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Purpose: To evaluate the potential of the texture features extracted from dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) intratumoral subregions to
distinguish benign from malignant breast tumors.

Materials andMethods: A total of 299 patients with pathologically verified breast tumors
who underwent breast DCE-MRI examination were enrolled in this study, including 124
benign cases and 175 malignant cases. The whole tumor area was semi-automatically
segmented on the basis of subtraction images of DCE-MRI in Matlab 2018b. According to
the time to peak of the contrast agent, the whole tumor area was partitioned into three
subregions: early, moderate, and late. A total of 467 texture features were extracted from
the whole tumor area and the three subregions, respectively. Patients were divided into
training (n = 209) and validation (n = 90) cohorts by different MRI scanners. The least
absolute shrinkage and selection operator (LASSO) method was used to select the
optimal feature subset in the training cohort. The Kolmogorov-Smirnov test was first
performed on texture features selected by LASSO to test whether the samples followed a
normal distribution. Two machine learning methods, decision tree (DT) and support vector
machine (SVM), were used to establish classification models with a 10-fold cross-
validation method. The performance of the classification models was evaluated with
receiver operating characteristic (ROC) curves.

Results: In the training cohort, the areas under the ROC curve (AUCs) for the DT_Whole
model and SVM_Whole model were 0.744 and 0.806, respectively. In contrast, the AUCs
of the DT_Early model (P = 0.004), DT_Late model (P = 0.015), SVM_Early model (P =
0.002), and SVM_Late model (P = 0.002) were significantly higher: 0.863 (95% CI, 0.808–
0.906), 0.860 (95% CI, 0.806–0.904), 0.934 (95% CI, 0.891–0.963), and 0.921 (95% CI,
0.876–0.954), respectively. The SVM_Early model and SVM_Late model achieved better
performance than the DT_Early model and DT_Late model (P = 0.003, 0.034, 0.008, and
0.026, respectively). In the validation cohort, the AUCs for the DT_Whole model and
SVM_Whole model were 0.670 and 0.708, respectively. In comparison, the AUCs of the
DT_Early model (P = 0.006), DT_Late model (P = 0.043), SVM_Early model (P = 0.001),
and SVM_Late model (P = 0.007) were significantly higher: 0.839 (95% CI, 0.747–0.908),
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0.784 (95% CI, 0.601–0.798), 0.890 (95% CI, 0.806–0.946), and 0.865 (95% CI, 0.777–
0.928), respectively.

Conclusion: The texture features from intratumoral subregions of breast DCE-MRI
showed potential in identifying benign and malignant breast tumors.
Keywords: breast tumors, magnetic resonance imaging, machine learning, texture analysis, DCE-MRI
INTRODUCTION

Breast cancer is one of the most common cancers and the main
cause of cancer deaths in women, accounting for approximately
30% of new cancer cases in women and 14% of cancer deaths (1).
Advances in medical technology have resulted in a relatively high
cure rate for early breast cancer through radiotherapy,
chemotherapy, and surgery (2, 3). The treatment options for
benign and malignant breast tumors differ, as do the local
recurrence and survival rates (4). Benign breast tumors are
generally curable through active treatment, whereas malignant
tumors are difficult to cure and usually require surgery after
neoadjuvant therapy to suppress local recurrence (5–7).
Therefore, distinguishing benign from malignant breast tumors
quickly and accurately is important.

Magnetic resonance imaging (MRI) is a non-invasive imaging
method increasingly being used to detect and diagnose breast
cancer. MRI has a higher sensitivity for the detection of breast
lesions than mammography or breast ultrasound (8, 9). Among
the available MRI methods, dynamic contrast-enhanced MRI
(DCE-MRI) can provide tumor anatomical information and
hemodynamic information with high spatial resolution, and it
plays an important role in the diagnosis, differential diagnosis,
and treatment response assessment of breast cancer (10–13).
However, many benign lesions show strong contrast
enhancement, which can lead to false-positive diagnoses,
unnecessary biopsies, or overtreatment (14). The rate of
preoperative breast DCE-MRI examinations is increasing, and
an effective method for characterizing enhanced lesions is crucial
to improve the accuracy of diagnosis.

Texture analysis refers to the extraction of texture feature
parameters through specific image processing technology to
obtain a quantitative or qualitative description of the texture
(15, 16). Texture analysis is applied to breast MRI through image
processing methods, which can be used to quantify the
heterogeneity of lesions (17, 18). Studies have shown that
texture features that characterize intratumoral heterogeneity
can help identify benign and malignant breast tumors and
distinguish molecular subtypes of breast cancer (19–21).

