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Abstract: Lubrication for extreme conditions, such as high temperature, cryogenic temperature,
vacuum pressure, high load, high speed, and corrosive environments, is a continuing challenge
among tribologists and space engineers due to the inadequate friction and wear properties of
liquid lubricants. As a result, tremendous research effort has been put forward to study lubrication
mechanisms for various machine elements under challenging conditions over the past two decades.
Self-lubricating materials have been most widely used for adequate lubrication in extreme conditions
in recent years. This review paper presents state-of-the-art of materials for lubrication in extreme
condition applications in aerospace, automotive, and power generation areas. More specifically, solid
lubricants dispersed in various matrices for lubrication application were analyzed in-depth under
challenging conditions. This study also reports the self-lubricating materials and their lubrication
mechanisms. Finally, various applications and challenges of self-lubricating materials were explored.

Keywords: solid lubricants; self-lubricating materials; self-lubricating composites; friction; wear

1. Introduction

The energy loss associated with moving mechanical assemblies (MMA) is a potential
problem in industrial applications. Friction and wear account for almost 30% of primary
energy loss, and the corresponding financial loss has been estimated to be in billions [1].
Therefore, scholars focused on novel lubricating materials to enhance the performance and
reduce the frequent replacement of mechanical components due to wear failure resulting
from inadequate lubrication. The concept of lubrication can be traced back to prehistoric
times when people used lubricants derived from plants and animals fat to reduce friction
during relative motion [2]. The stable and effective operation of a lubricant is essential to
augment the efficiency and lifetime of machinery. The demand for lubrication arises when
friction and wear are hard to regulate in designated applications. Unfortunately, liquid
lubricants have inferior tribological properties and cannot perform their intended tasks in
challenging environments [2–4]. In addition, equipment working under these conditions
demands stable and superior tribological properties, such as excellent anti-friction proper-
ties and remarkable wear resistance for improving the reliability and service life [5]. The
demand for developing novel lubricants generally arises in conditions typically encoun-
tered in aerospace [6–8], automotive, power generation, and machining [9–11] applications.
The challenging conditions include high temperature (HT), cryogenic temperature, vacuum
pressure, high load, high speed, and corrosive environments [12–16].

The inferior tribological properties of liquid lubricants can be mitigated by design-
ing a new type of lubricant that can provide superior tribological properties. Therefore,
scholars have relentlessly explored novel lubricant technologies and searched for potential
lubricating materials as a global cure for inadequate friction and wear [17]. The advent of
industrialization and escalating demands for efficient lubrication in diverse applications
has made researchers focus more on self-lubricating materials [18,19]. These classes of
materials are widely perceived to provide excellent tribological properties in extreme condi-
tions. Moreover, they can adapt themselves based on external conditions by changing their
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states, and provide the required tribological properties. The challenges in the diverse fields
of application have tempted researchers to develop self-lubricating materials in recent
years, increasing the number of research papers related to this field. This trend has mainly
been observed from the year 2011, which is represented in Figure 1.
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Furthermore, developing self-lubricating materials that provide superior lubricity
for severe conditions is demanding for scholars working in tribology. Dispersing solid
lubricants into various matrices, such as metal matrix, polymer matrix, ceramic matrix, and
intermetallic matrix, is a commonly employed method to develop potential self-lubricating
materials [18,20]. The solid lubricants that are predominantly used in self-lubricating
materials include soft metals [21–24], transition metal dichalcogenides (TMDs) [25–28],
metal oxides [29–32], fluorides [33–36], hexagonal boron nitride (h–BN) [37–40], and poly-
mers [41–43]. The solid lubricant phase associated with the self-lubricating material forms
a lubricious phase due to the tribo-chemical reaction and ultimately leads to a constant
lubricant supply to the interfaces. In addition to the superior lubricity, self-lubricating
materials must possess properties, such as high thermal conductivity, oxidation resistance,
chemical stability, and low shear strength over the entire working regime. Solid lubricants
can be applied on the machine component surface by simple methods, such as painting and
burnishing. Self-lubricating coatings can be prepared using magnetron sputtering [44,45],
laser cladding [46–48], thermal spraying [49], and vapor deposition techniques [50–52]. In
addition, powder metallurgy is a widely used technique to introduce solid lubricants into
various matrices to obtain self-lubricating materials [53–55].

There are a significant number of reviews on various lubricants for diverse industrial
applications. However, very few reviews explore the use of self-lubricating materials exclu-
sively dedicated to extreme condition applications. This review provides a comprehensive
discussion on the friction and wear behavior of self-lubricating materials for challenging
environments. Section 2 addresses the dispersing of solid lubricants in various matrices,
such as metal, polymer, ceramic, and intermetallic matrices. In addition, the lubrication
mechanisms of self-lubricating materials under various challenging conditions were ex-
plored in detail. Finally, the applications and challenges of self-lubricating materials are
elucidated in Section 3.

2. Tribology of Solid Lubricants

Liquid lubricants are not capable of providing superior tribological properties in severe
environments. Therefore, solid lubricants were introduced to different matrices to enhance
the reliability and self-adaptability of the lubricating material, and are expected to provide
adequate lubrication. The primary reason for the superior lubrication properties of solid
lubricants is their ability to shear through the mating surface, and their lubricious behavior
can be correlated to their layered structure. For example, solid lubricants, such as TMDs,
h–BN, and graphite, possess unique lamellar structures. Therefore, these solid lubricants
are widely employed as a potential reinforcement phase in self-lubricating composites, and
as a coating in MMA working in challenging conditions [56]. Under the action of external
force, these layers align parallel to the direction of force and slide over each other, reducing
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the friction between surfaces during relative motion. The following section explains the
tribological behavior and properties of solid lubricants dispersed in various matrices to
provide superior lubricity in extreme environments. Figure 2 represents the typical solid
lubricants used for self-lubricating materials in challenging environments. Table 1 indicates
the applied ranges we considered in this study based on the available literature.
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Figure 2. Typical solid lubricants.

Table 1. The applied range of extreme conditions.

Conditions Lower Limit Upper Limit References

Temperature −269 ◦C 1000 ◦C [57]

Pressure 0.1 MPa 12 MPa [58,59]

Humidity 10% 70% [27]

Velocity 0.1 m/s 3 m/s [59,60]

Load 1 N 100 N [61,62]

2.1. Soft Metals

Soft metals contain multiple slip planes and exhibit unique characteristics of low
CoF over broad working temperatures [63]. These characteristics are due to the inherent
properties possessed by soft metals, such as low surface roughness and high viscosity.
For example, Ag, Sn, Au, Pb, In, Pt, etc., are considered soft metals. In soft metals, the
frictional heat developed during sliding destroys lattice defects, such as dislocations and
vacancies [12]. The destruction of lattice defects leads to improper work hardening, and
this mechanism is responsible for providing superior lubricity in extreme conditions. Silver
is the most commonly used solid lubricant among soft metals as a reinforcement in the
matrix, and silver has a high diffusion coefficient. The high diffusion coefficient helps the
easy formation of the lubrication film. Thus, it provides remarkable tribological properties.
Scholars conducted tribological testing under different testing conditions with silver as the
reinforcement in intermetallic matrix, ceramic matrix, and polymer matrix self-lubricating
materials. They observed that different compounds at various temperatures give superior
lubricity and low wear rate. Figure 3 shows the stable operating temperature range of
various solid lubricants.
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Wang et al. [24] performed tribological studies on three different samples named
NA (90Ni3Al–10Ag), MA10 (71.57Ni–7.29Al–4.71Cr–6.32Mo–0.12Zr–0.005B–10Ag) and
MA20 (63.62Ni–6.48Al–4.18Cr–5.62Mo–0.10Zr–0.005B–20Ag) from room temperature (RT)
to 900 ◦C. The authors revealed that between RT and 400 ◦C, the presence of silver in the
matrix provided the lubricating effect. In addition, the authors reported that an MA20
alloy showed superior self-lubricating performance over a broad temperature regime.
The usage of 20 wt. % Ag in the Ni3Al matrix provided a CoF of 0.2 and wear rate of
1 × 10−5 mm3/Nm to 2 × 10−5 mm3/Nm between 800 ◦C and 900 ◦C. The lubrication
mechanism and CoF variation over a broad temperature regime for MA and NA alloy is
shown in Figure 4. The Ag2MoO4 and NiO film formed at HT prevented the direct contact
of tribo pairs and provided improved tribological properties in MA alloys. On the other
hand, the Ag2O and NiO glaze film formed on the NA alloy has inferior HT tribological
properties compared to the Ag2MoO4 and NiO film formed in MA alloys. Scholars reported
that Ag2MoO4 possesses a lamellar structure with weak bonding between oxygen and
silver, which can shear easily at HT and provide enhanced tribological properties [64].
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Liu et al. [65] studied the self-lubricating mechanism of M50 bearings used in avi-
ation industries under high load and HT conditions. In this analysis, the researchers
developed a micro-dimple structure on M50 steel dispersed with multiple lubricants. The
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authors considered two sets of samples, MM-S (M50–50Sn40Ag10Cu) and MM-ST (M50–
50Sn40Ag10Cu–TiO2). The authors revealed that micro-dimple structures filled with M50
steel have a self-adaptive lubrication ability. Furthermore, the titanium dioxide nanoparti-
cles played a significant role above 12 N. In contrast, Sn, Ag, and Cu played a pivotal role
below 12 N. The addition of TiO2 nanoparticles imparted enhanced wear resistance and
low friction properties. The self-lubricating mechanism of the M50 steel matrix dispersed
with multiple solid lubricants is represented in Figure 5.
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(a) Sn, Ag, Cu/TiO2 removed from micro-dimples, (b) Slip behavior of TiO2 particles. Reproduced
with permission from [65]. Copyright Elsevier, 2021.

