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Abstract
Purpose  Despite the therapeutic success of existing HER2-targeted therapies, tumors respond quite differently to them. This 
study aimed at figuring out genetic mutation profile of Chinese HER2-positive patients and investigating predictive factors 
of neoadjuvant anti-HER2 responses.
Methods  We employed two cohorts. The first cohort was comprised of 181 HER2-positive patients treated at Guangdong 
Provincial People’s Hospital from 2012 to 2018. The second cohort included 40 patients from the first cohort who under-
went HER2-targeted neoadjuvant chemotherapy. Genetic mutations were characterized using next-generation sequencing. 
We employed the most commonly used definition of pathological complete response (pCR)-eradication of tumor from both 
breast and lymph nodes (ypT0/is ypN0).
Results  In Chinese HER2-positive breast cancer patients, TP53 (74.6%), CDK12 (64.6%) and PIK3CA (46.4%) have the 
highest mutation frequencies. In cohort 2, significant differences were found between pCR and non-pCR groups in terms of 
the initial Ki67 status, TP53 missense mutations, TP53 LOF mutations, PIK3CA mutations and ROS1 mutations (p = 0.028, 
0.019, 0.005, 0.013, 0.049, respectively). Furthermore, TP53 LOF mutations and initial Ki67 status (OR 7.086, 95% CI 
1.366–36.749, p = 0.020 and OR 6.007, 95% CI 1.120–32.210, p = 0.036, respectively) were found to be predictive of pCR 
status.
Conclusion  TP53 LOF mutations and initial Ki67 status in HER2-positive breast cancer are predictive of pCR status after 
HER2-targeted NACT.

Introduction

HER2 positivity accounts for about 15–20% of breast can-
cers and the development of HER2-targeted therapies has 
profoundly changed the course of these patients [1]. More 
and more HER2-targeted drugs, such as trastuzumab, per-
tuzumab, T-DM1 and neratinib, have become available for 
treatment of HER2-positive breast cancer. Despite this pro-
gress, however, many patients still die of HER2-positive 
breast cancer, calling for the identification and investiga-
tion of genetic profiles of HER2-positive breast cancer and 
predictors of responses to HER2-targeted therapies.

Neoadjuvant chemotherapy (NACT) is used commonly 
to downstage locally advanced cancer to allow breast-con-
serving surgery and to predict responses to systemic ther-
apy based on pathological assessment. Based on the recent 
progress, NACT has gained momentum as an ideal setting 
in which to investigate predictive biomarkers of treatment 
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responses. The Collaborative Trials in Neoadjuvant Breast 
Cancer (CTNeoBC) pooled analysis has confirmed NACT 
to be a good way to discriminate patients who have differ-
ent clinical outcomes by their responses to the therapies 
[2]. Patients who attain complete eradication of tumor after 
NACT in both breast and lymph nodes have improved sur-
vival, which is defined as pathological complete response 
(pCR) [2, 3]. The NeoSphere and NeoALTTO trials both 
tried to seek higher pCR rates by different anti-HER2 com-
binations [4, 5] and new treatments in the past decade have 
significantly improved the prognosis of HER2-positive 
breast cancer with a pCR rate as high as 75% [6]. Despite 
these achievements, however, HER2-positive breast cancer 
patients still have a high death rate [6]. According to the 
latest interim analysis of the landmark KATHERINE trial, 
patients with HER2-positive early breast cancer who had 
residual invasive disease after NACT have improved survival 
when they receive adjuvant T-DM1 therapy after surgery 
[7]. As these great trials have provided effective regimens 
for patients with different responses, it is important to inves-
tigate the response predictors.

Large-scale, next-generation sequencing studies have pro-
vided large amounts of genetic information and produced 
valuable insights into the genomic landscape of primary 
breast cancers [8–12]. These studies have highlighted that 
TP53 and PIK3CA were the two most prevalent mutated 
genes in HER2-positive breast cancers [8] and enriched in 
residual tissues after HER2-targeted therapies. PIK3CA 
mutation rate in HER2-positive breast cancers is about 23%, 
and patients with PIK3CA mutations have a lower pCR rate 
after HER2-targeted NACT [13].

In this study, we investigated the mutation profiles of 
HER2-positive breast cancer patients in China and analyzed 
the mutation differences between primary HER2-positive 
breast cancers with pCR and non-pCR after HER2-targeted 
NACT. We hypothesized that there would be mutations pre-
dictive of the anti-HER2 therapy responses and could be 
used as biomarkers for guiding treatment decisions.