Previous studies have mainly extracted texture features from
the whole tumor area in MRI images. However, the texture
features derived from subregions within the breast tumor may
provide valuable information to aid in clinical diagnosis and help
patients develop personal treatment plans (22–25). Fan et al. (26)
have shown that the texture features extracted from intratumoral
subregions of DCE-MRI can be used to predict Ki-67 status in
estrogen receptor (ER)-positive breast cancer. To our knowledge,
no research has been performed on the identification of benign
2

and malignant breast tumors on the basis of texture features
extracted from intratumoral subregions of breast DCE-MRI. The
purpose of this study was to evaluate the potential of the texture
features extracted from DCE-MRI of intratumoral subregions for
distinguishing benign and malignant breast tumors.
MATERIALS AND METHODS

Study Cohort
This study was approved by the Ethics Review Committee at
Shengjing Hospital of China Medical University (No.
2019PS175K), and the requirement for informed consent was
waived because of the retrospective nature of the study. Between
January 2017 and January 2020, patients who underwent breast
DCE-MRI examinations were reviewed through the image
archiving and communication system (PACS) at our
institution. The study cohort initially included 378 patients.
The inclusion criteria were as follows: (1) patients who
underwent breast DCE-MRI and (2) patients with benign or
malignant breast tumors confirmed by histopathology. The
exclusion criteria were as follows: (1) patients treated with
surgery, chemotherapy, or radiotherapy before DCE-MRI (n =
43); (2) patients diagnosed through excisional biopsy before
DCE-MRI (n = 26); and (3) patients with insufficient image
quality for subsequent processing because of obvious motion
artifacts (n = 10). Consequently, 299 patients (mean age, 48.30 ±
9.74 years; range, 25–84 years) were divided into training (n =
209) and validation (n = 90) cohorts by different MRI scanners,
including 124 benign and 175 malignant breast tumors. The
clinical characteristics of the study cohort are summarized in
Table 1. The flowchart of this study is shown in Figure 1.

Image Acquisition
In the training cohort, DCE-MRI examinations were performed
with a GE 3.0T MRI scanner (Signa HDxt, GE Healthcare)
equipped with a dedicated eight-channel bilateral breast coil on
patients in a prone position. A transverse fat-suppression T1-
weighted pre-contrast scan was first obtained with the
VIBRANT-VX technique. Eight phases of fat-suppression T1-
weighted post-contrast scans were acquired after intravenous
injection of the contrast agent (Magnevist, Bayer-Schering
Pharmaceuticals, Germany) at a dose of 0.15 mmol per kg
body weight at 4 mlL/s and subsequent flushing with an equal
volume of saline at the same injection speed. The following
imaging parameters were used: repetition time (TR), 7.42 ms;
echo time (TE), 4.25 ms; flip angle, 15°; slice thickness, 2.20 mm;
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spacing between slices, 2.20 mm; field of view, 340 × 340 mm2;
image matrix, 1,024 × 1,024; slice number, 78. For each patient,
eight phases of subtraction images were obtained by subtracting
pre-contrast images from eight post-contrast images.

In the validation cohort, DCE-MRI examinations were
performed with a Philips 3.0T MRI scanner (Ingenia, Philips
Medical System, Best, Netherlands) equipped with a dedicated
seven-channel bilateral breast coil with patient in a prone
position. First, an axial fat-saturated T1-weighted pre-contrast
scan was acquired. Then, eight axial contrast-enhanced fat-
saturated T1-weighted scans were acquired after the
intravenous bolus injection of the same contrast with the same
dose. The imaging parameters were as follow: repetition time
(TR), 4.14 ms; echo time (TE), 2.10 ms; flip angle, 12°; slice
thickness, 2.00 mm; spacing between slices, 1.00 mm; field of
view, 340 × 340 mm2; matrix, 380 × 380; slice number, 78. Eight
subtraction sequences were obtained by subtracting the pre-
contrast scan from each of the eight post-contrast scans.