With increases in temperature, the Sn, Ag, Cu, and TiO2 come out of the micro-
dimples, and the wear debris that forms leads to the formation of a lubrication structure
due to friction. This lubrication structure is made of a lubrication layer and a compaction
layer. The compaction layer formed on the subsurface supports the lubrication layer. The
lubricating layer is formed on the surface rich in Sn, Ag, and Cu, shown in Figure 5a. Under
heavy loads, the lubrication layer breaks down in MM-S, and the tribological properties
deteriorate. When the sample is subjected to more than 12 N load, the effect of TiO2 particles
in the micro-dimples is prominent. TiO2 nanoparticles are enriched in the lubrication layer,
and the high strength of these nanoparticles prevents the rupture of the lubrication layer
on the worn surface, as is represented in Figure 5b.

Shi et al. [22] conducted tribological testing on a TiAl matrix reinforced with 0 wt. %,
5 wt. %, 10 wt. %, and 15 wt. % silver, respectively named T1, T2, T3, and T4. The
tribological testing was performed at RT and temperatures ranging from 200 ◦C to 800 ◦C.
They summarized that silver provides lubrication in the moderate temperature range.
Ti2AlC, silver oxides, titanium oxides, and silicon oxides provide a superior lubricating
effect at HT, and Al2O3 acts as the wear-resistant phase. T1 and T3 samples showed
higher CoF and wear rates with the rise in temperature due to the existing tribo-film
thickness. The increased thickness of the tribo-film eventually leads to fragmentation
and further clogging between the surfaces. Among all the tested samples, T3 exhibited
better self-lubrication characteristics. The observed CoF and wear rate with the rise in
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temperature from RT to 800 ◦C for T3 samples were 0.26–0.43 and 1.56 × 10−4 mm3/Nm–
3.26 × 10−4 mm3/Nm, respectively. The authors summarized that the CoF and wear rate
for a TiAl matrix containing silver is less than that of the base alloy. Shen et al. [66]
conducted HT tribological studies on TiAl composites containing Ag and V2O5 nanowires.
The authors showed that the TiAl matrix dispersed with 5 wt. % Ag and 1.5 wt. % V2O5
nanowires have excellent tribological properties at HT due to continuity in the lubrication
film and the synergic effect of Ag and V2O5. The wear mechanism of TiAl–5Ag–1.5V2O5
from 300 ◦C to 600 ◦C tested against Si3N4 is represented in Figure 6.
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At 300 ◦C, less Ag and V2O5 is squeezed from the matrix, leading to the formation of
a very minute film on the worn surface, represented in Figure 6a. When the temperature
rises to 450 ◦C, a thick and continuous lubricating film is observed on the worn surface. In
this case, the greater amount of V2O5 homogenously distributed over the film provides the
shear strength and prevents the plastic flow of Ag, as shown in Figure 6b. The lowest CoF
and wear rate was reported at 450 ◦C. When the temperature rises to 650 ◦C, V2O5 gets
softened, and quickly forms wear debris, and it can easily detach from the worn surface.
It is observed that there was no V2O5 present in the worn track. A significant amount of
Ag squeezed from the wear track helps form the lubricating film at this temperature. The
formed lubricating film consists of Ag and a high amount of V2O5, providing low friction
and low wear, as shown in Figure 6c. Table 2 represents the various solid lubricants in
intermetallic matrixes and their corresponding behaviors under various extreme conditions.

In summary, soft metals contain multiple slip planes, which prevent work hardening
during relative motion. Among soft metals, silver is most widely adopted for use with self-
lubricating materials for challenging environments. This is attributed to its better oxidation
resistance and high thermal conductivity, which helps the easy dissipation of frictional heat
during relative motion. The primary mechanism of self-lubrication for silver is the high
diffusion and easy formation of the tribo layer at the interface. As a result, silver is capable
of providing superior lubrication properties below 500 ◦C. In addition, 5 wt. % to 25 wt. %
silver additions are beneficial to obtain superior tribological properties. On the other hand,
a silver addition beyond 30 wt. % in the matrix leads to inferior tribological properties.
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Table 2. Solid lubricants in the intermetallic matrix and their extreme condition behaviors.

Matrix/Alloy Lubricants Processing Route Test Condition/
Counter Body Observation

Ni3Al
[24] 10 wt. % and 20 wt. % Ag

High-energy ball milling
(8 h) followed by vacuum
hot press sintering
at 900 ◦C (15 min, 35 MPa)

Ball-on-disk at HT; load
10 N; speed
360 r/min/Si3N4

• Ag provides lubricity between RT
and 400 ◦C

• Ag2MoO4 and NiO provides
lubricity between 800 ◦C
and 900 ◦C

• Silver film and oxide layers impart
a synergistic effect that provides
continuous lubricity over a broad
range of temperatures.

Ni3Al
[53] Ag–Mo, and BaF2/CaF2

Vacuum hot press
sintering at 1100 ◦C
(30 min, 30 MPa)

Ball-on-disk at HT; load
20 N; sliding speed
0.20 m/s/Si3N4

• Low CoF over 25 ◦C to 1000 ◦C
• Ag provides a lubrication effect

below 400 ◦C
• BaF2/CaF2 provided the

lubrication effect from 400 ◦C
to 800 ◦C

• Molybdates provide superior
lubrication above 800 ◦C

Ni3Al
[54] WS2, Ag, and h–BN

High-energy ball milling
followed by
sintering at 1150 ◦C
(6 min, 30 MPa) in pure Ar

Ball-on-disk at HT;
Load 10 N; sliding velocity
0.234 m/s/Si3N4

• At 600 ◦C, the lowest friction and
wear were reported

• Ag and WS2 provided
self-lubrication at low temperature,
whereas h–BN at HT

Ni3Al
[55] BaF2–CaF –Ag–Cr Hot press sintering at

900 ◦C (15 min, 35 MPa)

Ball-on-disk at HT;
Load 10 N; sliding velocity
0.188 m/s/Si3N4

• Low CoF and wear rate observed
for broad temperature range

• The synergistic effect of Ag,
chromates, and fluorides observed
at HT

Ni3Al
[67]

BaF2–CaF2–Ag–Cr
(Cr varied from 10 wt. %
to 25 wt. %)

High-energy ball milling
followed by hot press
sintering at 900 ◦C
(15 min, 35 MPa)

Ball-on-disk-at HT;
Load 20 N; sliding velocity
0.19 m/s/Si3N4

• Lowest CoF and wear rate
observed for Ni3Al matrix with
20 wt. % Cr over broad
temperature range

• At 800 ◦C, the lowest CoF and wear
rate was observed

• 20 wt. % Cr addition is
recommended for
excellent lubricity

Ni3Al
[68] Ag, BaCrO4, BaMoO4

Ball milling followed by
hot press sintering at
1100 ◦C (15 min, 35 MPa)
powders again heated to
1200 ◦C for 20 min

Ball-on-disk-at HT; load
20 N; sliding velocity
0.19 m/s/Si3N4

• Ag–BaCrO4 combination provides
continuous lubrication from RT
to 800 ◦C

• For the whole temperature range,
the CoF observed from 0.29 to 0.38

• The low CoF is because of the
combined effect of Ag BaCrO4
and BaMoO4

TiAl
[69] 10 wt. % Ag Spark plasma

sintering (SPS)
Ball-on-disk-at HT; load
12 N; speed 0.8 m/s/Si3N4

• The primary wear mechanism was
plowing from 0–30 min

• At 450 ◦C, low CoF and wear rates
were observed
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Table 2. Cont.

