole sample. We then used the whole sample to predict the poly-
genic effects

ĵ ¼ ŝ2
jAV

21ðy2Xb̂Þ ¼ ŝ2
jAV

21j: (21)

Comparing the second form of the above equation (ĵ ¼ ŝ2
jAV

21j)
with the fixed model HAT function, ŷ ¼ Hy; we realized that
ĵ ¼ HRj; where HR ¼ ŝ2

jAV
21 is the HAT matrix of the random

effects. Substituting V21 by ðAs2
j þ Is2Þ21 and after a few steps of

algebraic derivation leads to

HR ¼ ŝ2
jA

	
As2

j þ Is2

21 ¼ �

I þ lA21�21
(22)

where l ¼ s2=s2
j is the variance ratio. With eigen-decomposition

for the A matrix, we have A ¼ UDUT; A21 ¼ UD21UT and
UUT ¼ UTU ¼ I: Therefore,

HR ¼ U
�
I þ D21l

�21
UT ¼ U

�
UTU þ lD21�21

UT: (23)

This expression (the second form) is exactly the one defined by Hastie
et al. (2008) for the smoothing spline analysis given in Equation 3,
where their X is replaced by the eigenvector U, their Q is replaced by

the inverse of eigenvalue matrix D21 (diagonal), and their smoothing
parameter is our variance ratio. The HAT matrix is easy to compute
because ðI þ lD21Þ21 is diagonal. When some eigenvalues are zero,
D21 does not exist (very often), we reformulate it by DðDþ lIÞ21:
Therefore,

�
I þ lD21�21¼DðDþ lIÞ21¼ diag


d1

d1 þ l
;

d2
d2 þ l

;⋯;
dn

dn þ l

�
(24)

where dj is the jth eigenvalue of matrix A. Although the HATmethod
does not need to refit themodel for each part predicted, it still needs to
partition the sample into K parts if comparison with the traditional
CV is of interest. Let êk ¼ jk 2 ĵk be the estimated residual errors for
all individuals in the kth part and HR

kk be the diagonal block of matrix
HR corresponding to all individuals in the kth part. The predicted
residual errors for the kth part are ek ¼ ðI2HR

kkÞ21êk: Proof of this
predicted residual error is provided in Appendix B. The PRESS under
this random model becomes

PRESS ¼
XK
k¼1

eTk ek ¼
XK
k¼1

êTk
�
I2HR

kk

�22
êk: (25)

The predictability is measured by

R2
HAT ¼ 12PRESS=SS (26)

where SS ¼ PK
k¼1ðjk2�jÞTðjk 2�jÞ is the total sum of squares for the

centered y (adjusted by the fixed effects). The n-fold HAT approach is
a special case where the kth part to be predicted contains only one
individual, i.e., HR

kk ¼ hRjj for k ¼ j: Therefore, the leave-one-out ver-
sion of the PRESS is

Figure 2 Predictability of the cross-validation (CV)
method plotted against that of the HAT method under
n-fold CV for different traits. (A) Seven traits of the
inbred rice. (B) 1000 metabolomic traits of the inbred
rice. (C) 10 traits in hybrid rice. (D) Plot of the R2 of the
CV method, the HAT method, and the goodness of fit
(FIT) against the estimated heritability (H2) obtained
from replicated experiments for 10 agronomy traits of
the hybrid rice.
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PRESS ¼
Xn

j¼1
e2j ¼

Xn
j¼1

ê2j

�	
12hRjj


2
: (27)

This predictability is roughly equal to the squared correlation between
the fixed-effect-adjusted phenotypes and the predicted polygenic
effects. The ERESS is ERESS ¼ Pn

j¼1ê
2
j and the usual R-square re-

ported in regression analysis is R2 ¼ 12ERESS=SS; which is a mea-
surement of model FIT, not predictability.

Generalized cross validation
GCV (Golab et al. 1979) is an alternative method to correct the deflated
residual error variance. The GCV-calculated residual error sum of
squares is called generalized residual error sum of squares (GRESS),
which is defined by

GRESS ¼ ðj2ĵÞTðj2 ĵÞ�
n21trðI2HRÞ�2 (28)

where ĵ is the predicted polygenic effect from the whole sample. It is
equivalent to dividing each estimated residual error by the average
ð12 hjjÞ across all observations. Therefore, an intuitive expression of
the above equation is

GRESS ¼
Xn
j¼1

ê2j

.�
12�h

�2
(29)

where �h ¼ Pn
j¼1hjj=n is the average leverage value across all obser-

vations and êj ¼ jj 2 ĵj: The predictability is defined as

R2
GCV ¼ 12GRESS=SS: (30)

Golab et al. (1979) stated that GRESS is a rotation-invariant PRESS. It
is not intuitive to interpret GRESS and therefore we prefer to report
PRESS and thus R2

HAT:

Data availability
Alldataanalyzed inthis studyhavebeenpreviouslypublished. Sourcesof
these data are provided by the references cited in the text. The Framing-
hamHeartStudyDataweredownloaded fromNCBIdbGaPwithan IRB
numberHS-11-159.The ricedata alongwith theRcodes areprovided in
Supplemental Files S1, S2, S3, S4, S5 and S6. Description of the sup-
plemental files can be found in File S7.

