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Abstract Hearing and balance rely on small sensory hair cells that reside in the inner ear. To

explore dynamic changes in the abundant proteins present in differentiating hair cells, we used

nanoliter-scale shotgun mass spectrometry of single cells, each ~1 picoliter, from utricles of

embryonic day 15 chickens. We identified unique constellations of proteins or protein groups from

presumptive hair cells and from progenitor cells. The single-cell proteomes enabled the de novo

reconstruction of a developmental trajectory using protein expression levels, revealing proteins

that greatly increased in expression during differentiation of hair cells (e.g., OCM, CRABP1, GPX2,

AK1, GSTO1) and those that decreased during differentiation (e.g., TMSB4X, AGR3).

Complementary single-cell transcriptome profiling showed corresponding changes in mRNA during

maturation of hair cells. Single-cell proteomics data thus can be mined to reveal features of cellular

development that may be missed with transcriptomics.

DOI: https://doi.org/10.7554/eLife.50777.001

Introduction
Hair cells, the sensory cells of the inner ear, carry out a finely orchestrated construction of an elabo-

rate actin cytoskeleton during differentiation. Progenitors of vestibular hair cells, the supporting cells

(Roberson et al., 1992), have an unremarkable actin cytoskeleton. By contrast, differentiating hair

cells express a wide array of actin-associated proteins, including crosslinkers, membrane-to-actin

linkers, and capping molecules, and use them to rapidly assemble mechanically sensitive hair bun-

dles on their apical surfaces (Shin et al., 2013; Ellwanger et al., 2018). Hair bundles consist of ~100

stereocilia each, filled with filamentous actin (F-actin) and arranged in multiple rows of increasing

length; by maturity, stereocilia contain >90% of the F-actin in a hair cell (Tilney and Tilney, 1988).

Along the axis of the chicken cochlea, stereocilia systematically decrease in maximum height

(from >5 to 1.5 mm) and increase in number per cell (from 30 to 300) as the frequency encoded

increases (Tilney et al., 1992). Despite these changes, a quantitative analysis suggested that within

experimental error, hair cells use the same amount of actin to build these disparate hair bundles

(Tilney and Tilney, 1988). There is little evidence of substantially increased expression of actin genes
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during hair cell differentiation (Ellwanger et al., 2018), suggesting that hair cells use the existing

monomeric actin that is available during differentiation to build a bundle (Tilney and Tilney, 1988).

The number of hair cells in the chick utricle increases 15-fold from embryonic day 7 (E7) to post-

hatch day 2, with hair-cell production peaking at E12 (Goodyear et al., 1999). Because of this asyn-

chronous development, at any given age, cells are in distinct states along the pathway from

progenitors to hair cells. While bulk sampling of cells averages over these developmental distinc-

tions, sampling and analyzing individual cells of the E15 chick utricle allowed for transcriptomics

examination of a large portion of the developmental trajectory for forming hair cells from supporting

cells (Ellwanger et al., 2018), and should allow for a corresponding trajectory analysis using

proteomics.

We sought to understand how supporting cells, with their modest F-actin cytoskeletons, could

transform rapidly into stereocilia-endowed hair cells without significant upregulation of actin gene

transcription. We used a highly sensitive single-cell proteomics approach to assess the concentra-

tions of the abundant proteins in cells isolated from the E15 chick utricle. We found that hair cells

were readily distinguished from supporting cells based on only 50–75 proteins identified in each.

Notably, the actin monomer binding protein thymosin b4 (TMSB4X) was abundant in supporting cells

but not in hair cells, and its expression decreased as progenitors developed into hair cells, which we

revealed using trajectory analysis based on the proteomics data. Single-cell RNA-seq (scRNA-seq)

analysis showed that TMSB4X transcripts are downregulated when transcription of ATOH1, a key

regulator of hair cell differentiation, is activated. These data are consistent with a model that sug-

gests that existing monomeric actin is made available for hair-bundle assembly by the degradation

of TMSB4X.

Results

Single-cell proteomics applied to E15 chick utricle hair cells
Recent reports demonstrated that extensive shotgun mass spectrometry characterization of the pro-

teins of single cells is possible when samples are processed in nanoliter-scale volumes (Zhu et al.,

2018b; Zhu et al., 2018c; Zhu et al., 2018a; Zhu et al., 2018d). About 700 proteins or protein

groups could be detected from a single HeLa cell (Zhu et al., 2018a), which is estimated to have a

volume of a few picoliters (Zhao et al., 2008; Park et al., 2008). We analyzed single cells from E15

chicken utricle; by using peeled epithelia for cell dissociation, we limited the cell types analyzed to

hair cells and supporting cells (Herget et al., 2013), each of which is smaller than a HeLa cell. To dis-

tinguish the two cell types, we labeled utricle cells with FM1-43, which labels hair cells more strongly

than supporting cells (Herget et al., 2013; Ellwanger et al., 2018). After cell dissociation, we col-

lected single cells and pools of 3, 5, and 20 cells in nanowells using fluorescence-activated cell sort-

ing (FACS; Figure 1A and Figure 1—figure supplement 1). As expected, collected cells with high

levels of FM1-43 (FM1-43high) had hair bundles and elongated cell bodies (Figure 1B), both of which

are characteristic of hair cells; FM1-43low cells—mostly supporting cells—were round after FACS

(Figure 1C). We measured cell volumes after cell sorting. FM1-43high cells averaged 1.01 ± 0.20 pico-

liters (mean ± SD; N = 9), while FM1-43low cells averaged 0.67 ± 0.15 picoliters (N = 8). For compari-

son, using the same method, we measured the volume of HeLa cells to be 4.9 ± 1.1 picoliters

(N = 5).

We used the nanoPOTS (nanodroplet processing in one-pot for trace samples) approach to carry

out all sample processing steps in single nanowells (Zhu et al., 2018b). After protein extraction,

reduction, alkylation, and proteolysis, digested peptides were collected and separated using nano-

liquid chromatography on a 30-mm-i.d. column (Zhu et al., 2018b) (Figure 1A). The separated pepti-

des were delivered to an Orbitrap Fusion Lumos Tribrid mass spectrometer and were analyzed using

data-dependent acquisition. Peptides were identified, quantified, and assembled into proteins with

Andromeda and MaxQuant (Cox and Mann, 2008; Cox et al., 2011), using Match Between Runs

(Tyanova et al., 2016; Zhu et al., 2018b) to identify unmatched peptides based on their accurate

masses and liquid chromatography retention times. To quantify proteins based on molar abundance,

we used intensity-based absolute quantification (iBAQ), calculated from the sum of peak intensities

of all peptides matching to a specific protein divided by the number of theoretically observable
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Figure 1. Mass spectrometry of single cells and small cell pools from E15 chick utricle. (A) Experimental design. The E15 chick utricle’s sensory

epithelium consists of sensory hair cells and supporting cells, which are also progenitor cells. FM1-43 labels hair cells more strongly than supporting

cells. The dissociated cells were sorted by FACS and deposited into single nanowells in nanoPOTS chips, where sample processing was carried out

without transfer. Samples were loaded into glass microcapillaries and were analyzed by mass spectrometry. LC-MS/MS, liquid chromatography-tandem

mass spectrometry. (B) FACS-sorted FM1-43high cell with typical hair cell cytomorphology, including apical hair bundle. (C) FACS-sorted FM1-43low cell

shows rounded cytomorphology after dissociation. For B and C, FM1-43 dye was added again to cells after sorting in order to visualize cell shape; dye

intensity therefore is not representative of the signal used for sorting hair cells from supporting cells. (D–E) Relationship between number of cells and

unique peptides. Peptides directly identified by MS2 (peptide fragmentation) spectrum matching are shown by circles and those indirectly identified by

Match Between Runs by squares; data are separately plotted for FM1-43high (D) and FM1-43low (E). Gray solid lines are power fits to data through (0,0);

gray dashed line is fit to sum of the MS/MS and Matched data. (F) Relationship between number of cells and total iBAQ. Gray solid line is power fit

through (0,0); gray dashed line is linear fit through (0,0). Green, FM1-43high; black, FM1-43low. Inset shows 1–3 cells only. (G) Relationship between

number of cells and the total number of proteins or protein groups identified. Gray solid line is power fit through (0,0). Data for D-G were from

Experiment 1; mean ± SEM are plotted. (H) Distribution of total iBAQ for individual cells (FM1-43high, green; FM1-43low, black) or for blank wells (red).

Count refers to the number of cells in a bin. Note that total iBAQ does not distinguish individual cells from noise. (I) Distribution of number of identified

proteins or protein groups. This measure distinctly distinguishes individual cells from noise; those FM1-43high or FM1-43low samples with low numbers of

identifications likely do not have cells in the nanowells. Data for H-I were from Experiment 2.

DOI: https://doi.org/10.7554/eLife.50777.002

Figure 1 continued on next page
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peptides (Schwanhäusser et al., 2011). All mass spectrometry data are deposited at ProteomeX-

change, and analyzed data are reported in Figure 1—source data 1.

About 200 unique peptides were identified in each single FM1-43high cell; about half were identi-

fied by MS/MS scans and half by matching (Figure 1D). The total number of unique peptides

increased to ~2500 in pools of 20 cells, with about 70% identified by MS/MS scans (Figure 1D).