Matrix/Alloy Lubricants Processing Route Test Condition/
Counter Body Observation

TiAl
[22]

0 wt. %, 5 wt. %, 10 wt. %,
15 wt. % Ag

High-energy ball milling
followed by
sintering at 1100 ◦C
(10 min, 30 MPa) in
pure Ar

Ball-on-disk-at HT; load
10 N; speed
0.23 m/s/Si3N4

• The presence of silver reduced CoF
and wear

• RT to 800 ◦C showed excellent
tribological properties due to Ag
(moderate temperature), Ti2AlC,
and oxides at HT

• 15 wt. % Ag showed improved
self-lubricating behavior

TiAl
[66]

5 wt. % Ag and 0.5 wt. %,
1.5 wt. %, and 2.5 wt. %
V2O5 nanowires

Vibration milling
followed by
SPS at 1150 ◦C (6 min,
30 MPa) in Ar

Ball-on-disk at HT; load
20 N; sliding velocity
0.35 m/s/Al2O3

• Improved tribological results were
observed because of the
development of the continuous film

• In the lubrication film, Ag provides
superior lubrication while V2O5
nanowires provide shear strength

• The combined effect of Ag and
V2O5 played a significant role at
450 ◦C, and the observed CoF
is 0.19

TiAl
[70] Ag and Ti3SiC2

High-energy ball milling
followed by
SPS at 1100 ◦C (10 min,
35 MPa) in pure Ar

Ball on-disk at HT;
Load 10 N; sliding velocity
0.23 m/s/Si3N4

• Silver provided a special
lubricating effect between RT
and 400 ◦C

• Ti3SiC2 oxidation reaction forms
tribo layer on the worn surface at
600–800 ◦C, which provides
superior lubrication

TiAl
[71]

12 wt. % Ag and TiB2
varied between 0 wt. %
to 15 wt. %

High-energy ball-milling
followed by
SPS at 1050 ◦C (10 min,
35 MPa) in pure Ar

Pin-on-disk-at HT; load
12 N; sliding velocity
0.3 m/s/Si3N4

• The synergistic effect of Ag and
TiB2 provided enhanced lubrication
properties at elevated temperatures

• TiB2 played the dominant role of
lubrication above 600 ◦C compared
to Ag

NiAl
[72]

MoS2, WS2, Ti3SiC2,
and PbO

High-energy ball-milling
followed by SPS at
1100 ◦C (5 min, 35 MPa) in
pure Ar

Pin-on-disk at HT;
Load 10 N; sliding velocity
0.3 m/s/Si3N4

• MoS2 played a dominant role in
self-lubrication at low and
intermediate temperatures

• Ti3SiC2 provided superior
self-lubrication at high temperature

• The combined effect of Ti3SiC2 and
MoS2 showed

2.2. Transition Metal Dichalcogenides (TMD)

The general representation of these classes of compounds is MX2. The M can be Mo or
W, and X can be S, Se, or Te. The most commonly used TMDs are molybdenum disulfide
(MoS2) and WS2. In MoS2, the Mo atom is at the center, sandwiched between two S atom
layers. MoS2 consists of a lamellar structure with thin atomic planes and is anisotropic [73].
The weak van der Waals forces between the interlayers help easy shearing in the <0001>
crystallographic direction and in parallel basal planes [26,74,75]. The easy sliding in the
<0001> direction leads to reduced CoF and improved wear resistance. In addition, the
strong ionic bond exit between sulfur and molybdenum offers significant resistance against
penetration of asperities. As a result, TMDs can quickly move in the direction of the applied
load, thereby resulting inS minimum friction. Researchers reported that MoS2 is highly
susceptible in a moist environment. Therefore, researchers adopted different strategies for
enhancing the tribological performance of MoS2 in a humid environment. The adopted
strategies include multilayer films and various doping elements [76–78]. Scholars observed
that MoS2–Ti film and MoS2–Pb film possess enhanced friction and wear properties [79].
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However, when the MoS2–Ti film was tested under a strong vacuum, it showed inferior
tribological properties. Zhao et al. [27] studied the self-adaptive behavior of the MoS2–Pb–
Ti film used for space applications. The authors summarized that the introduction of Pb
and Ti improved the tribological properties of a MoS2–Pb–Ti film tested in vacuum and air
at different relative humidity values (RH). The variations in CoF and wear rate for MoS2
and different films coated on MoS2 tested in a vacuum are shown in Figure 7.
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The MoS2–Pb–Ti film tested in vacuum showed low friction and low wear properties
because of the improvement in elastic modulus, transfer layer, and dominant contact
interfaces of MoS2, whereas in humid air, the sacrificial effect of Pb and Ti hindered the
attack of O2 and H2O. The MoS2–Pb–Ti film showed a lower and more stable CoF compared
to other films on MoS2. The reported wear rate for MoS2 is 8.8 × 10−7 mm3/Nm, which is
the highest among all the other films. However, MoS2–Pb–Ti showed a reduced wear rate
compared to other films. The CoF and wear rates for MoS2 and various films of Ti, Pb, and
Pb–Ti on MoS2 at various RH values are represented in Figure 8. Upon deeper examination,
it is clear that the CoF for MoS2 film increases to a higher value with heavy fluctuation
when RH increases from 10% to 70% (Figure 8a). The MoS2–Ti film did not show much
variation in CoF with an increase in RH, as shown in Figure 8b. However, the MoS2–Pb
film showed a CoF of 0.03 at RH 10%, which jumped to 0.19 at RH 70% (Figure 8c). The
MoS2–Pb–Ti showed fluctuations at high humidity values but similar CoF values to the
MoS2–Ti film (Figure 8d).

The combination of MoS2, Pb, and Ti gives the best tribological performance compared
to stand-alone MoS2 and a combination of MoS2 with Ti or Pb when tested in a vacuum
and in the air in the humidity range 10–70%.

Dunckle et al. [14] conducted friction studies on MoS2 + Ti films under cryogenic
vacuum conditions. They summarized that MoS2 + Ti films could retain their tribological
performance with low wear when subjected to thermal cycling from RT to cryogenic
temperature under ultra-high vacuum conditions. They also revealed that MoS2-based
coatings are an effective lubrication provider in a vacuum in the cryogenic environment.
Liu et al. [80] studied the friction and wear properties of M50 steel-based self-lubricating
composites containing 5 wt. % MoS2 tested from 150 ◦C to 450 ◦C. The tribological test
conditions included a ball-on-disk HT tribometer with a load of 20 N and a sliding speed
of 0.2 m/s against Si3N4. They summarized the excellent lubrication performance at higher
temperatures because of the enriched presence of MoS2 and FeS in the film, and they
reported that above 250 ◦C, the regeneration of FeS provided significant stability to the film
up to 450 ◦C. The wear mechanism of M50 steel with 5 wt. % MoS2 from 150 ◦C to 450 ◦C
is represented in Figure 9. The authors revealed that a lubricating structure is absent at low
temperatures, and on the worn surface, they observed small amounts of MoS2 and FeS, as
shown in Figure 9a.
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Under the external load from a Si3N4 counter material, the subsurface of the M50
steel dispersed with 5 wt. % MoS2 when subjected to compaction, and the compacted
layer formed at 250 ◦C. At the same time, the MoS2 and FeS from this layer were squeezed
out slowly to form a lubricating film. The formed film was not adequate to cover the
whole friction surface, and hence at 250 ◦C, inferior tribological properties were observed
as represented in Figure 9b. At 350 ◦C, enhanced lubrication properties were observed
because of the presence of continuous lubrication film. The lubricating film possesses the
synergistic effects of the lubrication properties of MoS2 and the plastic flow of FeS, as shown
in Figure 9c. At 450 ◦C, the authors observed partial damage of the lubrication structure, the
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oxidation of MoS2 to MoO3, and the reduced strength of the compaction layer, as shown in
Figure 9d, which eventually led to the deterioration of the superior tribological properties.
The decomposition of FeS explains the partial existence of the lubricating film. The author’s
design reduces friction and wear properties for M50 steels dispersed with 5 wt. % MoS2
bearing steels compared to pure M50 at 450 ◦C. WS2 is another popular TMD with a layered
structure that prevents the friction derived from the contact of surfaces, which it converts
into a relative slip of the molecular layer under external load. Wu et al. [81] studied the dry
sliding characteristics of a Ag–Cu-based composite containing 8 wt. % to 24 wt. % WS2
tested at three different conditions: vacuum, dry nitrogen, and humid air. The tribological
test was conducted on a pin-on-disc tester with a sliding velocity of 1 m/s and a load of 5 N,
and the counter body was silver, having a hardness of 120 on the Brinnel scale. The authors
observed high CoF and low wear rates in the humid air, but low CoF and low wear rates
for dry N2. Cao et al. [82] replaced graphite with WS2 in the copper matrix composite and
observed significant improvements in the mechanical properties and wear resistance when
graphite was returned, along with WS2, into the copper matrix. These superior properties
are due to interfacial chemical bonding between WS2 and the copper matrix. On the other
hand, the authors reported excess solid lubricant on the worn surfaces, a thicker film, and
a low depth of the plastic deformation zone in the subsurface.

In summary, the most widely used TMDs for self-lubrication purposes in challenging
environments are MoS2 and WS2. The lamellar structure helps to provide easy shearing
during relative motion and can provide superior lubrication characteristics up to 400 ◦C.
MoS2 cannot be used for self-lubrication in humid or moist environments because of the
oxidation reaction. The oxide formed possesses higher shear strength and gives rise to
inferior tribological properties. WS2 can withstand temperatures up to 800 ◦C and provide
superior lubrication properties even at cryogenic temperatures (−190 ◦C).