Image Processing and
Lesion Segmentation
Two senior radiologists, with 10 and 15 years of experience in
interpreting breast MRI were invited to review the subtraction
images in the fourth phase and reached a consensus in selecting
the slice image with the maximum tumor diameter for each
patient for subsequent analysis (27). During the image review,
the radiologists were blind to the patients’ pathological results.
The whole tumor area was segmented with a semi-automatic
method in Matlab 2018b (Mathworks, Natick, MA, USA), as
described below (28, 29). One of the two radiologists manually
delineated a region of interest (ROI) with an arbitrary shape
around the lesion area on the subtraction image. The pixel gray
levels within the ROI were first normalized to m ± 3s (m: mean
gray level of pixels within the ROI; s: standard deviation), and
the range was quantized to 8 bits/pixel to change the signal to
Frontiers in Oncology | www.frontiersin.org 3
noise ratio of the texture results (30–32). A spatial fuzzy C-means
(FCM) algorithm was then used to delineate the contour
boundary of the lesion according to the ROI, and the whole
lesion area was refined through morphological processing
methods (33–35). Another radiologist verified and proofread
the results of the semi-automatic breast tumor segmentation.

Intratumoral Subregion Partition
To better understand the intratumoral heterogeneity of breast
tumors, as in a previous study (26), we divided the lesion area
into three subregions according to the variations in pixel signal
intensity in different phases. The specific partition details are
as follows:

The relative enhancement of the post-contrast image
compared with the pre-contrast image on a pixel-by-pixel basis
was calculated with the following formula:

H(m, n, t) =
I(m, n, t) − I(m, n, t0)

I(m, n, t0)
(1)

where I(m, n, t) and I(m, n t0) represent the signal intensity of the
pixel (m, n) captured at times t and t0 (the pre-contrast moment)
(36). The time-signal intensity curve, H(m, n, t), was defined to
describe the variation in the relative enhancement over time
(37–39). The time to peak (TTP), which represents the arrival
time of the peak relative enhancement, was calculated with the
following formula:

TTP(m, n) = argmax
t
 H(m, n, t) (2)

Then the pixels within the tumor region were divided into
three subregions according to their TTP values. More
specifically, pixel sets at the first four, fifth or sixth, and
seventh or eighth phases to achieve peak enhancement values
were defined as early, moderate, and late subregions, respectively;
this method was similar to those described in previous studies
TABLE 1 | Clinical characteristics of the patients selected for this study.

Characteristic Training cohort Validation cohort

Number % Number %

Total patients 209 90
Benign (age range, 25–82 years) 84 40.2 40 44.4
Malignant (age range, 29–84 years) 125 59.8 50 55.6

BI-RADS
3 18 8.6 7 7.8
4A 56 26.8 27 30
4B 43 20.6 16 17.8
4C 68 32.5 35 38.9
5 24 11.5 5 5.5

Histopathological Type
Benign 84 40.2 40 44.4
Adenosis 48 23.0 23 25.5
Fibroadenoma 32 15.3 14 15.5
Papilloma 4 1.9 3 3.4

Malignant 125 59.8 50 55.6
Invasive carcinoma of no special type 116 55.5 41 45.6
Ductal carcinoma in situ 6 2.8 5 5.6
Invasive micropapillary carcinoma 2 1.0 3 3.3
Invasive lobular carcinoma 1 0.5 1 1.1
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(26, 36). Therefore, the tumor was divided into three regions
representing different sets of TTP values.

Texture Feature Extraction
A total of 467 texture features were extracted from the whole
tumor area and the three subregions with Matlab 2018b. The
feature extraction methods could be classified into the following
four categories: histogram, gray-level co-occurrence matrix
(GLCM), gray-level run length matrix (GRLM), and discrete
wavelet transform (DWT). Detailed information on the features
is shown in Table 2. Each GLCM feature was calculated by using
four angles (0, 45, 90, and 135°) and four distances (1, 2, 3, and 4
pixels). Each GRLM feature was calculated by using four angles
(0, 45, 90, and 135°) and a distance of 1 pixel. In the following,
Frontiers in Oncology | www.frontiersin.org 4
(d, 0), (d, d), (0, d), and (-d, -d) were used to represent 0, 45, 90,
and 135°, respectively, where d is the distance. Each DWT feature
was calculated with four scales and three directions (horizontal,
vertical, and diagonal) to generate low and high frequency
components. In the following content, for example, Haar_2HH
was used to represent the horizontal high frequency component
of the second scale with the Haar wavelet.