Methods

Study cohorts

This study was comprised of two cohorts. The first cohort 
included 181 HER2-positive patients treated at GPPH from 
2012 to 2018. The second cohort included 40 patients from 
the first cohort who underwent HER2-targeted neoadjuvant 
therapy (NACT). Twenty-three patients received NACT with 
docetaxel 75 mg/m2, carboplatin (6 mg/min/ml carboplatin 
AUC area under curve) and trastuzumab (8 mg per kilogram 
intravenously as a loading dose, followed by 6 mg per kilo-
gram intravenously every 3 weeks), while oral lapatinib was 

added in other 17 patients. Lapatinib was given daily at a 
dose of 750 mg (250 mg tablets) for the first week, followed 
by 1000 mg daily for a year. All 40 patients completed the 
scheduled 6 NACT cycles.

Detailed information of our study cohorts is listed in 
Table 1.

Pathological examination of tumor specimens was per-
formed in the Department of Pathology at GPPH. ER, PR, 
ROS1 and HER2 status were reconfirmed by two experi-
enced pathologists based on IHC and fluorescence in situ 
hybridization (FISH) [14]. The cutoff for ER-negative and 
PR-negative IHC status was less than 1% staining in the 
nuclei. HER2 status was considered negative when an IHC 
score was 0 or 1 or when HER2 amplification was absent 
(ratio < 2.2) by FISH analysis. If any disagreements arose 
during the evaluation of the IHC and FISH results, a third 
pathologist was consulted.

Next‑generation sequencing

NGS library preparation

DNA fragmentation was performed using Covaris M220, 
followed by end repair, phosphorylation and adaptor liga-
tion. Fragments of size 200–400 bp were selected by bead 
(Agencourt AMPure XP Kit, Beckman Coulter, California, 
USA) followed by hybridization with capture probes baits, 
hybrid selection with magnetic beads and PCR amplifi-
cation. Subsequently, a high-sensitivity DNA assay was 
performed to assess the quality and size of the fragments. 
Indexed samples were sequenced on Nextseq500 sequencer 
(Illumina, Inc., California, USA) with pair-end reads.

Capture‑based targeted DNA sequencing

Genomic profiling was performed using a panel covering 
520 cancer-related genes (Burning Rock Biotech Ltd.). 
Among them, whole exons of 312 genes and critical exons, 
introns and promoter regions of the remaining 208 genes 
were captured.

Sequence data analysis

Sequence data were mapped to the human genome (hg19) 
using BWA aligner 0.7.10. Local alignment optimization, 
variant calling and annotation were performed using GATK 
3.2, MuTect and VarScan. Variants were filtered using the 
VarScan filter pipeline, with loci with depth less than 100 
filtered out. At least 5 supporting reads were needed for 
INDELs, while 8 supporting reads were needed for SNVs 
to be called. According to the ExAC, 1000 Genomes, dbSNP 
and ESP6500SI-V2 database, variants with population fre-
quency over 0.1% were grouped as SNP and excluded from 
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further analysis. Remaining variants were annotated with 
ANNOVAR and SnpEff v3.6. DNA translocation analysis 
was performed using both Tophat2 and Factera 1.4.3.

Statistical analyses

Statistical analyses were performed using GraphPad Prism 
version 7.00 for Mac (GraphPad Software, La Jolla Califor-
nia, USA). Pearson’s Chi-square test and Yate’s continuity-
corrected Chi-square test were employed for significance of 
differences between groups. A two-sided p value less than 
0.05 was considered significant unless otherwise stated. To 
determine which covariates affected pCR, we used patholog-
ical and mutational variables by univariate and multivariate 

regression. We included variables which are < 0.05 for p 
value and those supposed to affect pCR status.

Results

Clinicopathologic features and genetic mutations 
of Chinese HER2‑positive breast cancer patients

The patients’ clinicopathological parameters are listed in 
Table 1. In cohort 1, the median age was 48, and 56.9% 
of patients were pre-menopausal. The population was com-
prised of stage I, II and III patients, which account for 20.4%, 
59.7% and 19.9%, respectively. The cohort 2 was derived 