2.3. Metal Oxides

Lubricious oxides (binary and ternary) are thermally stable at HT and are considered
effective lubricants. However, they are not capable of providing lubrication at RT. It is
mentioned that with temperature increases, a change in tribological behavior is observed
for many oxides. These changes in tribological properties can be related to the brittle
to ductile transition when the temperature rises above a critical temperature. Therefore,
temperature plays a predominant role in oxide lubrication. Researchers have proposed
several theories regarding the lubricating mechanism of oxides. The crystal–chemical
model centered around the crystal chemistry of oxides has received wide attention [83].
This model primarily correlates the CoF and the ionic potential of lubricious oxides. The
author postulated that the higher the ionic potential of oxides, the lower the CoF. At
higher ionic potential, the cations are screened effectively by oxygen, and here, they did
not come across other cations during sliding, which helps with easy shearing. However,
there are controversies regarding the crystal–chemical model. Scholars have reported
that oxide lubrication is complicated because some oxides can plastically deform and
protect the interacting surfaces. Apart from that, many oxides break up during sliding and
lead to abrasive wear. The introduction of the polarizability approach solves the issues
associated with the crystal–chemical model. Under the polarizability approach, scholars
have correlated the binding energy and polarizability of ions [84].

Zhu et al. [29] studied the friction and wear properties at HT of NiAl alloy and
two different NiAl matrix-based composites containing metallic oxides, such as ZnO and
CuO, and metallic powders of Mo and Cr. The authors observed that the NiAl alloy
had significant wear and CoF at elevated temperatures. However, the NiAl composite
containing solid lubricant CuO showed a reduction in CoF when tested from RT to HT. The
reported value of CoF was about 1.0 at RT and 0.53 at 600 ◦C, with a low CoF of about 0.28
at 800 ◦C which rose to 0.3 at 1000 ◦C. The authors observed a smooth lubricating layer
composed of CuO and MoO3 at 800 ◦C, responsible for the self-lubricating behavior. The
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wear rate increased when the test temperature increased from RT to 600 ◦C, and showed a
reduced wear rate of 2.3 × 10−6 mm3/Nm at 800 ◦C.

The worn surface of the composite NiAl + 25.47 Cr + 10.07 Mo + 15.00 CuO is shown
in Figure 10. The authors observed that delaminated layers at RT and grooves were visible
at 600 ◦C, as represented in Figure 10a,b, respectively. A smooth lubricating glaze layer
was observed at 800 ◦C, indicated in Figure 10c. At 1000 ◦C, the formed lubricating glaze
layer was broken down, and grooves were observed, as in Figure 10d. Similar CoF and
wear rates were reported for the composite containing ZnO. The superior tribological
properties at 800 ◦C for ZnO-based composite are due to MoO3 and Cr2O3. At 1000 ◦C,
the ZnO-based composite showed enhanced wear resistance due to the ZnO layer on the
wear track. Essa et al. [85] studied the effect of WS2 and ZnO as solid lubricant additives
on the friction and wear behavior of M50 steel matrix composites from RT to 800 ◦C. The
authors considered four different composites named M (M50), MZ (M50 + 10%ZnO), MW
(M50 + 10%WS2), and MZW (M50 + 10%ZnO + 10%WS2).
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The tribological test was conducted on a pin-on-disc at HT with a sliding velocity of
0.2 m/s and applied load of 12 N, and the counter surface used was Si3N4. The authors
revealed that the individual addition of solid lubricants does not enhance tribological
properties. The authors summarized that WS2 helps to enhance lubricating properties
from RT to 400 ◦C, except at 200 ◦C. On the contrary, ZnO imparted superior tribological
properties in the temperature range of 600 to 800 ◦C. ZnO and WS2 synergistically reduced
CoF and wear rate over a broad range of temperatures. The CoF was reduced by 43.64%
for MZW compared to M at 800 ◦C. EDS analysis confirmed that ZnO and ZnWO4 were
responsible for reducing CoF at HT for the MZW composite. Wang et al. [86] studied the
friction and wear behavior of a NiAl composite coating containing nanostructured TiO2
and Bi2O3 from RT to 800 ◦C. The authors considered three composite coatings with a 3:2
ratio of TiO2 and Bi2O3. The authors observed a significant reduction in friction and wear
properties at 800 ◦C. The reduced CoF and wear rate are due to the combined effect of
Bi4Ti3O12 and NiTiO3. The composite coating with 30 wt. % TiO2 and Bi2O3 showed better
low-friction and low-wear properties for the whole test temperature. Li et al. [87] studied
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the tribological behavior of a Ni–Cr–Mo-based composite containing TiO2 and Bi2O3 as
solid lubricants. The authors considered four different composites (NC1, NC2, NC3, and
NC4) having different wt. % TiO2: Bi2O3 and NiCr (NC) alloy. In the experiment, they used
0 wt. %, 10 wt. %, 20 wt. %, and 30 wt. % metal oxides (TiO2/Bi2O3). The authors observed
lower CoF for NC3 and lower wear rate for NC4 containing 20 wt. % and 30 wt. % metallic
oxides. The friction and wear studies were conducted using a ball-on-disk at HT with a
load of 10 N and sliding speed of 200 r/min, against Al2O3 at 800 ◦C. The variations in CoF
and wear rate for different samples are indicated in Figure 11. Among the five samples,
NC showed the highest CoF and wear rate. However, NC1 showed a CoF of 0.36 and a
reduced wear rate compared to NC. This is because of the formation of the MoO3 layer at
HT. Increased additions of TiO2 and Bi2O3 directly affect the CoF and wear rate of NC2,
NC3, and NC4. The increased wt. % of metal oxide in the matrix for these specimens
reduced the CoF and wear rate, as shown in Figure 11a,b. NC4 showed a low CoF of 0.18.
NC4 has a higher wear rate than NC3, due to the shredding of oxide particles because of
friction. The remarkable tribological properties at HT are due to the formation of Bi4Ti3O12
on the worn surface. The authors observed a lower CoF for NC3 and a lower wear rate for
NC4 containing 20 wt. % and 30 wt. % metallic oxides. Table 3 represents a self-lubricating
composite based on ceramic matrix and its HT behavior.
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Table 3. Ceramic matrix-based self-lubricating composites and their HT behavior.

Matrix/Alloy Lubricants Processing Route Test Condition/Counter Body Observation

Al2O3
[88] Ag and CaF2 Powder metallurgy Pin-on-disk; load 10 N; sliding

velocity 0.168 m/s/Al2O3

• Between 300 ◦C and 650 ◦C,
Al2O3–50% CaF2 can provide
moderate friction and
wear rate

• Al2O3–20%Ag20%CaF2
showed a synergistic effect,
which provided reduced
wear and friction at HT

Al2O3
[89]

MoS2–BaSO4 doped
with BaMoO4

Ball milling followed
by SPS
(1150 ◦C, 25 MPa, 5 min)

Standard friction and wear
tester; linear stroke 1 mm; load
70 N/Al2O3

• Below 200 ◦C, MoS2
lubricating film provided
lower CoF

• BaSO4 and BaMoO4
provided low CoF and wear
rates at medium and HT

• The synergistic effect of
BaSO4 and BaMoO4, and
MoO3 provided a low CoF
at 800 ◦C
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Table 3. Cont.

Matrix/Alloy Lubricants Processing Route Test Condition/Counter Body Observation

SiC
[60] Mo and CaF2

Planetary ball milling
followed by hot press
sintering at (1300 ◦C,
35 MPa, 20 min)

Ball-on-disk at HT; load 5 N;
speed 0.10 m/s/SiC

• Enhanced tribological
properties at 1000 ◦C because
of the presence of CaMoO4
on the worn surface

• The composite 50 SiC-20
Mo-30 CaF2 at 1000 ◦C
showed the lowest CoF and
wear rate

ZrO2
[90] ZrO2, MoS2 and CaF2

High-energy ball milling
followed by hot
press sintering
(1200 ◦C, 42 MPa, 30 min)

Ball-on-disk at HT; load 10 N;
speed 0.2 m/s/SiC

• Tribological test performed
from 200 ◦C to 1000 ◦C

• Up to 400 ◦C, MoS2 showed
superior lubricity

• CaMoO4 with CaF2 formed
on the wear surface provides
lubricity between 800 and
1000 ◦C

ZrO2
[91] ZrO (Y2O3)–BaCrO4

Ball milling followed by
SPS (1500 ◦C, 40 MPa,
5–10 min)

Standard friction and wear
tester frequency 10 Hz; linear
stroke 1 mm; load
10–30 N/Al2O3

• BaCrO4 provided superior
lubricity at intermediate
and HT

• BaCrO4 fine layer observed
on the worn surface at HT
which reduces CoF and
wear rate

• Brittle fracture is the wear
mechanism at RT

In summary, both binary and ternary oxides can provide superior tribological proper-
ties at high temperatures. Among binary oxides, V2O5 provides a low CoF and wear rate
because of the low shear strength. A combination of metallic oxides can provide superior
tribological properties at extremely HT.