Feature Selection and Model Construction
To reduce the dimensionality of the features, the correlation
between features was first tested with Pearson’s correlation
analysis, and features with correlation coefficients of >0.95
relative to other features were removed. The remaining
features were filtered by the least absolute shrinkage and
FIGURE 1 | The flowchart adopted in this study.
July 2021 | Volume 11 | Article 688182
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selection operator (LASSO) method to select the optimal feature
subset (40). Two machine learning models, decision tree (DT)
and support vector machine (SVM), were used to construct
classification models based on the optimal feature subset in the
training cohort with a 10-fold cross-validation method for
identifying benign and malignant breast tumors. And the
classification models were tested by using a independent
validation cohort. The 10-fold cross-validation refers to
random division of the data set into 10 sets, nine of which
were used for training and the last of which was used for testing.
This process was repeated 10 times, and the test data differed
each time.

Statistical Analysis
All statistical analyses were performed in SPSS 22.0 (IBM, Armonk,
NY, USA). The Kolmogorov-Smirnov test was first performed on
texture features selected by LASSO to assess whether the samples
followed a normal distribution (41); if so, the variables in the tables
are represented by means ± standard deviation (SD), and if not, the
variables in the tables are represented by medians ± interquartile
range. Univariate logistic regression analysis was used to evaluate
the performance of an independent feature in distinguishing benign
frommalignant breast tumors. The receiver operating characteristic
(ROC) curve constructed in the professional statistics software
MedCalc (version 14.10.20, http://www.medcalc.org/) was used to
assess the classification performance by calculating the area under
the ROC curve (AUC). The corresponding accuracy, sensitivity, and
specificity were also determined. The DeLong test was used to
determine the statistical significance of differences between AUCs. A
two-tailed P value of <0.05 was considered statistically significant.

The intraobserver variability of texture features extracted by
the two radiologists was evaluated by using intraclass correlation
coefficients [ICC, (0, 0.4), poor agreement; (0.4, 0.6), moderate
agreement; (0.6, 0.8), good agreement; and (0.8, 1), excellent
agreement] (42, 43).
RESULTS

Study Cohort
A total of 299 patients were enrolled in this study. In the training
cohort, the patients had 84 (40.2%) benign breast tumors classified
Frontiers in Oncology | www.frontiersin.org 5
into three histopathological types: adenosis (48), fibroadenoma (32),
and papilloma (4). The 125 (59.8%) malignant breast tumors
comprised 116 invasive carcinomas of no special type, 6 ductal
carcinomas in situ, 2 invasive micropapillary carcinomas, and 1
invasive lobular carcinoma. In the validation cohort, the patients
had 40 (44.4%) benign breast tumors classified into three
histopathological types: adenosis (23), fibroadenoma (14), and
papilloma (3). The 50 (55.6%) malignant breast tumors
comprised 41 invasive carcinomas of no special type, 5 ductal
carcinomas in situ, 3 invasive micropapillary carcinomas, and 1
invasive lobular carcinoma. The results of the whole tumor area
segmentation and intratumoral subregion partition are displayed in
Figure 2, which shows two randomly selected cases, one benign case
and the other malignant case.

Univariate Analysis
The results of univariate logistic regression analysis for
identifying benign and malignant breast tumors are displayed
in Table 3, which shows the top six features with the best
performance extracted from the three subregions and the
whole tumor area. The AUCs of features derived from the
whole tumor area ranged from 0.732 to 0.786. Features from
the early subregion performed best among the three subregions,
with AUC values ranging from 0.787 to 0.886. The AUCs of the
run length non-uniformity (1, 0) (P < 0.001), difference square
(0, 1) (P = 0.004), and short run emphasis (1, 0) (P < 0.001) from
the early subregion were significantly higher than those from the
whole tumor area. The AUCs from the moderate subregion
ranged from 0.715 to 0.777, and the AUCs from the late
subregion ranged from 0.685 to 0.884. Among all individual
features, the run length nonuniformity (1, 0) extracted from the
early region achieved the highest AUC of 0.886 [95% confidence
interval (CI), 0.836–0.926].

Performance of Classification Models
Table 4 shows the performance of the classification models for
distinguishing benign from malignant breast tumors in the training
and validation cohorts, and the corresponding ROC curves are
presented in Figures 3 and 4. In the training cohort, the AUCs of
the DT_Whole model and SVM_Whole model were 0.744 and
0.806, respectively. In contrast, the AUCs of the DT_Early model
(P = 0.004), DT_Late model (P = 0.015), SVM_Early model
TABLE 2 | Detailed information on the extracted features.