Table 1   Clinical characteristics 
of the patients in cohort 1 and 
cohort 2

Characteristics Cohort 1 Cohort 2

Number (percentage) Number (percentage) PCR Non-PCR p value

Age Median: 48, 27–79 Median: 53, 27–71 – – –
Menopausal status
Post 78 (43.1%) 26 (65%) 12 14 0.842
Pre 103 (56.9%) 14 (35%) 6 8
Tumor size before NACT​
T1-T2 170 (93.9%) 31 (77.5%) 17 14 0.052
T3-T4 11 (6.1%) 6 (22.5%) 1 8
TNM stage
I 37 (20.4%) – – – 0.436
II 108 (59.7%) 24 (60%) 12 12
III 36 (19.9%) 16 (40%) 6 10
HR status and HER2 status
HR−/HER2 +  69 (38.1%) 20 (50%) 7 13 0.204
HR + /HER2 +  112 (61.9%) 20 (50%) 11 9
Ki67 status
 < 40%, +  91 (50.3%) 19 (47.5%) 12 7 0.028
 ≥ 40%, +  90 (49.7%) 21 (52.5%) 6 15
LN status before surgery
cN0 43 (23.8%) 4 (10.0%) 2 2 0.407
cN1 96 (53.0%) 22 (55.0%) 10 12
cN2 29 (16.0%) 11 (27.5%) 6 5
cN3 13 (7.2%) 3 (7.5%) 0 3
NACT regimens
TCH – 18 (45.0%) 10 8 0.243
TCHL – 22 (55.0%) 15 7
Tumor size after NACT​
ypT0 – 18 (45.0%) – – –
ypT1-T2 – 21 (52.5%) – – –
ypT3-T4 – 1 (2.5%) – – –
LN status after surgery
ypN0 65 (35.9%) 26 (65%) – – –
ypN1 83 (45.9%) 9 (22.5%) – – –
ypN2 20 (11.0%) 2 (5%) – – –
ypN3 13 (7.2%) 3 (7.5%) – – –
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from cohort 1, in which the median age was 53, more II, III 
stage patients were included and there was no difference in 
hormone receptor expression. No difference of pCR status 
was found between the two treatment groups. However, the 
two groups of Ki67 < 40% versus ≥ 40% had different pCR 
rates of 63.2% and 28.6% (p < 0.028) (Table 1).

We next analyzed the mutation profiles in Chinese 
HER2-positive breast cancers (Fig. 1 and Table 2). The 
most commonly mutated genes in Chinese HER2-positive 
breast cancer patients were TP53 (74.6%), CDK12 (64.6%) 
and PIK3CA (46.4%). Most of the TP53 mutations were 
missense mutations (40.35%) and LOF mutations (21.5%). 
Interestingly, the ROS1 mutations were only detected in 
HR + HER2 + patients. Mutation sites of TP53, PIK3CA and 
ROS1 are listed in Fig. 1. No TP53 mutation hotspots were 
found in these Chinese HER2 + patients, while p.H1047R 
was investigated to be hotspot in PIK3CA mutations (Fig. 1 
and Table 3). In cohort 2 (Table 2 and Fig. 2), TP53 (90.0%), 
CDK12 (77.5%) and PIK3CA (55%) were still the most 
mutated genes. And 5 patients got ROS1 mutations, all of 
whom belong to HR + HER2 + subgroup. The mutation sites 

of TP53, PIK3CA and ROS1 in cohort 2 are also listed in 
Fig. 2.

Genetic mutation difference between HER2‑positive 
breast cancer patients with and without pCR

In the NACT group cohort 2, mutations were frequently 
identified in 48 genes shown in the oncoprint (Fig. 2) and 
some are selected in Table 2. The genetic mutation profiles 
were quite different between HER2-positive breast cancer 
patients with and without pCR. In pCR group, mutation 
rates of the most frequently mutated genes, such as TP53, 
PIK3CA, CDK12, SPOP, FGF3, FGF4 and FGF19, were 
88.9%, 33.3%, 72.2%, 11.1%, 11.1%, 11.1% and 11.1%, 
while in non-pCR group their mutation rates were 81.8%, 
72.7%, 72.7%, 22.7%, 18.2%, 18.2% and 18.2%.