RESULTS

Properties of the HAT method
Properties of theHATmethodwill be demonstrated using an experimental
rice population consisting of 210 recombinant inbred lines (Yu et al.
2011). These lines were derived from the cross of two rice varieties. A total
of 270,820 SNPs were used to infer breakpoints of the genome for each
line, resulting in a total of 1619 bins. A bin is a haplotype block within
which there are no breakpoints across the entire population. In the original
analysis of Yu et al. (2011), each binwas treated as a geneticmarker. In this
study, we used all the 1619 bins to infer a 210 · 210 kinship matrix. The
matrix represents the genetic relationships of the lines and is used tomodel
the covariance structure of the polygene. The population size is reasonably
small and enabled us to compare theHATmethodwithCV in great detail.

Seven agronomic and 1000metabolomic traits were included in the
analysis. The agronomic traits are yield per plant (YD), tiller numberper
plant (TP), grain number per panicle (GN), 1000-grain weight (KGW),

grain length (GL), grain width (GW), and heading day (HD). The first
four traits (YD,TP,GN, andKGW)were field evaluated four times (two
locations in 2 yr), andGL andGWwere replicated twice (two different
years), andHDwas replicated three times (three different years). The
phenotypic value of each trait for each line is the average of the
replicates. The 1000 metabolites were measured from seeds (317) and
leaves (683) with two biological replications (Gong et al. 2013). The
phenotypic values of the metabolites are the average expression levels
of the two replicates after log2 transformation.

Predictability of theHATmethodwas comparedwith that of the CV
method starting at twofold and ending at n-fold incremented by one, as
shown in Figure 1 for the seven agronomic traits. The two methods
produced very similar values of R-squares, with a slight upward bias for
the HATmethod due to the use of l estimated from the whole sample.
The biases are quite small for high predictability traits, e.g., KGW and
GL. They appear to be large for low predictability traits such as YD and
HD. However, this is partly due to the small scale of the y-axis (a visual
effect). For example, the predictabilities of HAT and CV for trait KGW
are 0.7564 and 0.7534, respectively, and the corresponding predictabil-
ities for trait HD are 0.0774 and 0.0653. Figure 1 also shows that when
the numbers of folds are small, the predictabilities vary wildly and the
variation progressively reaches zero at n-fold. The variation is caused by
the ways that the folds are partitioned within the sample. Therefore,
when a lownumber of folds are used inCV, it is necessary to repeat theCV
a few times to reduce this variation. Althoughmultiple CVwill cause extra
computational time, the HAT method can easily evaluate this variation.

Since computing theHATmethod is sufficiently fast, wewere able to
perform random partitioning of the sample 100 times within a
few minutes for all folds running from 2 to n. The last panel of Figure
1 shows the mean and 95% confidence band for the replicated HAT
predictability for trait KGW. The average predictability reaches a pla-
teau at�10-fold, but the 95% band is still very wide. This result did not
support the claim that the LOOCV seriously biased the predictability
compared with K-fold CV (Hastie et al. 2008).

Figure 2A shows the plot of predictability from n-fold CV against
that from HAT for the seven agronomic traits of rice. The differences
between the two methods are visually indistinguishable. We then com-
pared the twomethods for the 1000metabolomic traits with n-fold CV.
The CV method took a few days to complete the n-fold CV but the
HAT method, again, took no more than a few minutes. The corre-
sponding plots for the 1000 metabolomic traits are shown in Figure
2B. Except for three outliers, all points fall on the diagonal line. The
three outliers show that the HAT prediction is overoptimistic.

Genomic hybrid prediction in rice
We used a hybrid population of rice (Huang et al. 2015) to demonstrate
the application of the HAT method to genomic hybrid breeding. The

n Table 1 Analysis of variance table to estimate heritability of
agronomic traits from replicated experiments of hybrid rice

Source Degree of Freedom SS MS E(MS)a

Hybrids 1495 2 1 = 1594 SSG MSG s2
E þ 2s2

G
Locations 2 2 1 = 1 SSR MSR s2

E þ 1495f2
R

Residual
errors

(1995 2 1) (2 2 1) = 1494 SSE MSE s2
E

Corrected
total

2989 SST MST

SS, sum of squares; MS, means squares; E(MS), expected mean squares.
a
These variance components are used to estimate the trait heritability
H2 ¼ s2

G=ðs2
G þ s2

EÞ:
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population consists of 1495 hybrid rice with 10 agronomic traits mea-
sured in two locations in China (Hangzhou and Sanya). The 10 traits
are YD, panicle number (PN), GN, seed setting rate (SSR), KGW, HD,
plant height (PH), panicle length (PL), GL, and GW. The phenotypic
value of each hybrid is the average of the two locations. We used 1.6
million SNPs to infer the kinship matrix and then performed predic-
tions using both the HAT and CV methods. Although the n-fold sam-
ple partitioning can be easily accomplished with the HAT method, it
would be too costly to do it with the CV method. Therefore, we com-
pared the two methods under the 10-fold CV. We replicated the ex-
periment 20 times per 10-fold CV to reduce the variation caused by
random partitioning of the sample. The average of the 20 replicates
presents the predictability for each method.