Methods Texture features Number

Histogram Mean, Kurtosis, Skewness, Variance 4
GLCM Autocorrelation, Contrast, Correlation, Cluster prominence, Cluster shadow, Dissimilarity, Energy, Entropy, Homogeneity, Maximum probability,

Sum of square, Sum average, Sum variance, Sum entropy, Difference square, Difference entropy, Information measure of correlation, Inverse
difference normalized, Inverse difference moment normalized

380

GRLM Short run emphasis, Long run emphasis, Gray-level non-uniformity, Run length non-uniformity, Fraction of image in runs, Low gray-level run
emphasis, High gray-level run emphasis, Short run low gray-level emphasis, Short run high gray-level emphasis, Long run low gray-level
emphasis, Long run high gray-level emphasis

44

DWT Harr parameters 13
Deubechies2 parameters 13
Symlet4 parameters 13

Total 467
July 2021 | Volume 11 | Articl
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(P = 0.002), and SVM_Late model (P = 0.002) were significantly
higher: 0.863 (95% CI, 0.808–0.906), 0.860 (95% CI, 0.806–0.904),
0.934 (95% CI, 0.891–0.963), and 0.921 (95% CI, 0.876–0.954),
respectively. The SVM_Early model and SVM_Late model achieved
Frontiers in Oncology | www.frontiersin.org 6
better performance than the DT_Early model and DT_Late model
(P = 0.003, 0.034, 0.008, and 0.026, respectively), as shown in
Table 5. In the validation cohort, the AUCs of the DT_Whole
model and SVM_Whole model were 0.670 and 0.708, respectively.
TABLE 3 | Univariate analysis for predicting benign and malignant breast tumors.

Methods Subregions Features AUC 95% CI P-valuea

Intratumoral subregions Early Run length nonuniformity (1, 0) 0.886 0.836–0.926 <0.001
Difference square (0, 1) 0.877 0.825–0.918 0.004
Short run emphasis (1, 0) 0.870 0.817–0.913 <0.001
Correlation (−1, 0) 0.836 0.779–0.884 0.081
Information measure of correlation (−2, 0) 0.820 0.761–0.870 0.391
Deubechies2_2HH 0.787 0.725–0.840 0.186

Moderate Gray-level non-uniformity (1, 0) 0.777 0.715–0.832 <0.001
Deubechies2_1VH 0.740 0.675–0.798 0.357
Haar_1DH 0.736 0.671–0.795 <0.001
Symlet4_1DH 0.729 0.664–0.788 0.016
Deubechies2_1DH 0.718 0.651–0.778 0.003
Mean 0.715 0.648–0.775 0.238

Late Information measure of correlation (0,1) 0.884 0.833–0.924 0.002
Information measure of correlation (−1,0) 0.853 0.798–0.898 0.059
Deubechies2_2VH 0.849 0.797–0.898 0.001
Haar_1HH 0.840 0.784–0.887 0.001
Haar_4HH 0.724 0.658–0.783 <0.001
Mean 0.685 0.617–0.747 0.157

Whole tumor area / Deubechies2_2DH 0.786 0.725–0.840 /
Haar_2DH 0.779 0.717–0.833 /
Symlet4_2VH 0.776 0.713–0.831 /
Symlet4_2HH 0.747 0.682–0.804 /
Deubechies2_3DH 0.734 0.669–0.793 /
Mean 0.732 0.667–0.791 /
July 2
021 | Volume 11 | Artic
AUC, area under the receiver operating characteristic curve; CI, confidence interval.
aP-value represents the comparison results of the features from the three intratumoral subregions and the same features from the whole tumor area.
The symbol ("/") represents null.
FIGURE 2 | Results of whole tumor segmentation and intratumoral subregion partition. The first row shows the results of a benign case: (A) subtraction image with
the maximum tumor diameter; (B) result of the whole tumor area segmented with a semi-automatic method; (C) result of intratumoral subregion partition, in which
red, green, and blue represent the early, moderate, and late subregions, respectively. The second row shows the results of a malignant case: (D) subtraction image;
(E) result of the whole tumor area; (F) result of intratumoral subregion partition.
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In comparison, the AUCs of the DT_Early model (P = 0.006),
DT_Late model (P = 0.043), SVM_Early model (P = 0.001), and
SVM_Late model (P = 0.007) were significantly higher: 0.839 (95%
CI, 0.747–0.908), 0.784 (95% CI, 0.601–0.798), 0.890 (95% CI,
0.806–0.946), and 0.865 (95% CI, 0.777–0.928), respectively. The
SVM_Early model and SVM_Late model achieved better
performance than the DT_Early model and DT_Late model
(P = 0.018, 0.047, 0.035, and 0.029, respectively), as shown in
Table 6. However, there was no significant difference between the
SVM_Early model and the SVM_Late model in the training and
validation cohorts (P = 0.524 and P = 0.523, respectively), and no
significant difference between the DT_Earlymodel and the DT_Late
model (P = 0.945 and P = 0.332, respectively). Fifteen texture
features extracted from the early subregion and 17 features extracted
from the late subregion were selected by LASSO, as listed inTable 7.
Frontiers in Oncology | www.frontiersin.org 7
Interobserver Agreement Evaluation
The texture features derived from the two groups of ROIs
delineated independently by two radiologists showed excellent
agreement [ICCs for whole lesion region, (0.875, 0.943); ICCs for
early region, (0.853, 0.936); ICCs for moderate region, (0.837,
0.928); and ICCs for late region, (0.842, 0.931)].
DISCUSSION

