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Abstract
Background A single foam-rolling exercise can acutely increase the range of motion (ROM) of a joint. However, to date the 
adaptational effects of foam-rolling training over several weeks on joint ROM are not well understood.
Objective The purpose of this meta-analysis was to investigate the effects of foam-rolling training interventions on joint 
ROM in healthy participants.
Methods Results were assessed from 11 studies (either controlled trials [CT] or randomized controlled trials [RCTs]) and 46 
effect sizes by applying a random-effect meta-analysis. Moreover, by applying a mixed-effect model, we performed subgroup 
analyses, which included comparisons of the intervention duration (≤ 4 weeks vs > 4 weeks), comparisons between muscles 
tested (e.g., hamstrings vs quadriceps vs triceps surae), and study designs (RCT vs CT).
Results Our main analysis of 290 participants with a mean age of 23.9 (± 6.3 years) indicated a moderate effect of foam-
rolling training on ROM increases in the experimental compared to the control group (ES = 0.823; Z = 3.237; 95% CI 
0.325–1.322; p = 0.001; I2 = 72.76). Subgroup analyses revealed no significant differences between study designs (p = 0.36). 
However, a significant difference was observed in the intervention duration in favor of interventions > 4 weeks compared 
to ≤ 4 weeks for ROM increases (p = 0.049). Moreover, a further subgroup analysis showed significant differences between 
the muscles tested (p = 0.047) in the eligible studies. Foam rolling increased joint ROM when applied to hamstrings and 
quadriceps, while no improvement in ankle dorsiflexion was observed when foam rolling was applied to triceps surae.
Conclusion Longer duration interventions (> 4 weeks) are needed to induce ROM gains while there is evidence that responses 
are muscle or joint specific. Future research should examine possible mechanisms underpinning ROM increases following 
different foam-rolling protocols, to allow for informed recommendations in healthy and clinical populations.

Key Points 

Our meta-analysis revealed that foam-rolling training 
interventions can increase joint ROM in young healthy 
participants.

When the muscles examined in the eligible studies 
were considered, it was found that joint ROM increases 
following foam-rolling training are muscle- or joint-
specific.

A duration of more than four weeks of foam-rolling 
training should be applied to induce improvements in 
joint ROM.
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1 Introduction

In a warm-up setting, several interventions are performed to 
increase the range of motion (ROM) of a joint. Stretching is 
widely used throughout all sports and different populations 
[1–9]; however, during the last decade, foam rolling has also 
become a popular warm-up technique to increase joint ROM 
[1, 10–14]. A recent meta-analysis reported that foam roll-
ing is similarly as effective as stretching for increasing joint 
ROM acutely [12]. Furthermore, although an acute bout of 
stretching with a long duration (i.e., ≥ 60 s per muscle group) 
in isolation (with no dynamic warm-up activities) may tran-
siently decrease strength and power performance [2, 3, 8, 
15], no subsequent performance deficits have been reported 
after an acute bout of foam rolling [16, 17].

Regarding long-term (i.e., chronic/training) interventions 
to increase joint ROM, a number of studies have reported 
that different types of stretching (e.g., static, ballistic, pro-
prioceptive neuromuscular facilitation [PNF]) [18] are effec-
tive [19–25]. However, evidence on the training effects of 
foam rolling on joint ROM is limited and inconsistent. For 
example, Hodgson et al. [26] reported no increases in joint 
ROM following a 4-weeks intervention while Kiyono et al. 
[27] found a significant increase in ROM after 5 weeks of 
training.

Since recent research suggests that foam rolling is equally 
effective in inducing acute changes in ROM compared to 
stretching [12], there is a need to summarize all the available 
evidence and to conduct a meta-analysis on the longer term 
training effects of foam rolling on ROM. Hence, this system-
atic review and meta-analysis aims to examine if foam-roll-
ing training interventions can increase joint ROM in healthy 
participants. Moreover, subgroup analyses will examine spe-
cific responses due to intervention duration (e.g., ≤ 4 weeks 
vs > 4 weeks), within various muscles (e.g., hamstrings vs 
quadriceps vs triceps surae), and study designs (randomized 
controlled trials [RCT] versus controlled trials [CTs]).

2  Methods

This review was conducted according to the PRISMA guide-
lines and the suggestions from Moher et al. [28] for system-
atic reviews with meta-analysis.

2.1  Search Strategy

An electronic literature search was performed in PubMed, 
Scopus, and Web of Science. Papers were considered if they 
were published up to 29th September 2021. The terms used 
to detect long-term foam-rolling intervention studies were 
similar to those used in a recent review on the long-term 

effects of stretching on ROM (i.e., chronic effects, training 
effects, effects, long-term, and intervention) [22]. Moreover, 
to find studies dealing with foam rolling, the search “terms 
foam rolling, self-myofascial release, roller massage, and 
foam roller” were used according to previous meta-analy-
ses [17, 29]. To detect flexibility studies, the search terms 
“flexibility and range of motion” were used [22]. The search 
code for all three databases was (“chronic effects” OR “train-
ing effects” OR “effects” OR “long-term” OR “interven-
tion”) AND (“foam rolling” OR “self-myofascial release” 
OR “roller massage” OR “foam roller”) AND (“flexibility” 
OR “range of motion”). The systematic search was carried 
out by two independent researchers (AK, MN). In the first 
step, all the hits were screened by their title and abstract. If 
the content of a study remained unclear, the full text was 
screened to identify the relevant papers. Following this inde-
pendent screening process, the researchers compared their 
findings. Disagreements were resolved by jointly reassessing 
the studies against the eligibility criteria.