The two replications of hybrid rice experiments allowed us to
estimate trait heritability of the hybrid population using the traditional
ANOVA method (Table 1). We partitioned the phenotypic variance
into variance due to hybrids (genotypes) and variance due to residual
error with systematic difference between the two locations excluded
from the phenotype.

First, we compared the predictability of the CV method with the
HAT method. Figure 2C shows the plot of the CV-generated predict-
ability against the HAT-generated predictability. All the 10 points (one
point per trait) fall on the diagonal line, indicating very good agreement
between the twomethods.We then compared the trait heritability (H2)
from the two replicated environments with the predictability drawn
from 10-fold CV, the predictability obtained from the HAT method
(HAT), and the FIT. The plots are illustrated in Figure 2D. The R2 of
HAT andCV are the same (the red circles overlapwith the blue circles).
Both HAT and CV fall around the diagonal line with some upward
biases compared to H2. The FIT are severely biased upwards and are
not good representatives of H2 at all.

Figure 3 shows a side-by-side comparison of H2 (trait heritability),
R2 of HAT, CV, and FIT for all 10 traits, where FIT is equivalent to
genomic heritability (de los Campos et al. 2015). Different traits have
very different H2, ranging from 0.08 (YD) to 0.92 (GL). The difference
between HAT and CV is virtually zero across all traits and both are
higher thanH2 for themajority of the traits. For the three highly heritable
traits (KGW, GL, and GW), the H2 is higher than or equal to HAT and
CV. Interestingly, HAT and CV are substantially higher thanH2 for HD.

Prediction of human height
Weanalyzedhumanheight of 6161subjects fromtheFraminghamheart
study (Dawber et al. 1951, 1963) with �0.5 million SNPs using the
mixed model methodology incorporating the marker-inferred kinship

matrix. The model included effects of generation (two levels) and gen-
der (male and female) as fixed effects. The estimated polygenic and
residual variances are ŝ2

j ¼ 9:2375 and ŝ2 ¼ 1:2617; respectively,
yielding a l̂ ¼ 0:1365897 and an estimated genomic heritability of
ĥ
2 ¼ 0:8798: This genomic heritability is close to the reported gender

average heritability of human height (0.75–0.88) (Silventoinen et al.
2003). The 10-fold CV and the HAT method gave predictabilities of
0:306360:0079 and 0:315160:0037; respectively. Note that the pre-
dictabilities are the averages of 20 replicated random partitions and
thus there are small SEs associated with the average values. The pre-
dictability obtained from the leave-one-out HAT method is 0.3278,
slightly higher than the 10-fold partitioning approach.

GCV and optimization of l
Before we perform the following analysis, it is worthwhile to refresh
our mind that the HAT method will slightly overestimate the pre-
dictabilitybecauseof theapproximationnature.Wefirstused thehuman
height trait as an example to demonstrate the difference between the
HATmethod and theGCVmethod. TheREMLestimate of the variance
ratio is l̂ ¼ 0:1366 and the corresponding predictability from the
n-fold HAT method is R2

HAT ¼ 0:3278: This REML estimate generates
a GCVpredictability of R2

GCV ¼ 0:3536; different from that of the HAT
method. We now treated l as a tuning parameter to maximize the
predictability, as done by Mathew et al. (2015) in GCV for estimating
breeding values. Using a grid search around the REML-estimated
value (l̂ ¼ 0:1366), we found that the maximum achievable predict-
ability for the HAT method is R2

MAX ¼ 0:3310 when l ¼ 0:218; lead-
ing to a gain of 0:33102 0:3278 ¼ 0:0032; which represents a
ð0:33102 0:3278Þ=0:3278 � 1% gain in predictability. Although this
gain is negligible, it demonstrates that the REML-estimated parameter
does not give the maximum predictability. The good news is that l̂ is
almost optimal, at least in this example. The corresponding maximum
achievable predictability in GCV is R2

MAX ¼ 0:3539 when l ¼ 0:158;
leading to a gain of 0:35392 0:3536 ¼ 0:0003: Figure 4 shows the
predictability profiles around l̂ ¼ 0:1366: By tuning the parameter,
the gain in predictability of the HAT method (Figure 4A) is visible
but the gain of the GCV method (Figure 4B) is not recognizable.