This study investigated the relationship between texture features
extracted from intratumoral subregions of breast DCE-MRI and
the differential diagnosis of benign and malignant breast tumors.
Features from subregions were able to distinguish benign from
A B

FIGURE 3 | ROC curves of the DT classification models established by using the features extracted from the three intratumoral subregions and the whole tumor
area. (A) ROC curves from the training cohort. (B) ROC curve from the external validation cohort.
TABLE 4 | Performance of classification models for identifying benign and malignant breast tumors.

Models Cohort AUC 95% CI Sensitivity Specificity Accuracy P-valuea

DT Early Training 0.863 0.808–0.906 80.0% 91.7% 79.8% 0.004
Validation 0.839 0.747–0.908 90.0% 80.0% 77.8% 0.006

Moderate Training 0.777 0.715–0.832 79.2% 76.2% 76.5% 0.473
Validation 0.718 0.613–0.808 70.0% 75.0% 74.4% 0.406

Late Training 0.860 0.806–0.904 80.8% 84.5% 78.5% 0.015
Validation 0.784 0.601–0.798 82.0% 77.5% 76.7% 0.043

Whole Training 0.744 0.679–0.802 86.4% 67.9% 74.2% /
Validation 0.670 0.563–0.766 74.0% 65.0% 67.8% /

SVM Early Training 0.934 0.891–0.963 89.6% 86.9% 88.5% 0.002
Validation 0.890 0.806–0.946 84.0% 85.0% 83.3% 0.001

Moderate Training 0.868 0.814–0.911 81.6% 84.5% 80.4% 0.078
Validation 0.737 0.634–0.824 80.0% 73.5% 72.2% 0.664

Late Training 0.921 0.876–0.954 86.4% 85.7% 84.5% 0.002
Validation 0.865 0.777–0.928 82.0% 80.0% 80.0% 0.007

Whole Training 0.806 0.746–0.857 69.6% 83.3% 65.5% /
Validation 0.708 0.602–0.799 88.0% 67.5% 61.1% /
July 2021
 | Volume 11 | Artic
AUC, area under the receiver operating characteristic curve; CI, confidence interval; DT, decision tree; SVM, support vector machine.
aP-value represents the comparison results of the AUC value of the same model established by features from intratumoral subregions and the whole tumor area..
The symbol ("/") represents null.
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malignant breast tumors, and features from subregions
representing the early and late TTP values achieved better
performance than those from the whole tumor area in the
training and validation cohorts. The SVM_Early model,
SVM_Moderate model, and SVM_Late model demonstrated
higher performance than the DT_Early model, DT_Moderate
model, and DT_Late model, respectively.

Texture analysis can characterize intratumoral heterogeneity
on the basis of quantitative image features extracted from
conventional medical imaging to help diagnose, stage, and
predict the prognosis and response to treatment in multiple
oncology fields (44–46). Intratumoral heterogeneity reflects
differences in biological characteristics, such as gene expression,
metabolism, and angiogenesis (23, 47). Texture features derived
Frontiers in Oncology | www.frontiersin.org 8
from intratumoral subregions that reflect the heterogeneity of
breast tumors, rather than the whole tumor area, may play a more
important role in the prognostic analysis and identification of
hormone receptor status in breast cancer (26, 36). A previous
study has shown that texture features extracted from subregions
with rapid delayed washout can be used to assess ER status and
lymph node classification in breast cancer (48). Chang et al. (49)
have quantified intratumoral heterogeneity on breast DCE-MRI
by using a subregion-based feature extraction method for
predicting ER status, human epidermal growth factor receptor 2
(HER2) status, and triple-negative breast cancer, achieving
accuracy of 73.53, 82.35, and 77.45%, respectively. In this study,
an intratumoral subregion partition method was used to
distinguish benign from malignant breast tumors. Texture
TABLE 5 | P-values of DeLong tests between subregion models in the training cohort.