Then we detected the differences between the pCR 
and non-pCR groups according to pathological and muta-
tional variables and found significant differences in terms 
of the initial Ki67 status, TP53 missense mutations, TP53 
LOF mutations, PIK3CA mutations and ROS1 mutations 

Fig. 1   The mutational landscape of 181 Chinese patients with HER2-
positive breast cancer (cohort 1) elucidated using a 520-gene panel 
(OncoScreen Plus, Burning Rock Biotech). a Oncoprint summarizing 
the mutational landscape of the cohort. Only somatic alterations with 
a frequency of 5% or greater in the whole cohort are displayed. The 
HR status of the patients was indicated at the bottom of the oncoprint, 
wherein green represents patients with HR-negative (HR−/HER2+) 
status and red represents patients with HR-positive (HR+/HER2+) 
status. Each column represents a patient and each row represents a 
gene. Numbers on the left represent the percentage of patients with 

mutations in a specific gene. Top plot represents the overall number 
of mutations a patient carried. Different colors denote different types 
of mutations. b Lollipop diagrams depicting the type and specific 
locations of TP53, PIK3CA and ROS1 mutations in cohort 2. Colored 
boxes depict the different functional domains along the gene. Colored 
circles denote the type of mutation, while the location of the circle 
specifies the mutation site. The length of the lollipop represents the 
number of patients harboring a specific variant. The legend on the 
right side summarizes the total number of mutation types such as 
missense, truncating, inframe and other mutations
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(p = 0.028, 0.019, 0.005, 0.013, 0.049, respectively, Tables 1, 
2).

One PIK3CA mutation hotspot was examined to be 
p.H1047R which belongs to be a missense mutation. Three 

mutation sites (p.V650M, p.E545G and p.E542K) were 
detected to be located in the PI3Ka subunit which has been 
found to be crucial for PIK3CA function.

Table 2   Associations of somatic alterations with pCR or non-pCR

Bold indicates the significance of p value < 0.05
# 18 mutations belong to 16 of the patients with pCR
*Indicates analyzed by Continuity Correction of Pearson’s Chi-square test, while other p values were got by Pearson’s Chi-square test

Mutations Cohort 1 Cohort 2

HR+/
HER2+ 
(n/181)

HR-/HER2 +  
(n/181)

Total (n/181) HR+/
HER2 + (n/40)

HR-/
HER2 + (n/40)

pCR (n/18) Non-pCR 
(n/22)

p value

TP53 Missense 40 (22.1%) 33 (18.2%) 73 (40.35%) 7 (17.5%) 10 (25.0%) 4 (22.2%) 13 (59.1%) 0.019
LOF mutations 27 (14.9%) 12 (6.6%) 39 (21.5%) 7 (17.5%) 10 (25.0%) 12 (66.7%) 5 (22.7%) 0.005
Splice_accep-

tor
7 (3.9%) 1 (0.6%) 8 (4.5%) 0 2 (5.0%) 2 (11.1%) 0 –

Splice_donor 3 (1.7%) 2 (1.1%) 5 (2.8%) 1 (2.5%) 1 (2.5%) 2 (11.1%) 0 –
Frame shift 17 (9.4%) 9 (5.0%) 26 (14.4%) 4 (10.0%) 3 (7.5%) 4 (22.2%) 3 (13.6%) 0.770*
Nonsense(stop 

gain)
7 (3.9%) 10 (5.5%) 17 (9.4%) 2 (10.0%) 4 (10.0%) 4 (22.2%) 2 (9.1%) 0.476*

Splice_region 0 1 (0.6%) 1 (0.6%) 1 (2.5%) 0 1 (5.5%) 0 –
Indel 5 (2.8%) 1 (0.6%) 6 (7.4%) 1 (2.5%) 0 1 (5.5%) 0 –
Total 79 (43.6%) 56 (30.9%) 135 (74.6%) 16 (40.0%) 20 (50.0%) 18 (88.9%)# 18 (81.8%) 0.859*

CDK12 CN_amp 60 (33.1%) 41 (22.7%) 101 (55.8%) 14 (35.0%) 13 (37.5%) 13 (72.2%) 14 (63.6%) 1.000*
Missense 1 (0.6%) 6 (3.3%) 7 (3.9%) 0 1 (2.5%) 0 1 (4.5%) –
Frameshift_

variant
2 (1.1%) 0 2 (1.1%) 1 (2.5%) 0 0 1 (4.5%) –

Fusion 4 (2.2%) 0 4 (2.2%) – – – – –
LGR 2 (1.1%) 0 2 (1.1%) – – – – –
Total 69 (38.1%) 48 (26.5%) 117 (64.6%) 15 (37.5%) 14 (40%) 13 (72.2%) 16 (72.7%) 1.000*

PIK3CA Missense 49 (27.1%) 30 (16.6%) 79 (43.6%) 9 (22.5%) 12 (30.0%) 6 (33.3%) 15 (68.2%) –
CN_amp 2 (1.1%) 0 2 (1.1%) 1 (2.5%) 0 0 1 (4.5%) –
Indel 3 (1.7%) 0 3 (1.7%) – – – – –
Total 54 (29.8%) 30 (16.6%) 84 (46.4%) 10 (25%) 12 (30.0%) 6 (33.3%) 16 (72.7%) 0.013