To further compare the predictabilities of the HAT and GCV
methods with their maximum achievable predictabilities, we used the
“Brent”method of the “opim()” function in R to search for the optimal
tuning parameter (l) for all 1000 metabolomic traits in the inbred rice
population (210 lines). These optimal values of l may be called the
maximum predictability estimates (MPE). Figure 5 illustrates the com-
parisons of predictabilities across all 1000 traits, where more than a

Figure 3 Comparison of R2 of the
estimated heritability from repli-
cated experiments (H2), the cross-
validation (CV) method, the HAT
method, and the model goodness
of fit (FIT) for 10 traits of the hybrid
rice.
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dozen traits show visible gains in predictability by tuning the parameter
around the REML-estimated value for the HAT method (Figure
5A). Similar comparison is shown in Figure 5B for the GCV
method where tuning the parameter achieves more than 20 visible
gains in predictability. Figure 5C compares the predictabilities of
GCV and HAT when the tuning parameter is fixed at the REML-
estimated value. The two methods provided very similar predict-
abilities for all 1000 traits except a half dozen traits with visible
differences. All three comparisons shown in Figure 5 have fitted
R-squares at�0.9995 and the regression coefficients are not signifi-
cantly different from one (P. 0.05) except C, where the regression
coefficient is significantly . 1 (P , 0.05).

DISCUSSION
Very recently, Gianola and Schon (2016) published methods that are
very similar to our HAT method to evaluate the predictability of a

genomic selection model. They also recognized the approximation na-
ture of the method when the smoothing parameter l is replaced by the
estimated value from the whole sample. Their justification of the use of
this whole sample-estimated parameter, particularly in LOOCV, is that
the estimated l from the whole sample will not be much different from
the ones obtained from the training samples that differ from the whole
sample by just one observation. They actually investigated the variation
of l across all training samples and found that the variance is indeed
small. Gianola and Schon (2016) investigated the properties of the new
methods in many different situations using an inbred population of
wheat (n = 599) to see how the predictability changes when the training
and test sample size ratio changes. These exhaustive investigations
would takemonths or years to complete if the ordinary CVwere carried
out. In addition to BLUP, these authors also extended the method to
RKHS (Gianola et al. 2006) and the Bayesian alphabetic series (Gianola
2013) by modifying the importance sampling schemes.

One important issue that was not addressed in Gianola and Schon
(2016) is how much difference in predictability calculated between the
fast method and the classical CVmethod can be expected. This question
is fundamental because the new method represents a significant techni-
cal improvement in genomic selection and will be adopted widely soon
after the GS community recognizes it. In our study, we particularly
focused on this question and investigated the difference using seven
traits from an inbred population of rice, 1000 metabolomic traits from
the same inbred population, 10 traits from a hybrid population of rice,
and one trait (human height) from a large human population.We found
that the HAT method always provides a slightly biased predictability
over that of the CVmethod.However, the bias is never sufficiently severe
to distort the conclusion on the predictability of amodel. For example, in
the human height prediction, the 10-fold CV produced a predictability
of 0:3063 and the corresponding number from the 10-foldHATmethod
was 0:3151:However, the model FIT is 0.8789. TheHATmethod gave a
number much closer to the CV predictability than the model FIT.

In addition to comparing the differences between the HATmethod
and the ordinary CV, we also compared the newHATmethod with the
GCVmethod (Golab et al. 1979) and found that the two produced very
similar results. Craven andWahba (1979) comparedGCVwith CV and
concluded that the smoothing parameter that maximizes the CV was
amazingly close to the parameter that maximizes GCV. The GCV
method has been available for almost four decades, but the genomic
selection community, except Mathew et al. (2015), has never paid
attention to it. Our study showed that both GCV and HAT can be
applied to genomic selection. However, the HAT method directly ad-
dresses prediction of future individuals and therefore it is more intuitive
to interpret the result.

Hastie et al. (2008) claimed that LOOCV provides a biased pre-
diction compared with CVwith lower number of folds. We observed
that when the number of folds is 10 or above, the predictability
stabilizes (Figure 1, last panel). We did not observe a progressive
increase of the predictability as the number of folds increases.
Therefore, from our study, we recommend to perform LOOCV with
the HAT method to avoid variation caused by random partitioning
of the samples when the number of folds is small. When 10-fold or
fivefold CV is carried out, the analysis will only be conducted 10 or
5 times, which may not be significant; therefore, the HAT method
may lose its appeal. This statement may not be true considering the
fact that the 10-fold CV must be run many times to reduce the
variation caused by random partitioning of the samples. A multiple
CV analysis for large samples is a significant burden to investigators.
Therefore, the HATmethod is a good alternative to CV to evaluate a
genomic selection program.