Only ~1200 peptides were identified in pools of 20 FM1-43low cells, with about 60% identified by

MS/MS scans (Figure 1E). Total iBAQ rose nonlinearly with the number of cells (Figure 1F), suggest-

ing that some protein was lost to surface adsorption; while small relative to typical sample wells, the

volume of the nanowell is still 50,000-fold larger than the volume of a utricle cell. Because sample

processing occurred in a protected nanowell environment using robotic liquid handling, the total

iBAQ attributed to keratins (e.g., human skin contamination) was only ~0.1% of the total, far less

than >50% occurring in some mass-spectrometry experiments with small amounts of protein. The

number of proteins or protein groups identified increased from ~60 for FM1-43high single cells to

nearly 600 for pools of 20 cells (Figure 1G); fewer proteins were identified in supporting cells, likely

because of their smaller volume.

Comparison of single FM1-43high and FM1-43low cells to wells with collection triggered to noise

allowed us to confirm the presence of single cells, even without visual inspection of the wells. Total

iBAQ did not accurately indicate which wells contained single cells (Figure 1H), presumably because

the total signal can be dominated by incorrect assignment of contaminant signals to proteins. By

contrast, the number of proteins or protein groups identified distinguished most FM1-43high or FM1-

43low samples from noise (Figure 1I); the samples with low numbers of identifications could repre-

sent sorting events where cells missed their target nanowell.

To examine the composition of FM1-43high and FM1-43low samples, we used relative iBAQ

(riBAQ) for quantitation (Shin et al., 2013; Krey et al., 2014) and displayed the 60 most abundant

proteins of the 20 cell samples (Figure 2A). All identified proteins from the 20 cell samples are dis-

played in Figure 2—figure supplement 1, and all identified proteins from the single-cell samples

are displayed in Figure 2—figure supplements 2 and 3. We used a volcano plot analysis to show

those proteins that had statistically significant enrichment in the 20 cell FM1-43high and FM1-43low
samples (Figure 2B). Well-known hair-cell proteins were enriched significantly in FM1-43high cells,

including the mobile Ca2+ buffers OCM and CALB2, as well as the molecular motor MYO6. Several

proteins were highly enriched in the FM1-43low samples, including TMSB4X, STMN2, SH3BGRL, and

MARCKS.

Characterization of TMSB4X and monomeric actin in chick utricle
The proteomics experiments also revealed several abundant proteins that had not been previously

found to be hair-cell specific, including GSTO1, GPX2, CRABP1, and AK1; TMSB4X and AGR3 were

examples of proteins that were much more abundant in supporting cells (Figure 1—source data 1;

Figure 2A–B). We examined several of these proteins in E15 chick utricles using immunocytochemis-

try. Antibody labeling for AGR3 and the hair-cell marker OTOF labeling did not overlap, and the

elongated cell bodies labeled for AGR3 indicated that it marked supporting cells (Figure 3A–C and

Figure 3—figure supplement 1). By contrast, CRABP1 was specific for hair cells, seen by the over-

lap with OTOF (Figure 3D–F and Figure 3—figure supplement 2).

The thymosin-beta family of proteins, which includes TMSB4X, are actin monomer binding pro-

teins that sequester substantial fractions of actin in many cell types (Nachmias, 1993; Sun et al.,

1995). Five TMSB4X peptides were identified by mass spectrometry, which covered 75% of the ~5

Figure 1 continued

The following source data and figure supplements are available for figure 1:

Source data 1. MaxQuant analysis of single cell proteomics data.

DOI: https://doi.org/10.7554/eLife.50777.005

Figure supplement 1. Characterization of isolated utricle cells.

DOI: https://doi.org/10.7554/eLife.50777.003

Figure supplement 2. Peptide coverage of TMSB4X in mass spectrometry experiments.

DOI: https://doi.org/10.7554/eLife.50777.004

Zhu et al. eLife 2019;8:e50777. DOI: https://doi.org/10.7554/eLife.50777 4 of 26

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.50777.005
https://doi.org/10.7554/eLife.50777.003
https://doi.org/10.7554/eLife.50777.004
https://doi.org/10.7554/eLife.50777


kD protein; one of the peptides was shared by TMSB15B, another member of the family (Figure 1—

figure supplement 2). Analysis of transcript expression in mouse inner ear using gEAR (https://gear.

igs.umaryland.edu) indicated that Tmsb4x expression was considerably higher than that of another

paralog, Tmsb10, and much higher than the two Tmsb15 isoforms, justifying our focus on TMSB4X.

Figure 2. Abundant proteins in small pools of isolated E15 chick utricle cells. (A) Heat map showing top 60 proteins or protein groups in samples of 20

cells, sorted by the average of the 20 cell FM1-43high samples. FM1-43low and FM1-43high samples from Experiment 1 (Exp1) and Experiment 2 (Exp2)

are both displayed, as are the averages of the individual samples. TMSB4X is called out with magenta type. Scale on bottom indicates relationship

between riBAQ and color. (B) Volcano plot showing relationship between FM1-43high/FM1-43low enrichment (x-axis) and false discovery rate (FDR)-

adjusted p-value (y-axis). Proteins that are significantly enriched are labeled with green (FM1-43high>FM1-43low) or black (FM1-43low>FM1-43high). (C)

ACTG1 and TMBS4X quantitation. Relative molar fraction (riBAQ) quantitation of ACTG1 (circle, red fill) and TMSB4X (square, magenta fill) expression

in FM1-43high cells (green outline) or FM1-43low cells (black outline). Samples with 20 cells are plotted; lines indicate mean expression level for the

group. Statistical significance is indicated.

DOI: https://doi.org/10.7554/eLife.50777.006

The following figure supplements are available for figure 2:

Figure supplement 1. Expression levels for all proteins in samples from Experiments 1 and 2 that contain pools of three cells, five cells, or 20 cells.

DOI: https://doi.org/10.7554/eLife.50777.007

Figure supplement 2. Expression levels for all proteins in samples from Experiments 1 and 2 from single-cell samples.

DOI: https://doi.org/10.7554/eLife.50777.008

Figure supplement 3. Expression levels for all proteins in single-cell samples in Experiments 1 and 2.

DOI: https://doi.org/10.7554/eLife.50777.009
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Figure 3. Immunolocalization of proteins enriched in hair cells or supporting cells of E15 chick utricle. Confocal z-stacks of vibratome cross-sections of

the whole utricle were imaged with the tiling and stitching function in Zeiss ZEN. Confocal z-stacks for magnified extrastriolar and striolar regions were

collected separately. A subset of the z-stacks series was used for the maximum intensity projection to preserve single-cell resolution. Hair cells are

labeled with antibodies against OTOF or MYO7A (each in magenta). (A–C) AGR3 (green) was detected in extrastriolar and striolar supporting cells.

Panel full widths: A, 913 mm; B-C, 125 mm. (D–F) CRABP1 (green) is concentrated in hair cells. A few extrastriolar hair cells show very high levels of

CRABP1 (arrows). Panel full widths: D, 1038 mm; E-F, 125 mm. (G–I) TMSB4X (green) immunoreactivity was intense in cells of the mesenchymal stromal

cell layer. TMSB4X was detectable at moderate levels in extrastriolar and striolar supporting cells and at low levels in hair cells located in extrastriolar

and striolar regions. Panel full widths: G, 934 mm; H-I, 125 mm. (J–L) G-actin (JLA20 antibody, green) is expressed at equal levels in hair cells, supporting

cells and mesenchymal stromal cells. Panel full widths: J, 839 mm; K-L, 125 mm. (M–O) OCM was detectable at high levels in striolar hair cells and at low

levels in extrastriolar hair cells. A few extrastriolar hair cells display high levels of OCM (arrows). Panel full widths: M, 946 mm; N-O, 125 mm. Expanded

images of all individual channels (transmitted light, nuclei, F-actin, hair cells, and specific antibody) are shown in Figure 3—figure supplements 1–5.

DOI: https://doi.org/10.7554/eLife.50777.010

The following figure supplements are available for figure 3:

Figure supplement 1. Immunolocalization of AGR3 in E15 chick utricle.

DOI: https://doi.org/10.7554/eLife.50777.011

Figure supplement 2. Immunolocalization of CRABP1 in E15 chick utricle.

DOI: https://doi.org/10.7554/eLife.50777.012

Figure supplement 3. TMSB4X localization.

DOI: https://doi.org/10.7554/eLife.50777.013

Figure supplement 4. G-actin localization with JLA20 antibody.

DOI: https://doi.org/10.7554/eLife.50777.014

Figure supplement 5. OCM localization with anti-PV3 antibody.

Figure 3 continued on next page
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To localize TMSB4X in the E15 chick utricle, we used an antibody that has been validated previ-

ously with knock-down experiments against mouse TMSB4X (Zhou et al., 2013; Li et al., 2018);

chicken TMSB4X differs from mouse and human TMSB4X by only two serine-to-threonine substitu-

tions out of 44 total amino acids. TMSB4X immunoreactivity was cytoplasmic and strong in support-

ing cells and substantially reduced in hair cells (Figure 3G–I and Figure 3—figure supplement 3),

which was consistent with the mass-spectrometry results. Because TMSB4X maintains actin in a

monomeric form (G-actin), probes for G-actin like the JLA20 antibody (Lin, 1981) provide another

way of localizing the pool of unpolymerized actin. JLA20 immunoreactivity was comparable in most

cells, although there was an increased level of signal at the base of the hair cells (Figure 3J–L and

Figure 3—figure supplement 4).