Classifier DT_Early DT_Moderate DT_Late SVM_Early SVM_Moderate SVM_Late

DT_Early / 0.013 0.945 0.003 0.002 0.034
DT_Moderate 0.013 / 0.035 0.001 0.004 0.001
DT_Late 0.945 0.035 / 0.008 0.843 0.026
SVM_Early 0.003 0.001 0.008 / 0.020 0.524
SVM_Moderate 0.002 0.004 0.843 0.020 / 0.091
SVM_Late 0.034 0.001 0.026 0.524 0.091 /
July 2021 | Volume 11 | Art
DT, decision tree; SVM, support vector machine.
The symbol ("/") represents null.
TABLE 6 | P-values of DeLong tests between subregion models in the validation cohort.

Classifier DT_Early DT_Moderate DT_Late SVM_Early SVM_Moderate SVM_Late

DT_Early / 0.068 0.332 0.018 0.111 0.047
DT_Moderate 0.068 / 0.370 0.006 0.760 0.012
DT_Late 0.332 0.370 / 0.035 0.511 0.029
SVM_Early 0.018 0.006 0.035 / 0.007 0.523
SVM_Moderate 0.111 0.760 0.511 0.007 / 0.032
SVM_Late 0.047 0.012 0.029 0.523 0.032 /
The symbol ("/") represents null.
A B

FIGURE 4 | ROC curves of the SVM classification models established by using the features extracted from the three intratumoral subregions and the whole tumor
area. (A) ROC curves from the training cohort. (B) ROC curves from the external validation cohort.
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features were derived from three subregions and the whole tumor
area, and the corresponding classification models were
established. The models built with features from the early and
late subregions achieved better performance than models built
with features from the whole tumor area. A possible explanation
for this finding is that the intratumoral subregions reflect
angiogenesis, which may be indicative of the aggressiveness of
malignant breast tumors (50).

A previous study has investigated the diagnostic performance
of mammography texture analysis in differentiating benign from
malignant breast tumors (51). In the present study, the
subtraction images of DCE-MRI were used for texture analysis.
Previous studies have discussed the roles of histograms, GLCM,
and GRLM-based texture features in the differential diagnosis or
treatment response assessment in breast cancer (14, 44). In
addition to the features used in these studies, DWT-based
features were extracted in this study. DWT is used to modify
the image from the spatial domain to the frequency domain and
has been extensively applied to feature extraction from
electroencephalogram signals (52, 53). In the present univariate
analysis, the DWT-based features derived from the late
subregion, including Deubechies2_2VH (P = 0.001),
Haar_1HH (P = 0.001), and Haar_4HH (P < 0.001),
Frontiers in Oncology | www.frontiersin.org 9
performed better in distinguishing benign from malignant
breast tumors than those derived from the whole tumor area.

Two prevalent machine learning methods, DT and SVM, were
applied to establish classification models in this study. To prevent
overfitting, a 10-fold cross-validation method was used. The models
established with features from the early and late subregions achieved
better performance than models from the whole tumor area in the
training and validation cohorts. However, no significant differences
were found between the performance of models from the moderate
subregion and that of models from the whole tumor area in the
training and validation cohorts (P = 0.473 and P = 0.078, P = 0.406
and P = 0.664, respectively). Furthermore, the SVM_Early model,
SVM_Moderate model, and SVM_Late model had higher AUCs
than the DT_Early model, DT_Moderate model, and DT_Late
model. SVM initially maps the input vector to a higher-
dimensional feature space and identifies the hyperplane that
divides the data points into two categories; the resulting classifier
can reliably classify new samples and achieve considerable
versatility (54).

A previous study by Li et al. (55) has applied four methods to
classify benign and malignant breast tumors, and reported that the
DT model achieved the best performance, with an AUC of 0.781, a
sensitivity of 0.6, and a specificity of 0.894. Another study has used
TABLE 7 | Texture features extracted from early and late subregions selected with LASSO.