Figure 4 Tuning parameter (l ¼ s2=s2
j ) that maximizes the genomic pre-

dictability (R2) of human height. (A) predictability profile of the HATmethod,
where the red point represents the predictability (R2

HAT ¼ 0:3278) when the
tuning parameter takes the REML estimate (l̂ ¼ 0:1366) and the blue point
represents the maximum achievable predictability (R2

HAT ¼ 0:3310) when
the tuning parameter is l ¼ 0:2180: (B) predictability profile of the GCV
method, where the red point represents the predictability (R2

GCV ¼ 0:3536)
when the tuning parameter takes the REML estimate (l̂ ¼ 0:1366) and the
blue point represents the maximum predictability (R2

GCV ¼ 0:3539) when
the tuning parameter is l ¼ 0:1580:GCV, generalized cross-validation;
REML, restricted maximum likelihood.
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We originally hoped to see a significant improvement in pre-
dictability by tuning the smoothing parameter around the REML-
estimated parameter. It is disappointing that there were very few
significant improvements from predictions of 1000 traits. The
largest improvement occurred for the 422th metabolite with an
improvement of ð0:66832 0:5615Þ=0:5615 ¼ 0:1902048 � 19%
(see the red point most deviating away from the diagonal line in
Figure 5A). The good news is that, in most cases, the REML esti-
mate is close to the MPE and, therefore, the parameter does not
need to be tuned. On the other hand, since the computation is
simple and fast, why not go ahead to tune the parameter and, if
lucky, we may get an improved predictability, like the 422th me-
tabolite in the inbred rice population.

In mixed model prediction, the random effects are often the
targets for prediction. This is the case in genomic prediction because
the genetic values are treated as random effects. However, if the
investigators are interested in prediction using the fixed effects only
under the mixed model, the estimated marginal residual error
needs to be adjusted by the leverage values from the fixed model
hat matrix HF ¼ XðXTV21XÞ21XTV21 (Schabenberger 2004). Let
êk ¼ yk 2Xkb̂ be the estimatedmarginal residual errors for individuals
in the kth fold, the predicted marginal residual errors are approximated
by ek ¼ ðI2HF

kkÞ21êk; where HF
kk is the diagonal block of HF corre-

sponding to observations in the kth fold. The MIXED procedure in
SAS calls this method the noniterative influence diagnostics while
the iterative influence diagnostics is through actual CV (refit model
and reestimate covariance parameters). The noniterative and iter-
ative influence diagnostics can be interpreted as the HAT method
and the CV method, respectively. PROC MIXED does not provide
influence diagnostics for prediction of random effects. If there is an
interest in both the fixed and random effects for prediction, the
HAT matrix should include both the fixed model part and the
random model part of the HAT matrix, HM ¼ HF þ HRðI2HFÞ:

The estimated conditional residual errors are êk ¼ yk 2Xkb̂2 ĵk
and the predicted conditional residual errors are obtained by
ek ¼ ðI2HM

kkÞ21êk; where HM
kk is the diagonal block of HM corre-

sponding to observations in the kth fold.
When the mixed model includes multiple covariance structures,

say S covariance structures, a similar HR matrix is used except that
the s2

jA and V matrices in HR are replaced by G ¼ PS
s¼1Ass

2
s and

V ¼ PS
s¼1Ass

2
s þ Is2; respectively, where As is the sth covariance

structure and s2
s is the corresponding variance. An example of the

multiple variance component model is the model with nonadditive
variances that include dominance and epistasis (Xu 2013). Gianola
and Schon (2016) also extended the new method to handle multiple
kernels.

The HAT method applies to fixed models (exact result) and linear
mixed models (approximate result). Is it possible to extend the HAT
method to LASSO and PLS (partial lest squares)? An approximate
extension may be possible by fixing the shrinkage parameter, like the
extension to BLUP, but there is no exact extension. To carry out that
approximate extension, we need to find the HAT function of the
predicted y on the observed y, e.g., ŷ ¼ HLASSOy and ŷ ¼ HPLSy: In
general, the HAT matrix is H ¼ @ŷ=@y (Schabenberger 2004), a Jaco-
bian matrix holding each derivative of a predicted quantity with respect
to an observed response.
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Figure 5 Comparison of predictability of REML-
estimated l with the maximum achievable predictability
by tuning l for 1000 metabolomic traits of rice. (A)
Maximum achievable predictability of the HAT method
by tuning l plotted against the predictability when l

takes the REML estimate. (B) Maximum achievable pre-
dictability of the GCV method by tuning l plotted
against the predictability when l takes the REML esti-
mate. (C) Predictability of the GCV method plotted
against the predictability of the HAT method when l

takes the REML estimate. The red points indicate traits
with visible differences in predictability between the
method shown on the x-axis and the method shown
on the y-axis. The linear regression equation is given
at the bottom of each panel and the fitted r2 of the
regression is given at the top of each panel. GCV, gen-
eralized cross-validation; REML, restricted maximum
likelihood.
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APPENDIX A

Derivation of HAT prediction under the fixed model methodology

Predicted residual error sum of squares (PRESS)
In a K-fold CV analysis, let nk be the number of observations in the kth fold for k ¼ 1; . . . ;K and