The concentration of TMSB4X relative to total actin should indicate how much free actin is avail-

able for assembling filamentous structures like stereocilia (Weber et al., 1992). Analyzing the 20 cell

samples, we found that the ACTG1 protein group—total actin—accounted for a relative molar frac-

tion (riBAQ) of 0.043 ± 0.001 (mean ± SEM) in FM1-43high cells and 0.060 ± 0.005 in FM1-43low cells

(Figure 2C). A mixed-effects model accounting for intra-sample correlations indicated that these

concentrations differed significantly, albeit only at an alpha level of 0.05 (summary statistics with con-

fidence intervals are reported in Table 1). While TMSB4X accounted for a relative molar fraction of

only 0.006 ± 0.002 in FM1-43high cells, it was 0.056 ± 0.012 in FM1-43low cells, ten-fold higher

(Figure 2C) and significantly different (p<0.001). Critically, the concentration of hair-cell TMSB4X dif-

fered significantly from that of hair-cell actin (p=0.001), while the concentration of supporting cell

TMSB4X did not differ from that of supporting cell actin (p=0.660). Because TMSBX and actin inter-

act with a 1:1 stoichiometry (Goldschmidt-Clermont et al., 1992), and no other actin-binding pro-

teins are detected at similar high levels, our quantitation suggests that there is enough TMSB4X to

bind most actin monomers in supporting cells.

In wholemount preparations, we counted 72 ± 8 stereocilia per utricle hair cell (mean ± SD;

N = 26 from striolar and extrastriolar regions). The actin quantitation suggested that each E15 hair

cell contains ~15,000,000 actin molecules (G- and F-actin combined). If nearly all actin is in stereocilia

(Tilney and Tilney, 1988), then each stereocilium would contain ~200,000 actin molecules. While

fewer than the 400,000 molecules estimated per E20 chick stereocilium (Shin et al., 2013), the value

is consistent with the relative immaturity of E15 cells.

Developmental trajectory analysis using single-cell proteomics
While our results showed that the expression profile of pooled-cell samples distinguished between

supporting cells and hair cells, a single contaminating cell in a pool could distort the pool’s expres-

sion pattern. We therefore examined whether we could achieve similar discrimination based on the

30 single-cell profiles, despite the low numbers of identifications in each cell. We used 75 proteins

or protein groups that were detected in at least five cells, and normalized and batch-corrected

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.50777.015

Figure supplement 6. Identification of striola and extrastriola regions.

DOI: https://doi.org/10.7554/eLife.50777.016

Table 1. Summary statistics with confidence intervals for Figure 2C.

95% Confidence
interval

Comparison Estimate Std. error df t-value Lower bound Upper bound p-value

ACTG1 FM-high – ACTG1 FM-low �0.017 0.009 22.3 �1.830 �0.036 0.002 0.081

ACTG1 FM-high – TMSB4X FM-high 0.036 0.008 12.0 4.607 0.019 0.054 0.001

ACTG1 FM-low - TMSB4X FM-low 0.004 0.008 12.0 0.451 �0.014 0.021 0.66

TMSB4X FM-low - TMSB4X FM-low �0.050 0.009 22.3 �5.356 �0.069 �0.031 <0.001

DOI: https://doi.org/10.7554/eLife.50777.017
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(Johnson et al., 2007; Büttner et al., 2019; Luecken and Theis, 2019) data from individual cells.

The resulting expression values, referred to as log2 normalized iBAQ (niBAQ) units, comprised an

expression matrix having similar characteristics to single-cell transcriptomics data. Non-detects

accounted for 62% of the values, while for 83% of identifications the detected values followed a log-

normal distribution (Shapiro-Wilk normality test p>0.05).

Because methods developed for single-cell transcript analysis (Luecken and Theis, 2019) should

be suitable for dissection of the single-cell proteomics results, we applied CellTrails, which we previ-

ously used to uncover the branching trajectory from progenitors to hair cells in the chicken utricle

using transcript data (Ellwanger et al., 2018). To interpret the latent structure in the single-cell

mass spectrometry data, its lower-dimensional manifold was investigated using CellTrails’ robust

nonlinear spectral embedding on the submatrix of the 37 highest variable identifications

(Figure 4A). Appropriately, most cells segregated according to their FM1-43 uptake (Figure 4B).

We noted that the protein pattern of three cells classified as FM1-43high appeared to match better

to the FM1-43low (supporting cell) pattern. Similarly, two FM1-43low cells were embedded in the

neighborhood of cells with a high FM1-43 uptake (hair cells). While FM1-43 is useful for labeling hair

cells, transcript analysis showed that FM1-43 levels are not a perfect proxy for hair-cell maturity

(Ellwanger et al., 2018); for example, hair cells with damaged mechanotransduction will not load

with the dye and such cells would be classified as FM1-43low. Alternatively, cells with relatively low

FM1-43 could be transitional cells between progenitors and mature hair cells (Ellwanger et al.,

2018). We therefore surmised that we could elicit a developmental trajectory from the single-cell

protein expression patterns. The chronological ordering of the cells was learned in the lower-dimen-

sional manifold and a pseudotime value was assigned to each cell (Figure 4C).

The 75 proteins sufficiently detected on single-cell level are all relatively highly expressed and

largely do not include those expected to distinguish different classes of hair cells (Ellwanger et al.,

2018). Moreover, we expect that our sample is dominated by type II hair cells, especially those from

extrastriola regions, as they are much more numerous than type I hair cells (Ellwanger et al., 2018).

Because of the gating strategy used (Figure 1—figure supplement 1), we primarily sampled cells

from either end of the developmental trajectory, which was apparent from the gap approximately at

the midpoint of the pseudotime axis (Figure 4D). Nevertheless, we sampled sufficient numbers of

differentiating cells to establish a developmental trajectory.

We examined protein expression dynamics as a function of developmental pseudotime

(Figure 4E). Protein expression changed systematically along the developmental pseudotime axis

with the expected trends: proteins enriched in supporting cells, including AGR3 and TMSB4X,

decreased in expression along the pseudotime axis (Figure 4E–F). By contrast, proteins known to be

enriched in hair cells, including OCM, CALB2, MYO6, CKB, and GAPDH, all increased as pseudotime

progressed (Figure 4E–F).

Transcriptomic confirmation of TMSB4X enrichment in progenitor cells
We predicted that the decrease in TMSB4X as hair cells mature arose from downregulation of

TMSB4X transcript expression during differentiation of hair cells. We therefore used transcriptomic

profiling of single cells isolated from E15 chick utricle to examine gene expression during the bifur-

cating trajectory that describes the development of progenitor cells to mature striolar and extrastrio-

lar hair cells (Ellwanger et al., 2018). We carried out scRNA-seq transcriptomic profiling using the

Smart-seq protocol (Picelli et al., 2014) on 384 FACS-sorted E15 chick utricle epithelial cells. To pro-

vide maximum correlation of TMSB4X expression changes with chicken utricle hair cell maturation,

we reconstructed the trajectory in similar fashion as previously described (Ellwanger et al., 2018),

carrying out the analysis with 182 assay genes already including GSTO1 and CRABP1 from that pre-

vious study, supplemented with TMSB4X, AGR3, GPX2 and AK1. Nine cellular subgroups emerged,

each of which was distinguished by distinct marker gene sets (Figure 5A). Based on their expression

profiles, for example the lack of TECTA and especially high levels of TMSB4X (Figure 5A; see also

Figure 3), two subgroups (S8 and S9) appeared to be stromal cells; to focus on the developmental

progression of progenitor (supporting) cells to hair cells, we removed S8 and S9 for subsequent

analysis.

We mapped the remaining 254 individual cells of subgroups S1-S7 along developmental trajecto-

ries, plotting CellTrails maps (Ellwanger et al., 2018) to demonstrate the branching nature of the

trajectory (Figure 5B). Our assay was biased for hair-bundle genes, and at least half of the cells
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isolated were hair cells, so it is unsurprising that the final trajectory revealed not only the transition

from progenitor (supporting) cells to hair cells, but also further developmental branching. One major

branch was supporting cells, as these cells expressed markers like TECTA and OTOA (Figure 5H;

Figure 5—source data 1). The other two major branches were hair cells, as they occurred after the

peak of ATOH1 expression and also showed high levels of hair-cell markers like MYO7A (Figure 5C;

Figure 5—source data 1).

Figure 4. Pseudotemporal ordering of single utricle cells based on proteomics measurements. (A) Relationship between variance and mean expression,

distinguishes proteins or protein groups with low variance (blue) or high variance (salmon). (B) First three components of CellTrails’ spectral embedding,

with FM1-43low (square, gray) and FM1-43high (circle, green) cells indicated. (C) First three components of CellTrails’ spectral embedding with cells

colorized by the inferred pseudotime. (D) Chronological ordering of single cells as a function of pseudotime shows that cell ordering correlates with the

FM1-43 uptake gradient. (E) Scaled expression dynamics over pseudotime for all analyzed proteins or protein groups. A cubic smoothing spline with

four degrees of freedom was fit on the rolling mean for each protein. Cell density bar underneath the heat map shows the density of cells along the

pseudotime axis. Heat map and cell density scale is shown below. (F) Absolute expression dynamics of log2 niBAQ expression levels as a function of

pseudotime for various proteins. Blue line is expression fit; circle is the rolling mean for each protein.