RARA​ CN_amp 26 (14.4%) 8 (4.4%) 34 (18.8%) 6 (15.0%) 2 (5.0%) 5 (27.8%) 3 (13.6%) 0.475*
Fusion 1 (0.6%) 0 1 (0.6%) – – – – –
Total 27 (14.9%) 8 (4.4%) 35 (19.3%) 6 (15.0%) 2 (5.0%) 5 (27.8%) 3 (13.6%) 0.475*

SPOP CN_amp 22 (12.2%) 7 (3.9%) 29 (16.0%) 3 (15.0%) 4 (10.0%) 2 (11.1%) 5 (22.7%) 0.587*
Fusion 1 (0.6%) 0 1 (0.6%) – – – – –
Total 23 (12.7%) 7 (3.9%) 30 (16.6%) 3 (15.0%) 4 (10.0%) 2 (11.1%) 5 (22.7%) 0.587*

CCND1 CN_amp 16 (8.9%) 5 (2.8%) 21 (11.6%) 5 (12.5%) 1 (2.5%) 2 (11.1%) 4 (18.2%) 0.859*
Myc CN_amp 15 (8.3%) 3 (1.7%) 18 (9.9%) 2 (10.0%) 3 (7.5%) 3 (16.6%) 2 (9.1%) 1.000*

Fusion 0 1 (0.6%) 1 (0.6%) 0 1 (2.5%) 0 1 (4.5%) –
Total 15 (8.3%) 4 (2.2%) 19 (10.5%) 2 (10.0%) 4 (10.0%) 3 (16.6%) 3 (13.6%) 1.000*

FGF19 CN_amp 15 (8.3%) 4 (2.2%) 19 (10.5%) 5 (12.5%) 1 (2.5%) 2 (11.1%) 4 (18.2%) 0.859*
FGF3 CN_amp 13 (7.2%) 3 (1.7%) 16 (8.8%) 5 (12.5%) 1 (2.5%) 2 (11.1%) 4 (18.2%) 0.859*
FGF4 CN_amp 14 (7.7%) 3 (1.7%) 17 (9.4%) 5 (12.5%) 1 (2.5%) 2 (11.1%) 4 (18.2%) 0.859*
ROS1 CN_amp 6 (3.3%) 0 6 (3.3%) 5 (12.5%) 0 5 (27.8%) 0 0.049*

Splice_site 1 (0.6%) 0 1 (0.6%) 0 0 0 0 –
Total 7 (3.9%) 0 7 (3.9%) 5 (12.5%) 0 5 (27.8%) 0 0.049*
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Table 3   Mutations of TP53 and PIK3CA in cohort 2

Gene Mutation_type Exon_rank Description AF (%) CHROM POS REF ALT Patient.count

TP53 missense_variant 5 p.A159V 12.57 17 7,578,454 G A 1
missense_variant 8 p.G262V 38.51 17 7,577,153 C A 1
missense_variant 5 p.H179R 29.08 17 7,578,394 T C 1
missense_variant 6 p.H193L 27.33 17 7,578,271 T A 1
missense_variant 5 p.N131I 9.18 17 7,578,538 T A 1
missense_variant 7 p.N239D 47.06 17 7,577,566 T C 1
missense_variant 5 p.P151S 56.70 17 7,578,479 G A 1
missense_variant 8 p.P278R 29.25 17 7,577,105 G C 1
missense_variant 8 p.P278S 11.58 17 7,577,106 G A 1
missense_variant 6 p.R209S 37.70 17 7,578,222 T G 1
missense_variant 8 p.R273C 3.18 17 7,577,121 G A 1
missense_variant 8 p.R273H 10.65 17 7,577,120 C T 2
missense_variant 8 p.R282W 19.20 17 7,577,094 G A 1
missense_variant 5 p.Y126D 21.26 17 7,578,554 A C 1
missense_variant 5 p.Y163C 39.06 17 7,578,442 T C 1
missense_variant 6 p.Y220N 46.71 17 7,578,191 A T 1
conservative_

inframe_deletion
6 p.F212_S215del 31.38 17 7,578,203 CAC​TAT​GTC​GAA​

AA
CT 1

frameshift_variant 10 p.L348fs 6.11 17 7,573,966 TGG​GCA​TCC​TTG​
AGT​TCC​AAG​

T 1

frameshift_variant 4 p.L93fs 37.73 17 7,579,408 CA C 1
frameshift_variant 7 p.N239fs 30.55 17 7,577,564 GT G 1
frameshift_variant 4 p.P72fs 17.93 17 7,579,470 CGGG​ CGC​ 1
frameshift_variant 5 p.R158fs 28.17 17 7,578,445 ATG​GCC​ATG​