2.4. Fluorides

Fluorides exhibit significantly superior tribological properties above 500 ◦C, and
inferior properties at low temperatures and RT [92]. The primary reason for providing
potent lubricity at HT is the change in wear mechanism from brittle-to-ductile, while the
higher CoF and enhanced wear rate are due to the three-body abrasion. LiF, CaF2 BaF2,
CeF3 LaF3, etc., are some of the examples of commonly used fluorides. CaF2 is soft, poorly
soluble in water and thermally stable over a wide temperature, and its thermal expansion
closely matches that of many alloys [93,94]. These properties lead to the extensive use of
CaF2 in ferrous-based self-lubricating composites [95]. Han et al. [93] conducted friction
and wear studies on Fe–Mo composites containing different wt. % of CaF2 content. The
authors divulged that 8 wt. % of CaF2 in the Fe–10Mo matrix provides a superior reduction
in wear and CoF at RT and at 600 ◦C. The reported self-lubricating characteristics for
Fe–Mo–CaF2 at HT are due to the lubricious film consisting of CaMoO4 and CaF2. Similar
results were observed when 8 wt. % BaF2 was added as a solid lubricant Fe–Mo-based
self-lubricating composite [96]. Liu et al. [97] conducted friction and wear studies on
self-lubricating cemented carbides based on WC–12Co with 0 wt. % to 20 wt. % CaF2 as
the solid lubricant. The authors reported that the introduction of CaF2 caused a reduction
in CoF, reduced wear loss, and refined grains of WC. A lubricating film based on CaF2
was formed at the interfaces during tribological testing, which remarkably increased the
tribological properties. The authors reported that 20 wt. % CaF2 reduces the CoF by
22% and wear loss by 93%, compared to the friction and wear behavior of WC-12Co.
However, they also revealed that a greater addition of CaF2 leads to increased porosity,
which subsequently causes degradation in the mechanical properties. Figure 12 shows
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the volume loss and CoF at different volume percents of CaF2 during tribological testing.
It is evident that the addition of a higher volume percent CaF2 enhances the tribological
properties and plays a prominent role in the lubrication of cemented carbides.
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Zhen et al. [98] investigated the tribological characteristics of a Ni-based solid lubricat-
ing composite containing Ag, CaF2, and graphite and studied the effect of temperature on
these composites from 25 ◦C to 800 ◦C in vacuum conditions. The authors revealed that the
composite exhibited enhanced tribological properties over the broad temperature regime.
They reported that 2 wt. % of graphite content is optimum for enhanced tribological
properties in the temperature range of 25–400 ◦C, due to the formation of high-strength
carbides. Below 600 ◦C, the diffusion of Ag into the worn surface helps to reduce friction
and wear. Kong et al. [90] studied the HT tribological characteristics of ZrO2 matrix-based
self-lubricating composite containing MoS2 and CaF2 as solid lubricant additives. In this
experiment, they considered 10 wt. % MoS2 and 0–30 wt. % CaF2. The tribological testing
was performed from RT to 1000 ◦C. The authors revealed that the addition of 10 wt. % MoS2
and CaF2 to the ZrO2 matrix manifested low friction and low wear characteristics over the
broad temperature range. The reported CoF and wear rate at 1000 ◦C for ZrO2 (Y2O3)–10
MoS2–10 CaF2 was 0.27 and 1.54 × 10−5 mm3/Nm. The superior lubricating effect from
RT to 400 ◦C was provided by MoS2, whereas the combined effect of CaMoO4 and CaF2
provides remarkable tribological properties from 800 ◦C to 1000 ◦C. Cui et al. [99] studied
the HT self-lubricating characteristics of the CoCrW matrix with LaF3 and Ag as solid
lubricant additives. The test parameters include a load of 10 N, a sliding speed of 0.20 m/s,
Si3N4 as the counterpart, and a temperature from RT to 1000 ◦C using a ball-on-disk HT
tribometer. The authors reported enhanced tribological properties at HT because of the
combined effect of metal oxides, chromates, and LaF3. The reported wear mechanism at
HT was abrasive and oxidative wear.

In summary, fluorides can provide superior tribological properties above 500 ◦C
because of the brittle to ductile transition. However, at RT and temperatures below 500 ◦C,
fluorides are brittle and cannot perform the intended task of self-lubrication. The most
widely used fluorides for self-lubrication purposes are CaF2 and BaF2.

2.5. Hexagonal Boron Nitride (h–BN)

h–BN possesses a layered structure similar to TMDs, in which a strong covalent
bond holds each layer, whereas the bonding between interlayers is the Van der Walls
bond. These materials shear very quickly along the basal plane during external loading
because of the lamella structure, and provide superior lubricity and enhanced tribological
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properties [40,100,101]. The crystal structure of h–BN consists of hexagonal rings with
boron and nitrogen bonded at 120◦. Lamella slip along the basal plane is considered as
the prominent mechanism favoring superior lubricity [102,103]. Scholars have reported
that h–BN could enhance the tribological properties of ceramics and metals [38,104–106].
Chen et al. [100] conducted tribological experiments on the h–BN matrix-based composites
containing SiC with Al2O3 and Y2O3 as sintering additives on a rotating ball-on-disk HT
tribometer from RT to 900 ◦C. The following paramesters were selected for the tribological
study: sliding velocity of 0.094 m/s, a load of 10 N, a sliding radius of 5 mm, and a Si3N4
ball as the counterpart. They made three composites with 75, 70, and 50 vol. % of h–BN
named 75BSAY, 70BSAY, and 50BSAY, respectively. Figure 13 represents the CoF of the
three composites tested at different temperatures. Both 75BSAY and 70BSAY composites
showed an increase in CoF with temperature rise, and the maximum values of reported
CoF were 0.43 and 0.44, respectively, at 400 ◦C. The 70BSAY composite showed higher CoF
than 75BSAY at RT and 900 ◦C. However, the 50BSAY composite showed higher CoF at RT,
and with a rise in temperature, the CoF dropped down and reached 0.33 at 900 ◦C, which
is 38% less than CoF at RT. The authors mentioned that adding more h–BN in the matrix
can enhance the anti-friction behavior of the composites.
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Cao et al. [61] conducted friction and wear tests on pure h–BN and h–BN sintered
with CaB2O4 additive in atmospheric and water vapor environments from RT to 800 ◦C.
They made two sets of composites: one with pure h–BN and the other containing 10 wt. %
CaB2O4. The tribological testing was conducted on a ball-on-disk HT tribometer with the
following test parameters: a load of 1.5 N, a speed of 0.188 m/s for 10 min, and Si3N4
as the counterpart. The authors observed almost similar CoF at RT for both pure h–BN
and h–BN containing 10 wt. % CaB2O4 (0.18 and 0.19) tested in atmospheric conditions.
Both composites showed increased CoF with temperature increases, and at 400 ◦C, both
reported their highest CoF values of 0.58 and 0.51, respectively. The composite with
10 wt. % CaB2O4 showed a 14% reduction in CoF at 400 ◦C compared to pure h–BW. With
a further increase in test temperature to 800 ◦C, the pure h–BN and the h–BN containing
10 wt. % CaB2O4 showed reduced CoF values of 0.38 and 0.35, respectively. The increased
CoF with the rise in temperature from RT to 400 ◦C is attributed to the adhesion of h–BN on
the counter ball surface, whereas the reduced CoF at HT is due to the formation of molten
B2O3. However, the friction test conducted in the water vapor environment showed a
reduced CoF at RT. The reported CoF values for pure h–BN and h–BN containing 10 wt. %
CaB2O4 are 0.08 and 0.07, respectively. The reduced CoF is due to the formation of a water
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film at the interfaces under relative motion. An increase in test temperature to 400 ◦C for
both composites led to increase in CoF (0.25 and 0.23). However, these values are lower
compared to those of the composite tested under atmospheric conditions. The reduced CoF
was due to the reaction of water vapor with h–BN to form B2O3 and the further reaction of
B2O3 with water vapor to form H3BO3. The formed H3BO3 possessed a lamellar structure
that can shear very easily under external force, which reduced the CoF. At 800 ◦C, the
reported CoF values for pure h–BN and h–BN containing 10 wt. % CaB2O4 were 0.22 and
0.21, which are less than the CoF values observed when tribological testing was performed
under atmospheric conditions. Zhao et al. [107] studied the friction and wear behavior
of a nickel-based composite coating tested from 25 ◦C to 600 ◦C. The authors made three
different powder compositions, which were Ni60, Ni60 with h–BN coating, and Ni60 with
nano-Cu encapsulated with h–BN, represented as C1, C2, and C3. The friction and wear
studies were conducted on a high-temperature pin-on-disk setup with a load of 30 N and
speed of 50 rpm for 30 min using Al2O3 as the counter surface. The wear process during
the tribological testing is represented in Figure 14. The common wear mechanisms reported
for these coatings tested at different temperatures are abrasive and adhesive wear. The
process (Figure 14, 1–4) represents the abrasive wear mechanism, which occurred under
low-temperature tribological testing (25–200 ◦C). The strength of the coating was very high
at this temperature. Under the action of external load from the Al2O3 counter body, hard
particles detached from the coating. At this testing temperature, the detachment of the
wear debris from the worn surface is difficult, and thus the wear rate was low.
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Process 1,5,6 (Figure 14, sections 1, 5, 6) represents the mechanism of adhesive wear,
which occurs at high testing temperatures, and at these temperatures, the coating has low
strength. The Al2O3 counter body forcefully detaches the solid lubricant and matrix from
the coating and leads to wear debris formation. The formed wear debris gets attached
to the worn surface, and a glaze layer is formed. C1 underwent abrasive wear, and with
the addition of Cu and h–BN, C2 and C3 underwent micro-plowing wear. At 400 ◦C, a
combined lubricating effect from h–BN, Cr2O3, and NiO was observed on C1 and C2, and
the reported wear mechanism was a mixture of adhesive and abrasive wear. However, C3
showed adhesive wear because of CuO’s lubrication and the synergistic effects of other
lubricants. Delamination was observed on the worn surfaces C1, C2, and C3 at 600 ◦C
because of adhesive wear. Among all the coatings tested from 25 ◦C to 500 ◦C, C3 showed
low CoF and wear properties. The authors revealed that nano-Cu encapsulated with h–BN
increased the h–BN content in the coating, leading to enhanced wear resistance in the
temperature range of 25–600 ◦C. Among all the coatings tested from 25 ◦C to 500 ◦C, C3
showed low CoF and wear properties. This was predominantly due to the higher h–BN
content in the coating and the oxidation of copper to CuO.
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In summary, h–BN possesses a layered structure, and these materials can shear very
quickly along the basal plane during relative motion. h–BN possesses high thermal conduc-
tivity and oxidation resistance and is commonly used with metal matrix and ceramic matrix
for self-lubricating applications because it can provide excellent tribological properties at
HT conditions.