DOI: https://doi.org/10.7554/eLife.50777.018
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Figure 5. Developmental trajectory identified from single utricle cell RNA-seq measurements. (A) CellTrails

identifies nine distinct states (cellular subgroups). Shown are 328 points representing single utricle cells projected

into two-dimensional space using CellTrails t-distributed stochastic neighbor embedding (tSNE). Cells are colored

by state affiliation. Two states (S8-9) were classified as stromal cells and excluded from this study based on the

Figure 5 continued on next page
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Enrichment of LOXHD1, ATP2B2, TMC2, TNNC2, MYO3A and OCM indicated that the branch

projecting down and to the right was from striolar cells (Figure 5F; Figure 5—source data 1), which

we named TrS (‘trail striola’) as previously defined (Ellwanger et al., 2018). Similarly, enrichment of

SYN3, SKOR2, CALB2, and TMC1 indicated the branch projecting up and to the right is from extra-

striolar cells, which we named TrES. TrES branched again, and relative enrichment of ATP2B2

(Figure 5F; Figure 5—source data 1) and reduced expression of SKOR2 (Figure 5G; Figure 5—

source data 1) indicated that the left-hand branch was equivalent to the novel hair cell type TrES*

found in our previous study (Ellwanger et al., 2018).

To confirm the spatial identity of the two major hair cell branches, all experiments were carried

out with E15 chicken utricles split apart into lateral halves, which contain striolar and extrastriolar

cells, and medial halves, which contain only extrastriolar cells. The lower-right branch was populated

nearly entirely by lateral cells, which confirms that it represents striolar hair cells (Figure 5D–E). We

conclude that the scRNA-seq experiment accurately replicated our previous experiment using a mul-

tiplex RT-qPCR approach (Ellwanger et al., 2018).

We next examined the genes highlighted in the proteomics experiments, including TMSB4X,

AGR3, GSTO1, GPX2, CRABP1, and AK1. As predicted from the proteomics and localization experi-

ments, the CellTrails analysis showed that TMSB4X and AGR3 were specific to progenitor (support-

ing) cells (Figure 5H), while GSTO1, GPX2, CRABP1, and AK1 were specific to hair cells (Figure 5I).

The CellTrails maps indicated that GPX2 and AK1 were concentrated in striolar hair cells, while

CRABP1 was enriched in extrastriolar cells, particularly TrES* (Figure 5I). Cells observed with high

levels of CRABP1 in immunocytochemistry experiments could be the TrES* cells (Figure 3G,I).

GSTO1 was expressed at similar levels in both hair cell types. Available antibodies against GPX2,

AK1, and GSTO1 were insufficiently reliable to check their hair-cell specificity. Examining databases

in gEAR, however, we noted that Gpx2 and Ak1 are predicted to be substantially enriched in hair

cells as compared to non-hair cells in mouse utricle; by contrast, Gsto1 is expressed at higher levels

in mouse utricle non-hair cells than in hair cells.

The scRNA-seq results corroborated the expression dynamics of TMSB4X on transcriptional level.

High in progenitor cells, its transcriptional activity decreased substantially during hair cell differentia-

tion (Figure 5H), and was nearly undetectable in striolar hair cells. Interestingly, TMSB4X was

expressed at detectable levels, albeit relatively low, in cells along TrES as compared to TrES*

(Figure 5H).

We also noted a striking decrease in ACTB expression as hair cells differentiated; the CellTrails

maps suggested that ACTB was >10 fold higher in progenitor cells than in hair cells (Figure 5K; Fig-

ure 5—source data 1). ACTG1 increased modestly in expression, especially in TrES cells, but overall

was present at lower levels than ACTB (Figure 5K; Figure 5—source data 1). Similar trends for

these actin isoforms were also seen in our previous data (Ellwanger et al., 2018). ACTB and ACTG1

Figure 5 continued

lack of TECTA expression and the high levels of TMSB4X expression. (B) CellTrails trail map of 254 single chicken

utricle cells reveals a bifurcating trajectory. (C) ATOH1 peaks before the main bifurcation of the right major

branches. CellTrails map shows that MYO7A-expressing hair cells are located downstream of the ATOH1 peak on

the right half of the trajectory map. (D) Projection of medial and lateral cell origin metadata into the trail map.

Cells from the lateral side accumulate along the lower-right trajectory whereas cells from both halves are located

along the upper-right trajectory. (E) Predicted developmental extrastriolar (TrES*, TrES), and striolar (TrS) hair cell

trajectories. (F) LOXHD1, ATP2B2, TMC2, TNNC2, MYO3A, and OCM expression levels are associated with the

lower-right lateral striolar (TrS) branch. (G) CellTrails maps showing high expression of SYN3, SKOR2, CALB2, and

TMC1 along the upper-left medial extrastriolar (TrES*, TrES) branch. (H) Expression of supporting cell marker

genes TECTA, OTOA, TMSB4X and AGR3 defines the location of the progenitor (supporting) cell population

along the left major branch. (I) Expression of CRABP1 and GSTO is associated with the extrastriolar trajectory*

(TrES*, see also Figure 3G, high CRABP1 expression extrastriolar hair cells). (J) AK1 and GPX2 are enriched in the

striolar trajectory (TrS). (K) ACTB expression decreases and ACTG1 expression increases while hair cells develop.

DOI: https://doi.org/10.7554/eLife.50777.019

The following source data is available for figure 5:

Source data 1. CellTrails analysis of single-cell RNA-seq data.

DOI: https://doi.org/10.7554/eLife.50777.020
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differ by only four amino acids, however, and we only detected one of the peptides that distinguish

the isoforms (Ac-EEEIAALVIDNGSGMCK from ACTG1) in single mass spectrometry run. We were

therefore unable to accurately measure the relative abundance of the two actin isoforms in our pro-

tein mass spectrometry experiments.

Discussion
Global analysis of proteins from single cells has previously been thwarted by nonspecific adsorption

of proteins to surfaces and the lack of a scheme to amplify proteins (Couvillion et al., 2019). Recent

development of nanowell sample processing with nanoPOTS, coupled with extremely sensitive mass

spectrometers, permits detection of abundant proteins of even very small cells (<1 picoliter). We

exploited this method to characterize the abundant proteins of FACS-sorted supporting cells, the

hair cell progenitors, and hair cells from embryonic chick utricles. Remarkably, we were able to use

the mass spectrometry data from single utricle cells to reconstruct a developmental trajectory from

protein-expression values alone.

In addition, we identified several proteins not previously highlighted as specific for hair cells

(CRABP1, GSTO1, GPX2, AK1) or for supporting cells (AGR3, TMSB4X). TMSB4X was present at

nearly equimolar levels with respect to actin in supporting cells and thus may sequester actin mono-

mers there. By contrast, in hair cells, TMSB4X was only one-tenth as abundant as actin. This develop-

mental change was characterized in more depth using single-cell RNA sequencing, which showed

that the drop in TMSB4X was greater in extrastriolar hair cells than in striolar hair cells. Together,

these data are consistent with the hypothesis that downregulation of TMSB4X allows differentiating

hair cells to construct their hair bundles with newly available actin monomers.

Single-cell proteomics detection
While fewer proteins were identified from single hair cells than were identified in a recent report

using the same technique with single HeLa cells and primary lung cells (Zhu et al., 2018a), hair cells

have a volume of ~1 picoliter, while HeLa cells are five times larger in volume. Given this difference,

detection of fewer proteins in hair cells than in HeLa cells was not surprising. The 700 proteins

detected in HeLa cells are also a substantial underestimate of the total that are present there; using

two-dimensional separation prior to mass spectrometry, over 11,000 proteins or protein groups can

be detected from these cells (Geiger et al., 2012; Kulak et al., 2017), and analyses with a one-

dimensional separation, like that used here, typically yield ~3000 proteins. The total number of pro-

teins in hair cells and supporting cells is similarly large; using separation in only one chromatographic

dimension, we identified ~3000 proteins from E15 chick utricle sensory epithelium (Shin et al.,

2013). Note that even these numbers are underestimates of the total number of genes expressed;

for example, we detected expression from 13,643 genes in our scRNA-seq experiments. The range

of protein expression is enormous and the dynamic range of mass spectrometers is limited, which

prevents proteomic detection of all expressed genes.

While the nanoPOTS approach is useful for characterizing abundant proteins in small cells or

more proteins in larger cells, without further increases in sensitivity, the small number of proteins

detected in single hair cells will prevent characterization of low-abundance proteins or deeply cate-

gorizing developmental pathways using protein expression. Because the relationship between cell

number and total protein signal intensity was nonlinear, especially for 1–3 cell samples (Figure 1F),

we concluded that we lost significant amounts of protein to adsorption to the nanowells. These

results indicate that further improvement of protein recovery is critical to increase proteome cover-

age and quantification performance of single-cell proteomics technology employing nanoPOTS. Fab-

ricating nanowells with smaller dimensions would be straightforward; however, dispensing single

cells by FACS to yet-smaller wells would be difficult to carry out reproducibly. In addition, the nano-

well surfaces could be coated chemically with antifouling materials such as polyethylene glycol or

poly(2-methyl-2-oxazoline) polymers (Weydert et al., 2017). An alternative strategy for single-cell

protein analysis uses TMT multiplex labeling with one channel utilized by a sample of several hun-

dred carrier cells, which will reduce the relative error due to protein loss (Budnik et al., 2018).