PK
k¼1nk ¼ n:DefineXk as an nk · pmatrix of

independent variables for the individuals in the kth fold. The “leverage” values for the kth fold is defined as an nk · nk matrix,

Hkk ¼ Xk
�
XTWX

�21
XT
k Wk (A1)

whereWk is the nk · nk subset of matrixW corresponding to the kth fold. This matrix must appear in the end, not in the beginning, of the above
equation. Let

êk ¼ yk2Xkb̂ (A2)

be the estimated residual errors where b̂ is estimated from the whole sample. The predicted residual errors for the nk individuals in the kth fold is

ek ¼ ðI2HkkÞ21êk (A3)

Therefore, the PRESS is defined as

PRESS ¼
XK
k¼1

eTkWkek ¼ êTk ðI2HkkÞ21WkðI2HkkÞ21êk (A4)

which is the weighted sum of squares of the predicted residual errors.

Derivation of PRESS
The linear model for p independent variables (including the intercept) and n observations is

y ¼ Xbþ e: (A5)

The weighted least squares estimates of all regression coefficients are obtained using

b̂ ¼ �
XTWX

�21
XTWy: (A6)

The estimated residual error variance is

ŝ2 ¼ 1
n2 p

�
y2Xb̂

�T
W

�
y2Xb̂

�
: (A7)

The variance-covariance matrix of the estimated regression coefficients are calculated using

var
�
b̂
� ¼ �

XTWX
�21

ŝ2 (A8)

which is a p · p matrix with diagonal elements being the variances and off-diagonal elements being the covariance.
The fitted values for all individuals in the population are

ŷ ¼ Xb̂ ¼ X
�
XTWX

�21
XTWy: (A9)

Let us define a hat matrix by

H ¼ X
�
XTWX

�21
XTW: (A10)

Therefore, the fitted values are a hat function of the observed values,

ŷ ¼ Hy: (A11)

Let us partition the sample intoK parts (folds) and denote the number of individuals in the kth fold by nk:Define yk as an nk · 1 vector, which is a
subset of y that contains all observations in the kth fold. Define Xk as the nk rows of matrix X corresponding to the observations in the kth fold.
The predicted residual errors are

ek ¼ yk 2Xkb̂ð2kÞ (A12)
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where

b̂ð2kÞ ¼
	
XT
ð2kÞWð2kÞXð2kÞ


21
XT
ð2kÞWð2kÞyð2kÞ (A13)

are the estimated regression coefficients from the data with the nk observations in the kth fold being excluded. Let us make the following matrix
decomposition,

XTWX ¼ XT
ð2kÞWð2kÞXð2kÞ þ XT

k WkXk: (A14)

Therefore,

XT
ð2kÞWð2kÞXð2kÞ ¼ XTWX2XT

k WkXk: (A15)

Similarly, we can rewrite

XT
ð2kÞWð2kÞyð2kÞ ¼ XTWy2XT

k Wkyk: (A16)

Using Woodbury matrix identity (Woodbury 1950), we have

	
XT
ð2kÞWð2kÞXð2kÞ


21 ¼ �
XTWX2XT

k WkXk
�21

¼ �
XTWX

�21
2
�
XTWX

�21
XT
k

h
Xk

�
XTWX

�21
XT
k2W21

k

i21
Xk

�
XTWX

�21

¼ �
XTWX

�21 þ �
XTWX

�21
XT
k Wk

h
I2Xk

�
XTWX

�21
XT
k Wk

i21
Xk

�
XTWX

�21

¼ �
XTWX

�21 þ �
XTWX

�21
XT
k WkðI2HkkÞ21Xk

�
XTWX

�21
(A17)

where

Hkk ¼ Xk
�
XTWX

�21
XT
k Wk (A18)

is an nk · nk matrix of leverage values for the kth fold. This matrix is the nk · nk diagonal block of the hat matrix H. Further derivation leads to

Xk

	
XT
ð2kÞWð2kÞXð2kÞ


21
XTWy ¼ Xk

�
XTWX

�21
XTWy þ Xk

�
XTWX

�21
XT
k WkðI2HkkÞ21Xk

�
XTWX

�21
XTWy

¼ Xkb̂þ HkkðI2HkkÞ21Xkb̂ (A19)

and

Xk

	
XT
ð2kÞWð2kÞXð2kÞ


21
XT
k Wkyk ¼ Xk

�
XTWX

�21
XT
k Wkyk þ Xk

�
XTWX

�21
XT
k WkðI2HkkÞ21Xk

�
XTWX

�21
XT
k Wkyk

¼ Hkkyk þ HkkðI2HkkÞ21Hkkyk (A20)