2.6. Polymers

Polymers are widely used in cryogenic environments because of their excellent tri-
bological properties. For example, the mechanical components present in satellites are
subjected to thermal cycling when the spacecraft is moving out of the Earth’s shadow in
low-earth orbit, where the temperature is in the cryogenic range [108]. Therefore, scholars
have investigated the use of polymers and self-lubricating polymer composites, especially
for cryogenic temperature applications [109–111]. Wang et al. [109] performed tribologi-
cal studies on polyimide (PI), polytetrafluoroethylene (PTFE), and polyetheretherketone
(PEEK) at cryogenic temperatures in a vacuum. They observed high hardness in all the
polymers in the cryogenic environment, which reduced the mating surface’s contact area.
This reduction in contact area leads to reduced CoF at cryogenic temperatures. In addition,
they reported a reduction in wear volume with the reduction in temperature, which is
attributed to reduced mobility. Figure 15 represents the CoF and wear rate for three dif-
ferent polymers at −50 ◦C in a vacuum. The figure shows that the CoF and wear rates of
polymers were lower for the 5 N than the 0.5 N load.
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Theiler et al. [111] conducted tribological studies on a PEEK composite made of carbon
fibers, MoS2, and graphite between −80 ◦C and 20 ◦C in a vacuum environment. The
authors revealed that MoS2-filled PEEK composite developed a smooth transfer film with
high MoS2 concentration in the surface at −80 ◦C. They also revealed that sliding velocity
significantly affects the tribological properties of PEEK-containing MoS2 solid lubricants.

Chang et al. [112] described the tribological properties of epoxy nanocomposite filled
with short carbon fiber (SCF), graphite, PTFE, and nano TiO2 particles. The authors
performed tribological testing using a pin-on-disk setup at different contact pressures
and sliding velocities. A fixed contact pressure of 1 MPa and different sliding velocities,
such as 0.5 m/s, 1 m/s, 1.5 m/s, and 2 m/s, were used for the first set of experiments.
Tribological testing with these parameters on epoxy nanocomposites without nano TiO2
particles showed a CoF of 0.45 at 0.5 m/s that rose to 1 when tested at 2 m/s. However, the
addition of 5 wt. % nano TiO2 led to a CoF of 0.3 at 0.5 m/s that rose to 0.4 at 2 m/s. In
the second case, the authors used a fixed sliding velocity of 1 m/s and different contact
pressures, such as 1 MPa, 2 MPa, 3 MPa, and 4 MPa. The authors observed a CoF of
0.35 at 1 MPa, which reduced to 0.25 at 4 MPa for the epoxy nanocomposite without
nano TiO2. The authors revealed that the highest wear resistance was observed at an
extreme pressure velocity (PV) factor of 12 MPa m/s, corresponding to 5 wt. % of nano
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TiO2 in the nanocomposite. Scholars also conducted tribological studies on PEEK and
PEI composites containing different additives, such as SCF, graphite, PTFE, nano TiO2
particles, and ZnS. They performed friction and wear studies at RT and HT using different
PV conditions [58,59]. The tribological test results are summarized in Table 4.

Table 4. Tribological properties of polymer composites under different PV conditions.

Composition PV Factors Temperature
(◦C ) CoF Specific Wear (10−6 mm3/Nm)

PEEK [58] 1 MPa, 1 m/s RT 0.51 10.54

SCF + graphite/PEEK
[58]

1 MPa; 1 m/s

RT

0.44 0.46
2 MPa; 1 m/s 0.35 1.04
4 MPa; 1 m/s 0.24 0.81
2 MPa; 2 m/s 0.28 1.12
1 MPa; 1 m/s

RT

0.41 0.53
2 MPa; 1 m/s 0.28 0.78
4 MPa; 1 m/s 0.23 5.76
2 MPa; 2 m/s 0.24 3.73

PEI [59] 1 MPa, 1 m/s RT 0.61 598.67

SCF + graphite/PEI
[59]

1 MPa; 1 m/s

RT

0.56 0.77
4 MPa; 1 m/s 0.35 1.14
8 MPa; 1 m/s 0.22 0.73
12 MPa; 1m/s 0.25 1.34
4 MPa; 2 m/s 0.30 2.17
4 MPa; 3 m/s 0.35 39.14

Nano-TiO2 + SCF + graphite/PEI
[59]

1 MPa; 1 m/s

RT

0.36 0.30
4 MPa; 1 m/s 0.27 2.99
8 MPa; 1 m/s 0.15 1.62
12 MPa; 1m/s 0.09 1.28
4 MPa; 2 m/s 0.16 1.12
4 MPa; 3 m/s 0.14 0.68

SCF + graphite/PEEK
[58]

1 MPa; 1 m/s 70 0.14 2.19
1 MPa; 1 m/s 150 0.46 11.01
4 MPa; 1 m/s 150 0.44 4.66
1 MPa; 2 m/s 150 0.54 10.03

ZnS + TiO2+ SCF +
graphite/PEEK

[58]

1 MPa; 1 m/s 70 0.08 1.04
1 MPa; 1 m/s 150 0.15 5.38
4 MPa; 1 m/s 150 0.12 3.5
1 MPa; 2 m/s 150 0.14 6.38

SCF + graphite/PEI
[58]

1 MPa; 1 m/s 70 0.27 4.35
1 MPa; 1 m/s 120 0.24 1.92
4 MPa; 1 m/s 120 0.29 2.94
1 MPa; 2 m/s 120 0.29 15.28

TiO2 + SCF + graphite/PEI
[58]

1 MPa; 1 m/s 70 0.09 1.74
1 MPa; 1 m/s 120 0.08 1.08
4 MPa; 1 m/s 120 0.1 1.56
1 MPa; 2 m/s 120 0.26 29.27

In summary, polymers are ideal solid lubricant additives for self-lubrication character-
istics in a cryogenic environment, and offer excellent tribological properties. Furthermore,
among polymers, PTFE provides lower CoF because of its specific structure.