Indeed, coupling of TMT multiplex labeling approach with nanoPOTS significantly increases prote-

ome coverage and analysis throughput of single cell proteomics (Dou et al., 2019).
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We detected much higher levels of small proteins (<20 kD) here than in previous experiments

using the same tissue (Shin et al., 2007; Shin et al., 2010; Shin et al., 2013; Herget et al., 2013;

Wilmarth et al., 2015). We attribute this improved detection to the processing of samples in nano-

POTS nanowell without transfer steps; other sample preparation methods included steps (e.g., SDS-

PAGE gel separation or filter washes) that facilitated loss of small proteins (Krey et al., 2016). Our

new data indicate that on a molar basis, OCM (Figure 2A, Figure 3M–O), which was formerly known

as parvalbumin 3 in the chick (Heller et al., 2002), is the most abundant protein in E15 chick hair

cells, accounting for >10% of the total number of protein molecules.

Although we see high levels of small proteins, we do not think that they are over-represented in

our data. Moreover, levels of cytoskeletal proteins like actin and tubulin are similar to those seen in

bulk proteomics experiments (Shin et al., 2013). By contrast, as in most shotgun mass spectrometry

experiments, membrane proteins are underrepresented relative to their presence in the genome

(Kar et al., 2017). Membrane proteins are generally expressed at low levels, however, which also

contributes to our inability to see more than a few such proteins (e.g., ATP1A1, SLC17A8, and

ATP2B2). Challenges in detecting membrane proteins are not restricted to single-cell proteomics,

however.

Single-cell proteomics trajectory analysis
We report here the first example of the use of single-cell protein mass spectrometry data to con-

struct a developmental trajectory, in this case from progenitors to hair cells. While limited by having

only 30 cells for this analysis, CellTrails nevertheless was able to generate a developmental trajectory

that discriminated distinct expression patterns of transitioning cells. The proposed trajectory for the

single cells studied here accounted for protein expression levels at the endpoints, which represented

supporting cells and hair cells; moreover, expression levels of many of the endpoint-selective pro-

teins systematically increased or decreased across the trajectory, as expected. Although we did not

detect the branching trajectories of hair cells along the TrS, TrES, and TrES* trails that were seen

using multiplex RT-qPCR approach (Ellwanger et al., 2018) or scRNA-seq (Figure 5), the small num-

ber of cells analyzed for protein-based trajectories likely precluded their detection.

Although application of trajectory-analysis methods to single-cell proteomics is very much in its

infancy, we show here that CellTrails is suitable for this purpose. The analysis was limited by sensitiv-

ity, as proteins detected by mass spectrometry were limited to those expressed at relatively high lev-

els. Improvements of the nanoPOTS method that lead to increased sensitivity and reproducibility will

enhance future protein-based trajectory analyses. Nevertheless, while robotic manipulation allows

for increased sample-preparation output, the number of cells analyzed presently must remain low

because of slow throughput of the mass spectrometry steps. Single-cell RNA-seq approaches are

likely to continue to offer much higher throughput and depth for the foreseeable future. That said,

analysis of developmental pathways using single-cell proteomics allows the identification of key pro-

teins that change in protein expression level without alternations in transcript levels. Moreover,

future single-cell proteomics approaches will allow analysis of posttranslational modifications like

phosphorylation, which will expand our ability to probe developmental cascades.

Interestingly, GAPDH was found to increase during hair cell maturation (Figure 4E–F), while its

mRNA was reported to remain at a constant level (Avenarius et al., 2014; Ellwanger et al., 2018);

this discrepancy suggests that GAPDH undergoes post-transcriptional regulation, either from

increased translation efficacy or by protein stabilization following translation. Because GAPDH con-

centrates in stereocilia (Shin et al., 2007; Shin et al., 2013), protein stabilization there is the most

likely explanation for the increasing GAPDH levels during hair-cell differentiation. This observation

highlights the power of the protein-based trajectory analysis; because of the poor correlation

between transcript levels and protein levels (Liu et al., 2016), understanding how proteins change

during a developmental process will require their direct measurement, not inferring their levels as is

done with scRNA-seq experiments.

Actin expression dynamics
During formation of hair cells, we observed a substantial downregulation of ACTB during differentia-

tion to hair cells, with the largest decrease in extrastriolar cells; this decrease was partially compen-

sated by an increase in ACTG1, especially in extrastriolar cells. If scRNA-seq provides accurate
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relative measurements of transcript levels, the sum of ACTB and ACTG1 transcripts in E15 hair cells

was one-quarter that in supporting cells. Total actin protein levels were similar in hair cells and sup-

porting cells, however, suggesting that actin synthesis may be reduced during differentiation of hair

cells.

In chicken auditory hair cells, ACTB is found nearly exclusively in stereocilia F-actin cores, while

the more abundant ACTG1 is distributed to all F-actin assemblies (Höfer et al., 1997). Nevertheless,

Actb or Actg1 knockout mice have normal stereocilia development, suggesting that the two iso-

forms are interchangeable in mice, at least initially (Belyantseva et al., 2009; Perrin et al., 2010).

Phenotypes of aging hair cells from the two mutants differ, however, and these differences arise

from the ACTB and ACTG1 proteins themselves, not expression dynamics (Perrin et al., 2010;

Patrinostro et al., 2018).

The reduced expression of actin genes is broadly consistent with Tilney’s suggestion that each

hair cell uses an equivalent-sized bolus of actin to build their hair bundles (Tilney and Tilney, 1988).

An alternative model dictates that the final amount of actin used in a hair bundle depends on the

expression level of crosslinkers like PLS1 and ESPN (Höfer et al., 1997; Sekerková et al., 2011;

Krey et al., 2016). A plausible hypothesis incorporating observations reported here is that ACTB is

sequestered with TMSB4X in supporting cells; upon differentiation to hair cells, ACTB is made imme-

diately available for stereocilia elongation by degradation of the actin buffer TMSB4X, while ACTG1

expression is increased to provide actin for other assemblies, including the cuticular plate and cir-

cumferential actin belt (Höfer et al., 1997).

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Biological
sample
(Gallus gallus)

Embryonic day 15 utricle eggs from Texas
A and M
University Poultry
Science Department

n/a Freshly isolated
from Gallus gallus

Chemical
compound, drug

FM1-43FX Thermo Fisher Cat# F35355 10 mM

Chemical
compound, drug

SYTOX Red
Dead Cell Stain

Thermo Fisher Cat# S34859 1:1000 (final 5 nM)

Chemical
compound, drug

thermolysin from
geobacillus stearo
thermophilus

Sigma-Aldrich Cat# T7902 0.5 mg/ml

Chemical
compound, drug

Accutase Innovative Cell
Technologies

Cat# AT104 full strength

Chemical
compound, drug

n-dodecyl b-D-maltoside Sigma-Aldrich Cat# D4641 0.1% (w/v)

Chemical
compound, drug

trypsin Promega Cat# V5280 10 ng/ml

Chemical
compound, drug

Lys-C Promega Cat# V1671 10 ng/ml

Chemical
compound, drug

DAPI Thermo Fisher Cat# D1306 1 mg/ml

Chemical
compound, drug

Alexa Fluor
488-conjugated
phalloidin

Thermo Fisher Cat# A12379 1:1000

Antibody rabbit polyclonal
anti-TMSB4X

Proteintech Cat# 19850–1-AP,
RRID: AB_10642437

1:250

Antibody rabbit polyclonal
anti-AGR3

Proteintech Cat# 11967–1-AP,
RRID: n/a

1:250

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody rabbit polyclonal
anti-CRABP1

Proteintech Cat# 12588–1-AP,
RRID: AB_2292271

1:250

Antibody mouse monoclonal
anti-G-actin

Developmental
Studies
Hybridoma Bank

Cat# JLA20,
RRID: AB_528068

1:250

Antibody mouse monoclonal
anti-otoferlin

Developmental
Studies
Hybridoma Bank

Cat# HCS-1,
RRID: AB_10804296

1:250

Antibody goat polyclonal
anti-SOX2

Santa Cruz
Biotechnology

Cat# sc-17320,
RRID: AB_2286684

1:100

Antibody mouse monoclonal
anti-tubulin beta-3

BioLegend Cat# TUJ1,
RRID: AB_2313773

1:250

Antibody rabbit polyclonal
anti-parvalbumin-
3/oncomodulin

Heller laboratory n/a 1:1000

Antibody rabbit polyclonal
anti-MYO7A

Proteus
Biosciences

Cat# 25–6790,
RRID: AB_2314838

1:1000

Antibody Alexa Fluor 546
donkey anti-rabbit
polyclonal

Thermo Fisher Cat# A10040,
RRID: AB_2534016

1:250

Antibody Alexa Fluor 647
donkey anti-mouse
polyclonal

Thermo Fisher Cat# A31571,
RRID: AB_162542

1:100

Antibody Alexa Fluor 488
donkey anti-goat
polyclonal

Thermo Fisher Cat# A11055,
RRID: AB_2534102

1:250

Commercial
assay or kit

SMARTscribe Clontech Cat# 639538

Commercial
assay or kit

Hifi HotStart
ReadyMix (2X)