Therefore, the predicted residual errors are

ek ¼ yk2Xkb̂ð2kÞ
¼ yk2Xkb̂2HkkðI2HkkÞ21Xkb̂þ Hkkyk þ HkkkðI2HkkÞ21Hkkyk

¼ yk þ Hkkyk þ HkkðI2HkkÞ21Hkkyk 2Xkb̂2HkkðI2HkkÞ21Xkb̂

¼ �
I þ Hkk þ HkkðI2HkkÞ21Hkk

�
yk 2

�
I þ HkkðI2HkkÞ21�Xkb̂ (A21)

Note that

ðI2HkkÞ21 ¼ 2H21
kk 2H21

kk

�
I2H21

kk

�21
H21
kk : (A22)

Therefore,

HkkðI2HkkÞ21Hkk ¼ Hkk

	
2H21

kk 2H21
kk

�
I2H21

kk

�21
H21
kk



Hkk ¼ 2Hkk 2

�
I2H21

kk

�21
(A23)

The coefficient of yk in Equation A21 is
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I þ Hkk þ HkkðI2HkkÞ21Hkk ¼ I þ Hkk 2Hkk 2
�
I2H21

kk

�21 ¼ I þ HkkðI2HkkÞ21 (A24)

which is identical to the coefficient of Xkb̂ in Equation A21. Therefore,

ek ¼ yk 2Xkb̂ð2kÞ
¼ �

I þ Hkk þ HkkðI2HkkÞ21Hkk
�
yk2

�
I þ HkkðI2HkkÞ21�Xkb̂

¼ �
I þ HkkðI2HkkÞ21�yk2 �

I þ HkkðI2HkkÞ21�Xkb̂

¼ �
I þ HkkðI2HkkÞ21��yk 2Xkb̂

�
¼ �

I þ HkkðI2HkkÞ21�êk (A25)

We can see that the predicted residual errors are a linear function of the estimated residual errors. The next step is to simplify the linear function,

I þ HkkðI2HkkÞ21 ¼ ðI2HkkÞ21ðI2HkkÞ þ HkkðI2HkkÞ21

¼ ðI2HkkÞ21ðI2Hkk þ HkkÞ
¼ ðI2HkkÞ21 (A26)

Therefore, the predicted residual errors have been expressed as a simple linear function of the estimated residual errors,

ek ¼ ðI2HkkÞ21êk: (A27)

The predicted residual sum of squares (PRESS) is

PRESS ¼
XK
k¼1

eTkWkek ¼
XK
k¼1

êTk ðI2HkkÞ21WkðI2HkkÞ21êk: (A28)

Let us define

Qkk ¼ ðI2HkkÞ21WkðI2HkkÞ21: (A29)

The PRESS is written as

PRESS ¼
XK
k¼1

êTkQkkêk: (A30)

The PRESS is often translated into R-square to represent the predictability of a model,

R2 ¼ 12
PRESS
SST

(A31)

where SST is the total sum of squares of the response variable.

APPENDIX B

Proof of the HAT Method for PRESS in Mixed Models

Estimated random effects
Let us define

r ¼ y2Xb (B1)

as the phenotypic values of the trait adjusted by the fixed effects, assuming that b is known. The estimated random effects aremore appropriately
called the fitted random effects. Let us define the estimated vector of random effects by

~r ¼ KðK þ lIÞ21r ¼ Hr (B2)

whereH ¼ KðK þ lIÞ21 is the HATmatrix, l ¼ s2=s2
j is the variance ratio and K is the kinship matrix. In the main text, we used A in place of

K. Here we used K again to be consistent with the genomic selection literature. Let us define êj ¼ rj 2~rj as the estimated residual error for the jth
observation or jth block of observations. The predicted residual error for the jth block of individuals is

ej ¼
�
I2Hjj

�21
êj (B3)
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The purpose of this appendix is to prove Equation B3 that the predicted residual error can be obtained from the estimated residual error via the
leverage value (diagonal element or diagonal block) of the HAT matrix.

Let us partition the K matrix into

K ¼
�

Kjj Kjð2jÞ
Kð2jÞj Kð2jÞð2jÞ

�
(B4)

where Kjj is the jth diagonal element of the Kmatrix, Kjð2jÞ is the jth row of matrix K that excludes the jth column, and Kð2jÞð2jÞ is the Kmatrix
excluding the jth row and the jth column. Corresponding to this partitioning, matrix K þ lI can also be partitioned into

K þ lI ¼
�
Kjj þ lI Kjð2jÞ
Kð2jÞj Kð2jÞð2jÞ þ lI

�
: (B5)

The inverse of the above partitioned matrix is denoted by

ðK þ lIÞ21 ¼
�
Kjj þ lI Kjð2jÞ
Kð2jÞj Kð2jÞð2jÞ þ lI

�21

¼
�

Cjj Cjð2jÞ
Cð2jÞj Cð2jÞð2jÞ

�
(B6)

where

Cjj ¼
��
Kjj þ lI

�
2Kjð2jÞ

	
Kð2jÞð2jÞ þ lI


21
Kð2jÞj

�21

Cjð2jÞ ¼ 2CjjKjð2jÞðKð2jÞð2jÞ þ lIÞ21

Cð2jÞj ¼ 2 ðKð2jÞð2jÞ þ lIÞ21Kð2jÞjCjj

Cð2jÞð2jÞ ¼
	
Kð2jÞð2jÞ þ lI


21 þ
	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjjKjð2jÞ

	
Kð2jÞð2jÞ þ lI


21

(B7)