GCG​CG
A 1

frameshift_variant 5 p.S185fs 22.44 17 7,578,373 TCGC​ TT 1
frameshift_variant 8 p.V274fs 25.05 17 7,577,118 C CA 1
splice_accep-

tor_variant
9 c.920-1G>A 39.53 17 7,576,927 C T 1

splice_accep-
tor_variant

9 p.S261_G262de-
lins???

16.55 17 7,577,151 TAC​CAC​TAC​TCA​
GGA​TAG​GAA​
AAG​

TT 1

splice_donor_vari-
ant

6 c.672 + 1G>A 11.68 17 7,578,176 C T 1

splice_donor_vari-
ant

6 c.672 + 1G>T 9.46 17 7,578,176 C A 1

splice_region_vari-
ant

6 p.E224D 26.46 17 7,578,177 C A 1

stop_gained 5 p.Q144* 8.93 17 7,578,500 G A 1
stop_gained 6 p.Q192* 58.54 17 7,578,275 G A 3
stop_gained 10 p.R342* 35.58 17 7,574,003 G A 1
stop_gained 7 p.Y236* 36.95 17 7,577,573 G T 1

PIK3CA missense_variant 21 p.H1047R 6.73 3 178,952,085 A G 13
missense_variant 8 p.C420R 15.24 3 178,927,980 T C 1
missense_variant 10 p.E542K 17.26 3 178,936,082 G A 1
missense_variant 10 p.E545G 14.01 3 178,936,092 A G 1
missense_variant 21 p.H1047L 37.45 3 178,952,085 A T 1
missense_variant 5 p.N345K 10.64 3 178,921,553 T A 2
missense_variant 9 p.S499F 4.89 3 178,928,310 C T 1
missense_variant 13 p.V650M 11.69 3 178,937,773 G A 1
cn_amp NA cn_amp 3.87 3q26.32 3q26.32 19 17 1
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There was a significant difference of PIK3CA mutation 
frequency between pCR and non-pCR group (33.3% vs 
72.7%; p = 0.013, Table 2 and Fig. 3).

ROS1 amplification was only investigated in 5 hormone 
receptor-positive patients who all got pCR. The ROS1 
amplification breast cancers were found to have higher pCR 
rate (p = 0.049) (Table 2 and Fig. 2). However, when we 
go further to investigate whether ROS1 had amplification 
in protein level by immunohistochemistry, the result was 
negative (Figs. 3, 4).

Predictors for pCR or non‑pCR

As shown above, some mutations and pathological factors 
seemed to affect pCR status and, to determine which of 
those are the predictive factors, we did univariate and mul-
tivariate regression. For pCR status, three covariates were 
significant in the univariate analyses (Tumors size, TP53 

missense mutations, TP53 LOF mutations), but only one was 
retained and a new one appeared after forward selection in 
the multivariate analysis—TP53 LOF mutations and initial 
Ki67 status (OR 7.086, 95% CI 1.366–36.749, p = 0.020 and 
OR 6.007, 95% CI 1.120–32.210, p = 0.036, respectively, 
in Table 4). Some factors selected in the univariate model 
seemed to be highly correlated and for this reason were 
rejected or appeared in the multivariate model.

Discussion

Our findings indicate significant associations (p = 0.020 and 
p = 0.036) of TP53 LOF mutations and lower initial Ki67 
status (< 40%) with a high probability of pCR in HER2-
positive breast cancer patients receiving NACT.

TP53 has been reported to have heterogenous types of 
mutations which include attenuation of function, separation 