Kapa Biosystems Cat# KK2602

Software,
algorithm

MaxQuant Cox lab, Max
Planck Institute
of Biochemistry

https://www.
maxquant.org

Software,
algorithm

FIJI (ImageJ) n/a http://fiji.sc/

Software,
algorithm

R The R Project
for Statistical
Computing

https://www.
r-project.org/

Software,
algorithm

limma R package Bioconductor DOI: 10.18129/
B9.bioc.limma

Software,
algorithm

sva R package Bioconductor DOI: 10.18129/
B9.bioc.sva

Software,
algorithm

CellTrails
R package

Bioconductor DOI: 10.18129/
B9.bioc.CellTrails

Other Medium 199 Thermo Fisher Cat# 12350039

Other SPHERO Drop
Delay Calibration
Particles

Spherotech Cat# DDCP-70–2

Other nanoPOTS chips Custom built n/a

Single-cell collection in Nanowells and sample preparation for
proteomics
Single cells were collected from utricles of E15 chick embryos using methods previously described

(Ellwanger et al., 2018). Utricles were incubated with 10 mM FM1-43FX (Thermo Fisher, Waltham,
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MA) for 20 s, then treated with thermolysin (Sigma-Aldrich, St. Louis, MO) to remove the sensory

epithelium; cells in the epithelium were dissociated by treating with Accutase (Innovative Cell Tech-

nologies, San Diego, CA) with mechanical trituration (Ellwanger et al., 2018). Cells were sorted with

a BD Influx Instrument (BD Biosciences) set to ‘‘single cell’’ mode and equipped with a 85 mm nozzle.

To enable the direct cell sorting into nanowells, a customized template was built with the BD FACS

software environment (Sortware) to match the format of nanowell array. SPHERO Drop Delay Cali-

bration Particles (Spherotech, Lake Forest, IL) were used to confirm the drop targeting, as well as

the parameter optimization. Prior to sorting onto the final collection chip, a separate preparation of

E15 chick cells was used to optimize drop delay settings in order to verify alignment of droplets

within the well and cell numbers within each well by visual inspection under an epifluorescence

microscope. Debris was removed based on forward scatter (FSC) versus side scatter (SSC) and dou-

blets were excluded based on forward scatter (FSC) versus trigger pulse width. SYTOX Red Dead

Cell Stain (Thermo Fisher) was added to cells prior to sorting and was used to identify live and dead

cells. Based on our final gating approach, which compared 638–1 (SYTOX Red) versus 488–1 (FM1-

43), single SYTOX Red-negative FM1-43high or FM1-43low cells were deposited into individual

nanowells.

NanoPOTS chips were fabricated on standard microscopy slides as described (Zhu et al., 2018b;

Zhu et al., 2018a). An arrangement of 5 � 13 hydrophilic nanowells was created, each 1 mm diame-

ter with 2.25 mm on-center spacing, and the surrounding chip surface was treated with 2% (v/v) hep-

tadecafluoro-1,1,2,2-tetrahydrodecyl)-dimethylchlorosilane (PFDS) in 2,2,4-trimethylpentane to

render it hydrophobic. A glass spacer and cover plate were fabricated for each nanowell chip, allow-

ing the chip to be sealed so that evaporation was minimized during sample incubation. A home-built

robotic liquid handling system, capable of subnanoliter dispensing, was used to dispense sample

preparation reagents into nanowells (Zhu et al., 2018b; Zhu et al., 2018a). To lyse cells, and to

extract and reduce proteins, 100 nl of 0.2% dodecyl b-D-maltoside containing 5 mM DTT in 0.5x

PBS and 25 mM ammonium bicarbonate were added to a nanowell containing FACS-sorted single

cells or pools of cells; the chip was then incubated at 70˚C for 1 hr. Next, proteins were alkylated

using 50 nl of 30 mM iodoacetamide in 50 mM ammonium bicarbonate in the dark at 37˚C for 30

min. Lys-C and trypsin (each from Promega, Madison, WI, USA) were added sequentially using 50 nl

of 5 ng/ml enzyme solutions in 50 mM ammonium bicarbonate for 4 hr and 6 hr, respectively. Finally,

the peptide sample was acidified with 50 nl of 5% formic acid and then collected into a fused-silica

capillary (200 mm i.d., 5 cm long). To maximize sample recovery, each nanowell was re-extracted

twice, each with 200 nl of 0.1% formic acid in water. The sample collection capillaries were sealed on

both ends with Parafilm and stored at �70˚C until use.

Two single-cell proteomics experiments were carried out. For Experiment 1, the FM1-43high sam-

ples included five samples with 1 cell, four samples with 3 cells, four samples with 5 cells, and four

samples with 20 cells; the FM1-43low samples included five samples with 1 cell, three samples with 3

cells, four samples with 5 cells, and four samples with 20 cells. For Experiment 2, the FM1-43high
samples included ten samples with 1 cell and four samples with 20 cells; the FM1-43low samples also

included ten samples with 1 cell and four samples with 20 cells.

Images of individual FM1-43high and FM1-43low cells (Figure 1) were acquired by sorting 1000

cells of either cell type into a drop of 4% paraformaldehyde, which had been placed on a Superfrost

Plus glass slide (Fisher Scientific). We used FM1-43 to label the isolated cells after fixation; here, the

dye’s propensity to insert into the extracellular leaflet of the membrane was used rather than its abil-

ity to enter transduction channels. Cells were fixed for 10 min, then a PBS solution containing DAPI

(4,6-diamidino-2-phenylindole, 1 mg/ml, Thermo Fisher, D1306) and 10 mM FM1-43FX was added to

the slide for 10 min. Fixed and labeled cells were washed, then covered with Vectashield mounting

medium (Vector Labs) and imaged using a 63x lens on a Zeiss Elyra PS.1 microscope.

Other quantitation methods
To quantify cell volume, cells were FACS-sorted (for hair cells and supporting cells), fixed, stained

with DAPI and phalloidin, and imaged as described above. For each slice of the z-stack, the Thresh-

old and Make Binary tools of Fiji/ImageJ were used to generate a binary stack, which defined the

cell perimeter. The Analyze Particles tool was then used to determine the cell area in each slice. The

volume for a slice was calculated as the product of the single-slice area multiplied by the z-stack

interval; all slice volumes were added together to estimate total cell volume.
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To count stereocilia per hair bundle, Airyscan z-stack images of E15 chicken utricles stained with

Alexa Fluor 488-conjugated phalloidin (1:1000, Invitrogen, Carlsbad, CA, A12379) were obtained

using a Zeiss LSM 880 microscope; images were acquired near the base of bundles to ensure that all

stereocilia were in each image. Stereocilia were manually counted from single x-y images.

Data-dependent acquisition mass spectrometry
A capillary solid phase extraction (SPE) column (75 mm i.d., with 3 mm C18 particles of 300 Å pore

size; Phenomenex, Torrance, USA) was used for initial sample loading and desalting, and was then

connected to a 50 cm, 30 mm i.d. column packed with the same material. Mobile phase was deliv-

ered at 60 nl/min with a Dionex UltiMate NCP-3200RS pump system (Thermo Fisher). Peptides were

separated with a linear 8–22% Buffer B (0.1% formic acid in acetonitrile) gradient over 60 min, fol-

lowed by a 10 min increase to 45%. The column was washed with 80% Buffer B for 10 min and then

equilibrated with 2% Buffer B for 15 min. An Orbitrap Fusion Lumos Tribrid mass spectrometer

(Thermo Fisher) was used for data collection. Peptides were ionized at a spray voltage of 2 kV and

ions were collected into an ion transfer capillary set at 150˚C. The RF lens was set at 30%. MS1 scans

used a 375–1575 mass range, a scan resolution of 120,000, an AGC target of 3 � 106, and a maxi-

mum injection time of 246 ms. Precursor ions were selected for MS/MS sequencing if they had

charges of +2 to +7 and intensities > 8,000; precursors were isolated with an m/z window of 2 and

fragmented by high energy dissociation (HCD) set at 30%. Repeat sampling was reduced by using

an exclusion duration of 40 s and m/z tolerance of ± 10 ppm. MS2 scans were carried out in the

Orbitrap with an AGC target of 2 � 105. The maximum injection time and MS2 scan resolution were

set as 502 ms and 120,000, respectively.

Andromeda and MaxQuant (version 1.5.3.30) were employed for database searching and label-

free protein quantification (Cox and Mann, 2008; Cox et al., 2011). All MS2 spectra were searched

against the NCBI Genome Reference Consortium Chicken Build 6a (GRCg6a) database (49,673 pro-

tein sequences; released 2018-03-27). The default MaxQuant contaminants file was edited as

described (Wilmarth et al., 2015). Carbamidomethylation was selected as fixed modification, and

N-terminal protein acetylation and methionine oxidation were set as variable modifications. Peptides

were required to contain >5 amino acids and peptide masses must be <4600 Da; two missed clea-

vages were allowed for each peptide. Peptides and proteins were each filtered with a false discovery

rate (FDR) of 0.01. The Match Between Runs algorithm was used to improve proteome coverage; we

used an alignment window of 15 min and a match time window of 0.5 min. iBAQ protein intensities

were used for quantification.