The estimated (fitted) value of the jth individual is

~rj ¼
�
Kjj Kjð2jÞ

�� Cjj Cjð2jÞ
Cð2jÞj Cð2jÞð2jÞ

��
rj
r2j

�
(B8)

which is eventually expressed as

~rj ¼ KjjCjjrj þ Kjð2jÞCð2jÞjrj þ KjjCjð2jÞr2j þ Kjð2jÞCð2jÞð2jÞr2j (B9)

Predicted random effects
The predicted value for the jth individual is obtained by excluding the contribution from the same individual, as expressed below,

r̂j ¼ Kjð2jÞ
h
Kð2jÞð2jÞ þ lI

i21
r2j: (B10)

Let us examine the four terms in the fitted value given in Equation B9,

KjjCjjrj ¼ KjjCjjrj

Kjð2jÞCð2jÞjrj ¼ 2Kjð2jÞ
	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjjrj

KjjCjð2jÞr2j ¼ 2KjjCjjr̂j

Kjð2jÞCð2jÞð2jÞr2j ¼ r̂j þ Kjð2jÞ
	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjjr̂j

(B11)

Substituting these four terms into Equation B9, we get

~rj ¼ KjjCjjrj 2Kjð2jÞ
	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjjrj2KjjCjjr̂j þ r̂j þ Kjð2jÞ

	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjjr̂j: (B12)

Note that the fitted random effect for the jth individual has been expressed as a linear function of the predicted random effect.

Estimated and predicted errors
Let us define êj ¼ rj 2~rj as the estimated error and ej ¼ rj 2 r̂j as the predicted error. We then define
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rj 2~rj ¼ rj 2KjjCjjrj þ Kjð2jÞ
	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjjrj þ KjjCjjr̂j 2 r̂j 2Kjð2jÞ

	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjjr̂j: (B13)

After a few steps of manipulation, we have

rj 2~rj ¼
�
I2KjjCjj þ Kjð2jÞ

	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjj

��
rj 2 r̂j

�
: (B14)

Therefore, the estimated and predicted errors have the following relationship,

êj ¼
�
I2

�
KjjCjj 2Kjð2jÞ

	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjj

��
ej: (B15)

We want to prove that the jth diagonal element of the HAT matrix (the leverage value for observation j) is

Hjj ¼ KjjCjj2Kjð2jÞ
	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjj (B16)

which leads to

êj ¼
�
I2Hjj

�
ej: (B17)

As a result,

ej ¼
�
I2Hjj

�21êj: (B18)

We now go back to the HAT matrix to see what Hjj is. Using partitioned matrix, we have

H ¼
"

Kjj Kjð2jÞ
Kð2jÞj Kð2jÞð2jÞ

#"
Cjj Cjð2jÞ

Cð2jÞj Cð2jÞð2jÞ

#

¼
"

KjjCjj þ Kjð2jÞCð2jÞj KjjCjjCjð2jÞ þ Kjð2jÞCð2jÞð2jÞ
Kð2jÞjCjj þ Kð2jÞð2jÞCð2jÞj Kð2jÞjCjð2jÞ þ Kð2jÞð2jÞCð2jÞð2jÞ

#
(B19)

Therefore,

Hjj ¼ KjjCjj þ Kjð2jÞCð2jÞj: (B20)

From Equation B11, we know

Kjð2jÞCð2jÞj ¼ 2Kjð2jÞ
	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjj: (B21)

Substituting Equation B21 into Equation B20 yields

KjjCjj 2Kjð2jÞ
	
Kð2jÞð2jÞ þ lI


21
Kð2jÞjCjj (B22)

which is exactly the same as Equation B16; thus, we conclude the derivation of Equation B18. Unlike theHATmatrix in fixedmodels, the random
model HAT matrix is not idempotent, although it remains symmetric.

The PRESS is now defined as

PRESS ¼
Xn
j¼1

eTj ej ¼
Xn
j¼1

êTj
�
I2Hjj

�22
êj: (B23)

If the residual errors are heterogeneous with e � Nð0;Rs2Þ where R is a known diagonal matrix, all the above derivations apply except that we
have to replace lI by lR in all occurrences. In addition, the PRESS should be modified as a weighted PRESS,

PRESS ¼
Xn
j¼1

eTj Wjej ¼
Xn
j¼1

êTj
�
I2Hjj

�21
Wj

�
I2Hjj

�21
êj (B24)

where Wj ¼ R21
j is the weight for the jth observation or the jth block of observations.

Volume 7 March 2017 | PRESS of Mixed Models | 909