Fig. 2   The mutational landscape of 40 Chinese patients with early-
stage HER2-positive breast cancer who received HER2 inhibitors as 
neoadjuvant therapy (cohort 2) elucidated using a 520-gene panel 
(OncoScreen Plus, Burning Rock Biotech). a Oncoprint summarizing 
the mutational landscape of the cohort. Only somatic alterations with 
a frequency of 5% or greater in the whole cohort are displayed. The 
pathologic complete response (pCR) and HR status of the patients 
were indicated at the bottom of the oncoprint, wherein red repre-
sents patients achieving pCR (n = 18), pink represents patients with 
non-pCR (n = 22); cyan represents patients with HR-positive (HR+/
HER2+) status (pCR, n = 11; non-pCR, n = 9) and green represents 
patients with HR-negative (HR−/HER2+) status (pCR, n = 7; non-

pCR, n = 13). Each column represents a patient and each row repre-
sents a gene. Numbers on the left represent the percentage of patients 
with mutations in a specific gene. Top plot represents the overall 
number of mutations a patient carried. Different colors denote differ-
ent types of mutations. b Lollipop diagrams depicting the type and 
specific locations of TP53, PIK3CA and ROS1 mutations in cohort 2. 
Colored boxes depict the different functional domains along the gene. 
Colored circles denote the type of mutation, while the location of the 
circle specifies the mutation site. The length of the lollipop represents 
the number of patients harboring a specific variant. The legend on 
the right side summarizes the total number of mutation types such as 
missense, truncating, inframe and other mutations
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of function or neomorphic function [15–17]. There are gain-
of-function mutations mostly TP53 missense mutations and 
LOF mutations which have a common characteristic of los-
ing functions of wild-type TP53 and composed of splice site, 
frame shift and nonsense mutations [16, 18].

HER2-positive breast cancer has a high frequency 
of TP53 mutations (up to 72%) [8], and in our previous 
study, the mutation frequency of TP53 in the triple-posi-
tive HR + /HER2 + group is 66.1% and up to 89.3% in the 
HR-/HER2 + group in Chinese breast cancer patients [19]. 

Interestingly, the TP53 mutation rate was similar in those of 
HER2-positive patients who achieved a pCR or not (88.9% 
v 81.8%), and there was no statistical difference of TP53 
mutation rate between two groups (p = 0.859). However, as 
far as specific types of TP53 mutations were considered, 
such as missense mutations, LOF mutations and so on, 
quite significant mutational differences were manifested. 
TP53 missense mutation rates in pCR and non-pCR groups 
were quite different (22.2% vs 59.1%, p = 0.019, Table 2 
and Fig. 3). Similarly, patients in pCR group were detected 

Fig. 3   Differences between pCR and non-pCR groups in terms of 
genetic mutations. a–d Pearson’s Chi-square test and Yate’s conti-
nuity-corrected Chi-square test analyzed the associations of TP53 

missense and LOF mutations, PIK3CA mutations and ROS1 ampli-
fications with pCR or non-pCR of HER2-positive breast cancers after 
NACT. *Indicates 0.01 < p < 0.05, **indicates p < 0.01
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Fig. 4   ROS1 expression in protein level. a, b Positive and negative control of ROS1 expression by IHC. c ROS1 expression in samples with 
ROS1 amplification (negative). d ROS1 expression in samples without ROS1 amplification (negative)

Table 4   Predictors of pCR 
status analyzed by univariate 
and multivariate regression

Bold indicates the significance of p value < 0.05
TP53 missense mutations, TP53 LOF mutations and tumor size were significantly associated with pCR sta-
tus by univariate regression; however, only TP53 LOF mutations retained when multivariate regression was 
carried out, and Initial Ki67 status turned out to be predictive

Factors Univariate regression Multivariate regression

OR (95% CI) p value OR (95% CI) p value

Tumor size 9.714 (1.081–87.313) 0.042 11.844 (0.993–141.214)
Hormone receptor status 0.636 (0.180–2.251) 0.483
Initial Ki67 status 3.500 (0.945–12.966) 0.061 6.007 (1.120–32.210) 0.036
NACT regimen 0.467 (0.129–1.692) 0.246
TP53 missense mutations 0.198 (0.049–0.801) 0.023
TP53 LOF mutations 6.800 (1.680–27.522) 0.007 7.086 (1.366–36.749) 0.020
PIK3CA mutations 0.286 (0.077–1.058) 0.061
ROS1 mutations 8.077 (0.846–77.070) 0.07
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to have much higher LOF mutation rate (66.7% vs 22.7%, 
p = 0.005, Table 2 and Fig. 3). Univariate logistic regres-
sion showed TP53 missense mutation and TP53 LOF muta-
tion were significantly associated with pCR status (OR 
0.198, 95% CI 0.049–0.801, p = 0.023 and OR 6.800, 95% 
CI 1.680–27.522, p = 0.007). However, when multivariate 
logistic regression was applied, only TP53 LOF mutation 
was retained to be predictive of pCR status.