Statistical analysis of proteomics data
For enrichment analysis of FM1-43high (N = 4 of 20 cell samples) and FM1-43low (N = 4 of 20 cell

samples) cells, the riBAQ data were transformed into log2 scale; linear models with empirical Bayes

statistics were fitted to the transformed data using the limma R package (Ritchie et al., 2015) (10.

18129/B9.bioc.limma). For the enrichment analysis, we only used the 345 proteins that were mea-

sured in at least two replicates in each group. To correct for multiple tests (Benjamini and Hoch-

berg, 1995), the FDR was used to correct two-sided p-values from a moderated t-test

(Ritchie et al., 2015); an enrichment of >1.5 fold and a FDR-adjusted p-value less than 0.05 was con-

sidered significant.

For statistical comparisons of ACTG1 and TMSB4X mass spectrometry results, to account for

potential intra-sample correlations, a mixed-effects model with a random intercept for samples was

fitted to the data and used t-tests of contrasts to assess differences between groups (Pinheiro and

Bates, 2000). The lmerTest R package (version 3.1–0) was used for the computation

(Kuznetsova et al., 2017). A p-value less than 0.05 was considered significant.

Analysis of single-cell proteomics profiles
For single-cell analysis, we filtered all identifications that were robustly detected in at least five cells,

leaving a total of 75 proteins (or protein groups). The iBAQ values for proteins in the 30 single cells

were normalized to the median of the cells’ mean expression and log2-transformed; nondetected

values were kept as zeros to avoid imputation artifacts. The empirical Bayes framework available in

the sva R package (10.18129/B9.bioc.sva) was used to remove the batch covariate, while accounting
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for the FM1-43 levels as covariate of interest (Johnson et al., 2007; Büttner et al., 2019;

Luecken and Theis, 2019). The same framework has been used previously to correct for batch

effects in protein mass spectrometry data (Carlyle et al., 2017). The resulting values are referred to

as log2-normalized iBAQ (niBAQ) units. The relationship between protein expression variance and its

average expression was fitted using a log-log cubic smoothing spline with four degrees of freedom;

37 proteins with a higher average expression than a log2 niBAQ value of 1.0 and a higher variance

than the fit (Figure 4A) were kept for dimensionality reduction. The lower-dimensional manifold

(four dimensions) was computed and a trajectory was inferred using the CellTrails R package

(Ellwanger et al., 2018) (10.18129/B9.bioc.CellTrails). Protein expression dynamics were calculated

by fitting the rolling mean (Haghverdi et al., 2016; Keren-Shaul et al., 2017) with a window size of

five of the log2 niBAQ values and the pseudotime axis using a cubic smoothing spline function with

4-degrees of freedom.

Immunocytochemistry
E15 chicken utricles were dissected in ice-cold Medium 199 containing Hanks’ salts (Thermo Fisher)

and were fixed with 4% formaldehyde in PBS at 4˚C overnight. Utricles were treated with 0.2 M

EDTA in PBS until the otoconia became invisible. For embedding, utricles were equilibrated at 50˚C

in PBS, followed by incubations in 2.5% and 5% low-melt agarose in PBS for 15 min. Utricles were

appropriately positioned while the 5% agarose solution was still hot. Cross-sections from E15 utricles

were cut to 80 mm thickness with a vibratome (Leica VT1200). Immunocytochemistry was performed

as previously described (Scheibinger et al., 2018) using the following primary antibodies: rabbit

anti-TMSB4X (1:250, Proteintech, Rosemont, IL, 19850–1-AP); rabbit anti-AGR3 (1:250, Proteintech,

11967–1-AP); rabbit anti-CRABP1 (1:250, Proteintech, 12588–1-AP); mouse anti-G-actin (1:250,

Developmental Studies Hybridoma Bank, JLA20); mouse anti-otoferlin (1:250, Developmental Stud-

ies Hybridoma Bank, HCS-1); goat anti-SOX2 (1:100, Santa Cruz Biotechnology, Dallas, TX, sc-

17320); mouse anti-tubulin beta-3 (TUJ1. 1:250, BioLegend, San Diego, CA, 801202); rabbit anti-par-

valbumin3/oncomodulin (Heller et al., 2002) (1:1000, Heller laboratory); and rabbit anti-MYO7A

(1:1000, Proteus Biosciences, Ramona, CA, 25–6790). Secondary antibodies: Alexa Fluor 546 donkey

anti-rabbit (1:250, Thermo Fisher, A10040); Alexa Fluor 647 donkey anti-mouse (1:100, Thermo

Fisher, A31571); Alexa Fluor 488 donkey anti-goat (1:250, Thermo Fisher, A11055). Validation of

antibodies is reported in Table 2.

DAPI was used to visualize nuclei and Alexa Fluor 488-phalloidin to visualize F-actin filaments.

Sections were imaged with a Plan-Apochromat 40x/1.3 NA oil DIC UV-IRM27 objective on a Zeiss

LSM 880 Airyscan laser scanning confocal microscope and Zen Black software. For whole utricle

vibratome cross-sections, confocal z-stacks were imaged with the tiling (6% overlap; mode: bound-

ing grid) and stitching function. The 40x Plan-Apochromat objective was used with 0.9x zoom set-

ting. For the extrastriolar and striolar regions, confocal z-stacks were collected separately with the

40x Plan-Apochromat objective used with 1.7 x zoom setting. Extrastriolar and striolar regions in

whole utricle vibratome cross-sections were identified using SOX2, TUJ1 and MYO7A antibody

labeling as previously described (Ellwanger et al., 2018) (Figure 3—figure supplement 6). Matur-

ing or mature striolar type I hair cells express MYO7A but lack SOX2 expression and harbor calyx

type terminals. Bouton-innervated extrastriolar Type II hair cells express both, MYO7A and SOX2.

All supporting cells express SOX2 and lack MYO7A as well as TUJ1 expression (Figure 3—figure

supplement 6). Maximum intensity projections were generated by a subset of the z-stacks to pre-

serve single cell resolution.

Single cell isolation and flow cytometry for RNA-seq
Single cells from E15 chicken utricles were collected and sorted as previously described

(Ellwanger et al., 2018). In this study, FM1-43 labeling was not performed and single cells were

sorted with a BD FACSAria Fusion instrument (BD Biosciences). Two independent batches of 270

cells were deposited into individual wells of 96-well plates, with prefilled wells of 4 ml lysis solution

with 1 U/ml of recombinant RNase inhibitor (Clontech #2313B), 0.1% Triton X-100 (Thermo #85111),

2.5 mM dNTP (Thermo Fisher #10297018), 2.5 mM oligo d(T)30 VN (5’-AAGCAGTGGTATCAACG-

CAGAGTACT30VN-3’, IDT). Plates containing sorted cells were immediately sealed, frozen on dry

ice and stored at �80˚C.
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Single-cell RNA-seq
Single-cell RNA-seq was performed via the method of Picelli and colleagues (Picelli et al., 2014)

using SMARTscribe (Clontech #639538) for reverse transcription. Kapa Biosystems Hifi HotStart

ReadyMix (2X) (#KK2602) was used for 22 cycles of amplification. Amplified cDNAs were purified by

bead cleanup using a Biomek FX automated platform and assessed with a fragment analyzer for

quantitation and quality assurance. Barcoded libraries were synthesized using a scaled-down Nex-

tera XT protocol (Mora-Castilla et al., 2016) in a total volume of 4 ml. A total of 384 libraries were

pooled and paired-end sequenced (2 � 150 bp) on a NextSeq 500/550 High Output flow cell. Raw

reads in FASTQ format were aligned to the NCBI Gallus gallus v5.0 (GCA_000002315.3) reference

genome using custom scripts on the Sherlock Supercomputer Cluster (Stanford). The FastQC tool

(version 0.11.6) was used to run an initial quality control check on the raw sequence data. Sequenc-

ing reads were mapped by STAR aligner and the transcriptome BAM files were quantified by RSEM.

The results were summarized into counts, fragments per kilobase of transcript per million (FPKM),

and transcript per million (TPM) expression matrices.

Scater (10.18129/B9.bioc.scater) was used to perform the quality control of the count expression

matrix of 384 cells and 19,153 genes. ERCC spike-in transcripts, 56 information-poor cells and 3422

low level expressed genes were removed from the count matrix before read count normalization

using SCnorm (Bacher et al., 2017). The CellTrails R package (10.18129/B9.bioc.CellTrails) was then

utilized following the strategy described in our previous study (Ellwanger et al., 2018). The variable

trajFeatureNames was set to the 182 previously used assay genes with the addition of AGR3, AK1,

GPX2, and TMSB4X, which restricted to the analysis to 186 genes (Table 3).

Replicates
In all cases, samples were biological replicates—none of the biological samples were split to be run

separately as multiple technical replicates. Figure 1. B-C, Confocal imaging of FACS-sorted cells.