2.7. Carbon

Carbon and carbon-based materials, such as graphite, graphene, diamond-like carbon
(DLC), single-walled carbon nanotubes, multi-walled carbon nanotubes, multi-layered
graphene, and graphene nanoplatelets (GNP), are used as solid lubricant additives in self-
lubricating materials for challenging environments [113–118]. Among these carbon-based
materials, graphene has gained tremendous attention due to its unique properties, such
as high chemical inertness, high thermal conductivity, low shear strength, and enhanced
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mechanical and thermal properties [119]. Graphene is a two-dimensional material capable
of providing low friction and wear properties, and is the fundamental building block of
graphite [120]. The superior tribological properties possessed by graphite can be correlated
to its layered structure, similar to MoS2, MoSe2, and WS2, which provides easy shearing
and reduces the friction between contact surfaces in relative motion [120]. Scholars have
demonstrated that graphene could be used in nano-scale or micro-scale systems to reduce
friction and wear properties [121,122]. Berman et al. [120] revealed the unique behavior of
graphene deposited on a steel surface when tested in dry and humid environments, and
the authors observed low friction and wear. Kasar et al. [123] mentioned that graphene’s
unique properties attract scholars to synthesize graphene-based self-lubricating nanocom-
posites for diverse applications in the automobile, aerospace, and chemical industries.
Kasar et al. [124] revealed that single-layer, multilayer, and functionalized graphene could
lead to reduced friction and wear rates when used as a solid lubricant additive in metal
and polymer matrix composites. They summarized that graphene-based metal matrix and
polymer matrix composites could be used for self-lubricating bearings. Zhai et al. [125]
conducted tribological studies on Ni3Al matrix self-lubricating composites (NMSC) and
Ni3Al matrix self-lubricating composites containing graphene nanoplatelets (NMSC-GNP),
and explained the wear mechanism. The friction and wear studies were conducted using a
ball-on-disk at HT with a load of 10 N and sliding speed of 0.2 m/s, from RT to 600 ◦C,
with Si3N4 as the counterpart. Figure 16 represents the CoF and wear rate of NMSC and
NMSC-GNP. The authors observed a CoF of 0.76 at RT for NMSC, which was reduced to
0.39 at 600 ◦C. NMSC−GNP exhibited a reduced CoF of 0.21–0.26 in the temperature range
of RT to 400 ◦C, without any fluctuation, as shown in Figure 16a. However, the authors
reported that at 600 ◦C, the CoF of NMSC−GNP increased to 0.36, close to NMSC (0.39).
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The observed wear rate for NMSC was 126.8 × 10−6 mm3/N/m at RT, which reduced
to 82.3 × 10−6 mm3/N/m at 400 ◦C. However, the reported wear rate for NMSCGNP was
5.3 × 10−6 mm3/N/m at RT, which reduced to 4.1 × 10−6 mm3/N/m at 400 ◦C, as shown
in Figure 16b. Thus, the observed wear rate at 400 ◦C for NMSC-GNP is 20 times less
than the corresponding wear rate for NMSC 400 ◦C. The wear mechanism of NMSC−GNP
is shown in Figure 17. GNPs were originally distributed uniformly in the Ni3Al matrix,
which is represented in Figure 17a. However, during the tribological testing, formation of
an ultrafine-grained region on the surface was observed. This is due to the simultaneous
effect of the grain refinement of GNPs and the form of wear debris containing brittle
particles of Si3N4 and friable particles of NMSC, as illustrated in Figure 17b. In addition to
that, slippage of the laminated sheets of GNP was observed on the worn surface, which
eventually led to the formation of GNP protective layer in Figure 17c. This protective layer
can reduce friction and wear rates.
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wt. % graphite provided the lowest wear and CoF. Huai et al. [62] developed a graphite-
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Wan et al. [126] conducted tribological testing on a high−entropy alloy (HEA)-based
composite and demonstrated the effects of the in situ formation of graphene on tribological
properties. The composite (HEA-G) was prepared using the SPS method with graphite
nanoplate (GP) as a reinforcement in the HEA matrix. The friction and wear studies
were conducted using a ball-on-plate tribometer in a reciprocating mode for 1800 cycles,
with a load ranging from 5 N to 100 N, a stroke length of 5 mm with various velocities,
and GCr15 steel ball as the counter material. Figure 18 shows the schematic of the self-
lubrication mechanism of the HEA-G composite and the formation of graphene. During
tribological testing, the frictional heat caused the exfoliation of GP and the further formation
of graphene. The formed graphene acts as a protective coating on the worn surface, leading
to less friction and a lower wear rate. In addition to that, the tribo induced fine particles,
graphene, and the fine oxide scale formed a non-continuous oxide on the worn surface. As
a result, the authors observed a significant reduction in CoF and wear rate below 30 N. The
superior tribological properties are attributed to the compound effect of the graphene and
oxide layer formed on the worn surface.
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Scholars have also adopted graphite as a reinforcement phase in metal, polymer, and
ceramic matrices to develop self-lubricating materials. Graphite has also received attention
for its self-lubricating and dry lubricating properties, which are attributed to the layered
structure [127–129]. The layered structure promotes easy sliding due to the weak Van der
Walls force between layers. It also possesses high thermal conductivity, which provides
superior tribological properties at HT [130]. Scholars reported that the effectiveness of
graphite is more pronounced in humid and air environments. Shirazi et al. [131] studied the
tribological behavior of aluminum, silicon carbide, and graphite hybrid nanocomposites in
atmospheric conditions and acidic solutions. They revealed that the addition of 2 wt. %
graphite provided the lowest wear and CoF. Huai et al. [62] developed a graphite-based
solid lubricant coating that significantly reduced CoF and wear rates tested in HT atmo-
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spheric conditions. The authors used unmodified graphite as a lubricant, amorphous SiO2
as the filler, and aluminum dihydrogen phosphate as a binder. The friction and wear
studies were conducted using a ball-on-disk at HT with a load of 100 N and sliding speeds
of 60 mm/s, 90 mm/s, and 120 mm/s, with Si3N4 as the counterpart. The tribological test
was performed at 700 ◦C, 800 ◦C, and 900 ◦C. The authors revealed that they observed
ultra-low CoF of 0.05 at 700 ◦C, 0.04 at 800 ◦C, and 0.07 at 900 ◦C. The authors reported
that even after tribological studies, they had not observed wear scarring on the substrate
surface because of the uniform coverage of the coating on the substrate. In addition to that,
SiO2 and aluminum dihydrogen phosphate protected the graphite coating at HT, which is
responsible for the superior lubricity.

In summary, carbon and carbon-based materials are promising materials for future
self-lubricating applications in extreme conditions. These materials show superior lubricity,
particularly under humid conditions. Hence these materials are ideal for humid environments.

3. Applications and Challenges

Self-lubricating materials are an advanced class of materials with diverse composi-
tions, making them capable of performing the intended task with potential lubricating
effects, especially in challenging conditions. Extreme condition lubrication is one of the
potential issues faced by tribologists over the past two decades. Self-lubricants were ini-
tially introduced to enhance the efficiency and lifetime of bearings. During the early 1990s,
these materials were extensively used with various mechanical components exclusively
designed to operate under severe conditions to provide low friction and low wear [132].
Scholars incorporated soft metals into various matrices to give rise to self-lubricating
characteristics in challenging conditions. The self-lubricating characteristics of soft metals
can be attributed to the multiple slip planes, which prevent work hardening during rela-
tive motion. Usually, silver-based self-lubricating materials can provide superior friction
and wear properties below 500 ◦C. The low shear stress and high diffusion coefficient of
Ag at its interfaces provide excellent lubricity over a broad temperature range. Scholars
have reported that introducing Ag and multiple solid lubricants can enhance tribologi-
cal characteristics above 500 ◦C [64,133]. TiAl alloys are widely used for aerospace and
automotive applications because of their excellent mechanical properties; however, they
have inferior tribological properties. Scholars have reported that Ag addition to the TiAl
intermetallic matrix enhances the tribological properties at elevated temperatures [22]. Soft
metals are used in various mechanical components, such as mechanical seals, fasteners,
rolling contact bearings, and sliding contact bearings, to provide superior lubricating
properties. Among TMDs, MoS2 is considered a prospective solid lubricant capable of
providing adequate lubrication over a broad temperature regime, making it specifically
attractive in the aerospace, automobile, and forming industries [134]. MoS2 possesses
outstanding friction and wear properties, which makes it a global solution for space ap-
plications. MoS2-based self-lubricating composites are widely used for high-vacuum and
high-temperature applications. These self-lubricating composites can provide superior
tribological properties, especially in the aerospace (vacuum and at HT), automotive, and
forming industries (extreme pressure and temperature). The low friction and low wear
properties offered by MoS2 depend on the external environment. The potential lubrication
characteristics of MoS2 exist only in oxygen-free environments, and it loses its lubricating
characteristics in humid and atmospheric conditions. The reported CoF for MoS2 in a
dry or inert atmosphere is 0.002–0.05, escalating in a humid environment to 0.2 [57,135].
An exponential growth of the use of MoS2-based self-lubricating materials in electronic
industries and battery applications has been observed in the last decade. Scholars have
reported that MoS2 could be used for adaptive lubrication in M50 steel for aircraft bear-
ing applications [80]. WS2 can function over a broad range of temperatures, including
cryogenic (−190 ◦C) to 450 ◦C in air, and in extreme temperatures up to 800 ◦C [136].
Metallic oxide-based self-lubricants can provide remarkable tribological properties above
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500 ◦C [137,138]. Researchers used a combination of metallic oxides and revealed that they
could provide low friction and low wear characteristics at HT [139,140].

Fluoride-based solid lubricants, such as BaF2 and CaF2 dispersed in various matrices
using powder metallurgy or as a coating in composites, are extensively employed in HT
applications. Fluorides subjected to softening and with a smooth layer are formed at the
interfaces when exposed to a temperature higher than 1000 ◦C. Some tri-fluorides also
exhibit similar HT lubrication properties because of their chemical stability. Fluoride-
based solid lubricants can be used with various matrices to provide potent lubrication
properties in challenging environments. In addition, fluoride lubricants can be used in
industrial applications that require self-lubrication, such as cutting tools [141], wire drawing
dies [142], casting molds [143], sealing materials, and bearings [144]. They can also be
used as anti-friction additives in greases and oils. h–BN can provide superior lubrication
in dry and vacuum conditions [25]. It is predominantly used as a sealing coating in
aircraft engines [145] PTFE-based piston rings are widely employed in reciprocating gas
compressors because of their excellent self-lubrication capability and ability to form good
sealing conditions [146]. PTFE-based thermoplastics are used for marine applications
because of their excellent self-lubricating ability [147].