Features Benign Malignant

Early subregion
Meana 133.642 ± 41.162 168.686 ± 42.720
Variancea 27.638 ± 10.281 33.551 ± 8.434
Difference square (0, 1)b 0.220 ± 0.104 0.991 ± 0.357
Correlation (−2, 0)b 0.654 ± 0.259 0.823 ± 0.0987
Information measure of correlation (0, 1)b 0.6131 ± 0.186 0.822 ± 0.0691
Short run emphasis (1, 0)b 0.897 ± 0.0944 0.622 ± 0.114
Run length non-uniformity (1, 0)b 560.054 ± 13.620 426.963 ± 52.547
Deubechies2_2HHb 7.810 ± 2.364 4.399 ± 1.231
Deubechies2_1VHb 9.040 ± 4.241 4.853 ± 1.680
Symlet4_1VHb 8.174 ± 3.807 4.359 ± 1.445
Haar_4HHb 3.231 ± 1.749 5.317 ± 1.992
Deubechies2_3HHb 4.963 ± 1.313 3.826 ± 0.831
Symlet4_4VHb 3.089 ± 1.469 4.938 ± 1.845
Symlet4_1DHb 5.212 ± 2.273 2.517 ± 0.964
Late subregion
Meana 117.859 ± 29.076 136.495 ± 29.933
Variancea 30.496 ± 7.022 35.016 ± 7.631
Contrast (0,1)b 0.384 ± 0.203 0.716 ± 0.252
Information measure of correlation (0, 1)a −0.595 ± 0.099 −0.441 ± 0.0807
Information measure of correlation (−1, 0)b −0.594 ± 0.0807 −0.462 ± 0.0492
Short run emphasis (1, 0)b 0.672 ± 0.117 0.810 ± 0.149
Haar_1HHa 7.709 ± 4.446 13.814 ± 4.073
Deubechies2_2VHa 5.455 ± 2.949 9.708 ± 2.897
Haar_2HHa 6.651 ± 4.085 8.691 ± 2.746
Haar_4HHb 5.029 ± 1.993 2.895 ± 0.978
Haar_3VHb 4.496 ± 1.049 5.425 ± 1.343
Haar_4DHb 2.048 ± 0.881 1.567 ± 0.569
Deubechies2_3VHb 4.640 ± 1.481 5.489 ± 1.427
Deubechies2_4VHb 4.287 ± 1.630 3.103 ± 1.293
Deubechies2_4DHb 1.292 ± 0.393 1.835 ± 0.720
Symlet4_3HHb 3.335 ± 1.161 4.755 ± 1.129
Symlet4_3VHb 3.722 ± 1.434 5.611 ± 1.262
July 2021 | Volume 11
aThe data are means ± SD.
bThe data are medians ± interquartile range.
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an SVM model for classifying benign and malignant breast tumors
and obtained a sensitivity of 66.67% and a specificity of 93.55% (56).
Wang et al. (20) have used logistic regression analysis to distinguish
benign and malignant breast tumors, and achieved an accuracy of
79.5%, a sensitivity of 0.607, a specificity of 0.800, and an AUC of
0.802. In comparison, the best classification performance of our
SVM_Early model achieved an AUC of 0.934, a sensitivity of 89.6%,
a specificity of 86.9%, and an accuracy 88.5%. However, studies in
which the classification model is based on deep learning methods
have reported higher accuracy in distinguishing benign and
malignant breast lesions (57, 58).

In addition, we separately evaluated the intraobserver variability
of texture features extracted from the whole lesion region and from
three different intratumoral subregions. The two radiologists
showed high consistency in calculating texture features from the
single-slice method, and all ICCs were greater than 0.8. The
intraobserver variability was mainly related to slice selection and
ROI delineation. Hence, standardized strategies for ROI
determination are crucial.

This study has some limitations. First, the sample size was
relatively small. Second, only a representative single-slice image
was analyzed, and thus some useful information on the tumor
might have been missed. Texture analysis based on three-
dimensional breast tumor lesions may yield more useful
information (59). Finally, the subtraction images of breast DCE-
MRI were used to extract texture features. Features derived from
post-contrast images or diffusion weighted imaging images may be
helpful in distinguishing benign frommalignant breast tumors (60).
CONCLUSION

The texture features extracted from intratumoral subregions of
breast DCE-MRI can be used as imaging biomarkers for the
differential diagnosis of benign from malignant breast tumors.
Specifically, features derived from subregions representing the
early and late TTP values achieved better performance than
features from the whole tumor area. Further research with a
larger sample size is needed to verify the results of this study.
Frontiers in Oncology | www.frontiersin.org 10
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