Experiment was carried out 3 times. D-G, Characterization of mass spectrometry results. Number of

samples for FM1-43high: 1 cell, N = 5; 3 cells, N = 4; 5 cells, N = 4; 20 cells, N = 4. Number of sam-

ples for FM1-43low: 1 cell, N = 5; 3 cells, N = 3; 5 cells, N = 4; 20 cells, N = 4. H-I, Number of sam-

ples for FM1-43high: 1 cell, N = 10; 20 cells, N = 3. Number of samples for FM1-43low: 1 cell, N = 10;

20 cells, N = 3. Figure 2. Characterization of FM1-43high and FM1-43low samples. A-C, Experiment

Table 2. Antibodies used.

Antibody Dilution Supplier
Catalog
# Validation

rabbit anti-TMSB4X 1:250 Proteintech 19850–1-
AP

(Zhou et al., 2013; Li et al., 2018)

rabbit anti-AGR3
1:250

1:250 Proteintech 11967–1-
AP

From manufacturer’s website: correct-sized band by protein immunoblot in SKOV-3
cells, MCF-7 cells (chicken protein 88% identical to mouse)

rabbit anti-CRABP1
1:250

1:250 Proteintech 12588–1-
AP

From manufacturer’s website: correct-sized band by protein immunoblot in human
spleen tissue, transfected HEK-293 cells (chicken protein 95% identical to human)

mouse anti-G-actin
1:250

1:250 Developmental
Studies Hybridoma
Bank

JLA20 (Lin, 1981)

mouse anti-otoferlin
1:250

1:250 Developmental
Studies Hybridoma
Bank

HCS-1 (Goodyear et al., 2010) (chicken protein 73% identical to mouse)

goat anti-SOX2 1:100 1:100 Santa Cruz
Biotechnology

sc-17320 From manufacturer’s website: ‘recommended for detection of Sox-2 of mouse, rat,
human and avian origin by WB, IP, IF, IHC(P) and ELISA’

mouse anti-tubulin
beta-3 TUJ1. 1:250

1:250 BioLegend 801202 (Lee et al., 1990)

rabbit anti-
parvalbumin3/
oncomodulin

1:1000 Heller lab 16910 (Heller et al., 2002)

rabbit anti-MYO7A 1:1000 Proteus Biosciences 25–6790 (Morgan et al., 2016)
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Table 3. Genes included in scRNA-seq CellTrails analysis.

ABCA5 (WHRN) (NSG2) PLSCR5 TMSB4X

ACO1 DFNB59 LOC423919 PNPT1 TNNC2

ACTB (PJVK) (SHTN1) PODXL2 TOLLIP

ACTG1 DIAPH1 LOC772075 POU4F3 TPM1

ACTN1 DNM1 (XIRP2) PPP1R14D TPM3

ADGRV1 DPF3 LOXHD1 PRPS1 TPRN

AGR3 DRGX MAP1A PTPRQ TRIOBP

AK1 EFCAB6 MAPK10 PTPRT TTLL12

AKAP5 EFR3A MCOLN3 PTPRZ1 TUBA3E

ANKRD24 ELMOD1 MPRIP RAB26 TUBAL3

APPL2 EML1 MSN RDX TUBB2B

ARF1 EPS8L2 MSRB3 RFX8 TUBB6

ARF4 ESPN MYH9 RPS6KA2 TWF2

ARHGAP17 ESPNL MYO15A RPS6KA5 USH1C

ARMC4 EZR MYO1C RSPH1 USH1G

ATOH1 FOXJ1 MYO1H RSPH9 USH2A

ATP2B1 FSCN1 MYO3A SCG3

ATP2B2 FSCN2 MYO3B SERPINB6

ATP2B4 GALNT9 MYO6 SGCB

ATP6V1B2 GAPDH MYO7A SGCG

ATP6V1E1 GDI2 NFATC1 SGIP1

ATP8B1 GNAI1 NMNAT2 SH3GLB2

B3GNTL1 GNAI2 NPEPPS SKOR2

BAIAP2L2 GNAI3 OCM SLC17A8

BRSK2 GNAL OSBP2 SLC8A1

CAB39L GNAS OSBPL11 SLC9A3R2

CACNA2D2 GNG4 OSBPL1A SMPX

CALB2 GPSM2 OTOA SPAG1

CAPZA1 GPX2 OTOF SPTAN1

CAPZA2 GRXCR1 PAICS STARD10

CAPZB GRXCR2 PAK1 STXBP1

CCDC50 GSTO1 PAK2 SYN3

CDH23 HSF5 PAK3 TECTA

CHRNA10 HYDIN PCDH15 TECTB

CHRNA9 IRX2 PDCD6IP TMC1

CIB2 KIAA1211L PDK4 TMC2

CKB (KIAA1211) PDZD7 TMC5

CLIC5 KIAA1549 PGM2L1 TMCC2

CORO2B KIF1A PHF21B TMEM117

CRABP1 KLHDC7A PI4KA TMEM255B

CSNK2A1 LCP1 PITPNA TMEM30A

CTH LHFPL5 PITPNB TMIE

CUL1 LHX3 PLS1 TMPRSS3

DFNB31 LOC416212 PLS3 TMPRSS7

ABCA5 (WHRN) (NSG2) PLSCR5 TMSB4X

Table 3 continued on next page
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Table 3 continued

ABCA5 (WHRN) (NSG2) PLSCR5 TMSB4X

ACO1 DFNB59 LOC423919 PNPT1 TNNC2

ACTB (PJVK) (SHTN1) PODXL2 TOLLIP

ACTG1 DIAPH1 LOC772075 POU4F3 TPM1

ACTN1 DNM1 (XIRP2) PPP1R14D TPM3

ADGRV1 DPF3 LOXHD1 PRPS1 TPRN

AGR3 DRGX MAP1A PTPRQ TRIOBP

AK1 EFCAB6 MAPK10 PTPRT TTLL12

AKAP5 EFR3A MCOLN3 PTPRZ1 TUBA3E

ANKRD24 ELMOD1 MPRIP RAB26 TUBAL3

APPL2 EML1 MSN RDX TUBB2B

ARF1 EPS8L2 MSRB3 RFX8 TUBB6

ARF4 ESPN MYH9 RPS6KA2 TWF2

ARHGAP17 ESPNL MYO15A RPS6KA5 USH1C

ARMC4 EZR MYO1C RSPH1 USH1G

ATOH1 FOXJ1 MYO1H RSPH9 USH2A

ATP2B1 FSCN1 MYO3A SCG3

ATP2B2 FSCN2 MYO3B SERPINB6

ATP2B4 GALNT9 MYO6 SGCB

ATP6V1B2 GAPDH MYO7A SGCG

ATP6V1E1 GDI2 NFATC1 SGIP1

ATP8B1 GNAI1 NMNAT2 SH3GLB2

B3GNTL1 GNAI2 NPEPPS SKOR2

BAIAP2L2 GNAI3 OCM SLC17A8

BRSK2 GNAL OSBP2 SLC8A1

CAB39L GNAS OSBPL11 SLC9A3R2

CACNA2D2 GNG4 OSBPL1A SMPX

CALB2 GPSM2 OTOA SPAG1

CAPZA1 GPX2 OTOF SPTAN1

CAPZA2 GRXCR1 PAICS STARD10

CAPZB GRXCR2 PAK1 STXBP1

CCDC50 GSTO1 PAK2 SYN3

CDH23 HSF5 PAK3 TECTA

CHRNA10 HYDIN PCDH15 TECTB

CHRNA9 IRX2 PDCD6IP TMC1

CIB2 KIAA1211L PDK4 TMC2

CKB (KIAA1211) PDZD7 TMC5

CLIC5 KIAA1549 PGM2L1 TMCC2

CORO2B KIF1A PHF21B TMEM117

CRABP1 KLHDC7A PI4KA TMEM255B

CSNK2A1 LCP1 PITPNA TMEM30A

CTH LHFPL5 PITPNB TMIE

CUL1 LHX3 PLS1 TMPRSS3

DFNB31 LOC416212 PLS3 TMPRSS7
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was carried out two times. Panels were based on Experiments 1 and 2. Figure 3. A-C, Immunofluo-

rescence detection of AGR3. Experiment was carried out 3 times. D-F, CRABP1. Experiment was car-

ried out 3 times. G-I, TMSB4X. Experiment was carried out 5 times. J-L, G-actin. Experiment was

carried out 3 times. M-O, OCM. Experiment was carried out 3 times. Figure 4. Developmental tra-

jectory based on proteomics of single cells. Analysis used 30 single cells from two experiments. Fig-

ure 5. Developmental trajectory based on scRNA-seq of single cells. Analysis used two independent

batches of 270 cells.

Data availability
The mass spectrometry proteomics data, including raw data from the mass spectrometry runs, have

been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (Perez-

Riverol et al., 2019) with the dataset identifier PXD014256. The analyzed data are reported in Fig-

ure 1—source data 1. The analyzed single-cell RNA-seq data are reported in Figure 5—source

data 1.

Code availability
CellTrails (10.18129/B9.bioc.CellTrails) software is available from Bioconductor (release 3.9). Cell-

Trails is described in detail elsewhere (Ellwanger et al., 2018).
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lyzed single-cell RNA-seq data are reported in Figure 5—source data 1.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Barr-Gillespie PG 2019 Embryonic day 15 chick utricle
single cell analysis

https://www.ebi.ac.uk/
pride/archive/projects/
PXD014256

PRIDE, PXD014256
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