Jianxin et al. [148] developed a sintered ceramic cutting tool containing CaF2 for
dry cutting and explained the self-lubrication behavior. They performed dry cutting on
hardened steel and cast iron with Al2O3/TiC, and Al2O3/TiC with CaF2, at different cutting
speeds. The reported CoF at the tool–chip interface for dry cutting with hardened steel
was 0.65 at 60 mm/min, which rose linearly to approximately 0.75 at 80 mm/min. When
CaF2 was added into the ceramic matrix, the CoF was reduced to 0.58 at 60 mm/min,
and then declined linearly to 0.45 at 80 mm/min. When Al2O3/TiC was used for the dry
cutting of cast iron, the reported CoF was approximately 0.62 at 60 mm/min, which rose
linearly to approximately 0.7 at 80 mm/min. However, when the authors used CaF2, they
observed a reduced CoF of approximately 0.64 at 60 mm/min, which declined linearly to
approximately 0.56 at 80 mm/min. Thus, the enhanced tribological properties are attributed
to the presence of CaF2 in the ceramic matrix, forming a self-lubrication film at the tool
and chip interface. Niste et al. [149] studied the self-lubricating behavior of aluminum
reinforced with WS2 composite used as a piston in automotive engines, and explained the
mechanism of self-lubrication. They adopted engine operating test conditions. They used
two different types of WS2: a flat sheet (2H–WS2) and an inorganic fullerene (IF–WS2). An
aluminum composite based on IF–WS2 showed a CoF of 0.15, and an aluminum composite
based on 2H–WS2 showed a CoF of 0.13, compared to the 0.29 for pure aluminum tested at
25 ◦C. When the tribological test was performed at 100 ◦C, the observed CoF values were
0.16 and 0.12 for aluminum composites based on IF–WS2 and 2H–WS2, respectively, for the
first twenty minutes. The reduced CoF for 2H–WS2 and IF–WS2 in the aluminum-based
composite is because of the exfoliation of the layered structure. The authors observed
significant wear resistance at HT attributed to the chemical reaction of WS2 with the
aluminum matrix to form a chemical tribo-film. Yanar et al. [150] studied the tribological
behavior of low-steel composite materials containing h–BN, used as a brake pad material
for railway applications. In this study, the authors used an organic brake pad with 1 wt. %,
1.5 wt. %, and 2 wt. % of h–BN. The authors observed a significant reduction in CoF when
the disk surface temperature was more than 250 ◦C. The authors recommended 1.5 wt. %
of h–BN for a stable CoF under extreme brake conditions. Yan et al. [143] conducted
tribological studies on self-lubricating composite coatings containing CaF2 in the Co-based
alloy used for casting mold applications. The scholars considered four different coatings,
out of which two were dispersed with 10 wt. % and 20 wt. % of CaF2. The authors
observed CoF values of 0.31 and 0.24 for the coating that did not contain CaF2. However,
the coatings containing 10 wt. % and 20 wt. % of CaF2 possessed low CoF values of 0.19
and 0.22, respectively. The authors revealed that coatings containing 10 wt. % and 20 wt. %
of CaF2 showed better wear resistance than other coatings. The enhanced tribological
properties were due to the easy shearing of CaF2 along the basal plane during tribological
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testing. Researchers from the NASA Glenn research center developed different coatings,
such as PS100, PS200, PS300, and PS400, for extreme condition applications. PS100 is
a nickel–chromium-based plasma coating containing glass as a binder, and silver and
fluorides are the solid lubricants. This coating has very low CoF over a broad range of
temperatures and has low wear resistance. However, these coatings can be effectively
applied to compressor/turbine shaft seal applications. PS200 is nickel–cobalt-based plasma
coating, containing chromium carbide as a binder, and silver and fluorides are the solid
lubricants. This coating has applications in the cylinder walls of Stirling engines [151].
The scholars showed that PS212 (a coating in the 200 series) could be used for foil gas
bearing applications [144]. PS300 is a nickel–chromium-based plasma coating containing
chromium oxide as a binder, and silver and fluorides are the solid lubricants. Researchers
showed that PS304 (a coating in the 300 series) could provide low friction and a low
wear rate at HT up to 650 ◦C [152]. PS304 is an 80% nickel/20% chromium matrix that
contains solid lubricants Ag and CaF2/BaF2. Nickel and chromium offer HT oxidation
resistance. For strength enhancement, chromium oxide particles were used. In addition,
Ag and CaF2/BaF2 were used to provide lubrication properties at different temperature
ranges. Wang et al. [153] mentioned the wearing and galling damage of lift rods of a
steam turbine governor subjected to metal–metal interaction at 540 ◦C. The researchers
applied a PS304 coating on the lift rods, and they observed that the coating on the rods
was intact even after 8500 h of operation. Upon a closer examination of the coated lift
rods, the authors observed the formation of a lubricious glaze film that contained Cr2O3,
Ag, and CaF2/BaF2. This lubricious film prevented the galling damage of the lift rods.
PS400 is a nickel–molybdenum aluminum matrix containing chromium oxide as a binder,
while Ag and CaF2/BaF2 are the solid lubricants. This coating is excellent for HT wear
applications, and it is used for hot foil gas bearing applications [154]. Radil et al. [155]
performed tribological testing on PS400 from 260 ◦C to 927 ◦C. They observed a low CoF of
0.37 to 0.84 when tested below 927 ◦C, and reported that the coating was dimensionally
unstable at 927 ◦C.

Self-lubrication is the predominant method for providing superior tribological proper-
ties in extreme condition applications. However, there are certain circumstances in which
solid lubricants cannot perform their intended self-lubricating functions in certain con-
ditions. Among the listed solid lubricants, soft metals showed softening at HT, and they
became extruded from the interfaces during relative motion, limiting their self-lubricating
properties. Scholars have reported that a thicker silver coating on the substrate could lead
to excessive plastic deformation, resulting in increased friction. Silver diffusion at HT is
another issue, and Torres et al. [156] revealed a reduction in silver at HT in self-lubricating
claddings composed of silver and MoS2. Gao et al. [157] reported the diffusion of silver
to the interface at a temperature higher than 300 ◦C, leading to an increased wear rate
and the subsequent collapse of the coating. The diffusion can be mitigated by using a
barrier against the silver migration or multilayer coating [158]. Oxidation experiments
conducted at 600 ◦C for 100 h showed no diffusion of silver at the interface. It has been
observed that with over 30 wt. % Ag addition in the coating or in the matrix, the significant
Ag content in wear debris causes instability in the lubricating film [7,12]. Researchers
have reported that MoS2 is highly susceptible to moist environments. The MoS2-based
composite or coating gets oxidized in a humid or moist atmosphere, leading to inferior
tribological properties [57]. The unsaturated bonds of MoS2 get exposed to H2O, leading to
inferior tribological properties. Scholars have reported the oxidation of graphite to carbon
monoxide and carbon dioxide at 400 ◦C and 500 ◦C. Significant degradation of carbon
to carbon dioxide is observed beyond 700 ◦C [159]. The deterioration of graphite finally
leads to increased pore volume, which acts as a catalyst for the oxidation reaction. These
factors limit the use of graphite to moderate temperature applications. The deposition
of anti-oxidant coatings and plasma deposition techniques can prevent the oxidation of
graphite at HT, which is not viable from an economic point of view [160,161].
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The potential issues associated with individual solid lubricants can be avoided by
introducing multiple lubricants into the matrix. The introduction of multiple solid lu-
bricants to metal, polymer, and ceramic matrix materials can have the intended effects
beyond the individual self-lubrication limit. For example, Niu et al. [53] incorporated Ag
and CaF2/BaF2 into the Ni3Al matrix self-lubricating composite, and they studied the
tribological properties from 25 ◦C to 1000 ◦C. Their study revealed that from 25 ◦C to
400 ◦C, Ag provided superior lubrication characteristics. Above 400 ◦C, CaF2/BaF2 acts
as the lubricant and provides low CoF and wear properties. At 800 ◦C, the molybdates
that formed, such as, NiMoO4, BaMoO4 and CaMoO4, acted as potential lubricants and
provided low CoF and wear rates.

4. Conclusions

In this review article, a comprehensive discussion of self-lubricating materials for
extreme condition applications is provided. This review focuses explicitly on the state-
of-the-art of self-lubricating materials for various challenging conditions, such as HT,
cryogenic temperature, vacuum pressure, high load, high speed, and corrosive environ-
ments. Liquid lubricants do not perform well in these challenging environments and
can lose their tribological properties. On the other hand, self-lubricating materials can
adjust themselves based on the surroundings and provide superior tribological properties.
The superior tribological behavior of these materials under extreme conditions makes
these materials very popular among scientists and space engineers. The friction, wear,
and lubrication mechanisms of a broad spectrum of solid lubricants dispersed in metal,
polymer, ceramic, and intermetallics matrices, in various challenging environments, are
explained in detail via tribological testing. In addition, recent advances and the application
of self-lubricating materials have been explored. This review paper can provide deeper
insights for selection of self-lubricating materials for extreme condition applications.
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