And why is that? How TP53 LOF mutation mediates 
a good response to NACT is complicated. TP53 has been 
reported to be activated in response to mitotic stress caused 
by agents such as taxanes that disrupt microtubules [20]. 
Evidences from breast cancer models and tumors have 
shown p53 directs cells to undergo cell cycle arrest and 
senescence [21, 22]. One mechanism that contributes to 
senescent cell survival and persistence in the residual dis-
ease after chemotherapy treatment is the engulfing and can-
nibalizing of neighboring cells [23]. We believe that TP53 
LOF mutations lose capacity to activate cell cycle arrest and 
senescence to escape apoptosis induced by therapy, and as a 
result mediate a good response to NACT.

Some TP53 missense mutations are associated with 
enhanced characteristics of invasion and metastasis when 
they acquire a gain-of-function effect [24]. More than 80% 
of TP53 alterations are missense mutations that will pro-
duce a stable but transcriptionally deficient protein. These 
mutant-TP53-expressing tumors are aggressive and associ-
ated to poor prognosis [25, 26]. Compelling evidences have 
proved that TP53 missense mutations promote cell migration 
and metastasis and dramatically influence tumor progression 
[27–29]. In our study, TP53 missense mutations showed sig-
nificant difference between pCR and non-pCR groups, and 
also a predictor for non-pCR by univariate regression. We 
speculated that TP53 missense may affect therapy response 
depending on other variables.

TP53 mutations were not predictive of neoadjuvant chem-
otherapy response in the EORTC 10,994/BIG 1-00 trial [30]. 
However, in that study, patients with HER2 + breast cancers 
were randomly assigned to different NACT groups with-
out HER2-targeted therapy, and the yeast assay was used to 
assess TP53 mutations which does not distinguish between 
pure loss-of-function mutations compared to mutations 
with simultaneous gain and loss-of-function [31, 32]. Sev-
eral molecular alterations are thought to contribute to tras-
tuzumab resistance, including TP53 mutation [33, 34] and 
PIK3CA alteration [13, 35, 36], but results evaluating these 
biomarkers as response predictors have been inconsistent.

Two retrospective studies [37, 38] reported TP53 muta-
tions were significantly predictive of HER2 + patient treat-
ment response (pCR) to neoadjuvant chemotherapies. Soley 
et al. report that for patient samples with concordant Blue-
Print/MammaPrint and PAM50 data, the pCR plus non-
pCR rate among patients whose tumors were TP53 mutant 

was 17/39 (44%), whereas in patients whose tumors were 
TP53 wild type, it was 5/31 (16%), p = 0.020 [37]. And 
Stefan et al. report that the response rate among TP53-
mutated patients was 30%, significantly higher than TP53 
wild-type patients (10%; p = 0.0032) [38]. However, both 
studies used the AmpliChip TP53 assay (Roche Molecular 
Systems, Pleasanton, CA), a DNA microarray-based rese-
quencing assay designed to detect single-base substitutions 
and single-base deletions in all coding regions of the TP53 
gene, which needs a reference sequence and is unable to 
detect all the possible mutations like a NGS assay [39, 40]. 
Two other studies found no associations of TP53 mutations 
with HER2 + NACT treatment response [41, 42]. However, 
all these studies only examined associations of TP53 muta-
tions as a whole with treatment response, despite the fact 
that TP53 missense mutations and loss-of-function muta-
tions have quite different functions during breast cancer 
progression [16, 24, 26]. In our study, we assessed the 
associations of TP53 missense mutations and LOF muta-
tions separately with treatment response and found quite 
different predictive characteristics.

From a tumor biological point of view, Ki67 should be 
viewed as a continuous variable, as it reflects the percent-
age of proliferating cells in the tumor, which can reach any 
value between 0 and 100%. The fact of defining our cut 
points should not be seen as a limitation of the marker but 
point to a strength of Ki67, as studies have shown a wide 
range of cut points was significant for various endpoints 
and subgroups [43]. Therefore in our study, Ki67 is still a 
predictive biomarker for HER2-positive breast cancer sub-
group receiving chemotherapy and HER2-targeted therapy.

Tumor size was analyzed to be a predictor of pCR status 
by univariate regression and not by multivariate regres-
sion. It is easy to understand that tumor size is a factor 
susceptible to other pathological and mutational factors.

In conclusion, our study reports TP53 LOF mutations 
and initial Ki67 status predict pCR status for HER2-positive 
breast cancer patients receiving NACT. As this study is an 
exploratory retrospective study of small size, further pro-
spective clinical research with large sample is still needed.
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