2.2  Inclusion and Exclusion Criteria

This review considered studies that investigated the long-
term training effects of foam rolling on joint ROM in healthy 
participants. We included peer-reviewed original stud-
ies including English and German languages. The studies 
were included when they were either RCTs or CTs with an 
intervention duration ≥ 2 weeks [22]. This implied that we 
excluded studies that were dealing with the acute effects of 
foam rolling (or interventions that were < 2 weeks’ duration), 
investigated any combined treatment (e.g. foam roller com-
bined with stretching), or had another treatment as control 
condition (e.g., stretching). Moreover, we excluded review 
papers, case reports, special communications, letters to the 
editor, invited commentaries, conference papers, or theses.

2.3  Extraction of the Data

From the included papers, the characteristics of the partici-
pants, the sample size, the study design, the characteristics 
of the intervention (i.e., weeks of intervention, frequency of 
intervention per week, duration of each training session per 
muscle tendon unit, pressure of the foam roller, frequency 
the foam roller) was applied and the results of the main vari-
ables (flexibility parameters) were extracted. For the flexibil-
ity parameters pre- and post-intervention values plus stand-
ard deviations of the foam rolling and control groups were 
extracted. If some of the required data were missing in the 
included studies, the authors of the studies were contacted 
via email or similar channels (e.g., ResearchGate).
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2.4  Statistics and Data Synthesis

The meta-analysis was performed using Comprehensive 
Meta-Analysis software, according to the recommendations 
of Borenstein et al. [30]. By applying a random-effect meta-
analysis, we assessed the effect size in terms of the standard-
ized mean difference. If any study reported more than one 
effect size, the mean of all the outcomes (effect sizes) within 
that study was used for the analysis and was defined as com-
bined (as suggested by Borenstein et al. [30]). Moreover, 
by applying a mixed-effect model, we performed subgroup 
analyses. Although there is no general rule of thumb [30], 
we only performed subgroup analyses when there were ≥ 3 
studies included in the respective subgroups. Consequently, 
we were unable to perform further subgroup analyses on 
activity level (highly active vs recreational) or sex. However, 
subgroup analyses for the weeks of intervention (≤ 4 weeks 
vs > 4 weeks), the muscles tested (hamstrings, quadriceps, 
triceps surae, and the rest of the muscles), and the study 
design (RCTs vs CTs) were performed. We have chosen 
4 weeks as a cut-off since it is a typical duration in stretching 
studies and it was half of the longest intervention duration of 
the eligible studies (i.e., 8 weeks). In the case that a muscle 
or muscle group was examined in fewer than three studies 
(i.e., rectus femoris, infraspinatus, adductors), the findings 
were summarized into a subgroup named “rest of the mus-
cles”. To determine differences between the effect sizes of 
the subgroups, Q-statistics were applied [30]. According to 
the recommendations of Hopkins et al. [31], the effects for 
a standardized mean difference of < 0.2, 0.2–0.6, 0.6–1.2, 
1.2–2.0, 2.0–4.0, and > 4.0 were defined as trivial, small, 
moderate, large, very large, and extremely large, respec-
tively. I2 statistics were calculated to assess the heteroge-
neity among the included studies, and thresholds of 25%, 
50%, and 75% were defined as having a low, moderate, and 
high level of heterogeneity, respectively [32, 33]. An alpha 
level of 0.05 was defined for the statistical significance of 
all the tests.

2.5  Risk of Bias Assessment and Methodological 
Quality

The methodological quality of the included studies was 
assessed using the Physiotherapy Evidence Database 
(PEDro) scale. In total, 11 methodological criteria were 
rated by 2 independent researchers (AK, MN) and were 
assigned either one or no point. Hence, higher scores indi-
cated better methodological quality of the study. In the case 
of conflict between the two researchers, the methodological 
criteria were reassessed and discussed. Moreover, statistics 
of the Egger’s regression intercept test and visual inspection 
of the funnel plot were applied to detect possible publica-
tion bias.

3  Results

3.1  Results of the Search

Overall, after removal of the duplicates, 210 papers were 
screened, from which 9 papers were found to be eligible 
for this review. However, following the additional search 
of the references (search through the reference list) and 
citations (search through Google Scholar) of the 9 already 
included papers, two more papers were identified as rel-
evant. Therefore, in total, 11 papers were included in this 
systematic review and meta-analysis. The search process 
is illustrated in Fig. 1.

Overall, 46 effect sizes could be extracted from these 
studies. In summary, 290 participants with a mean age 
of 23.9 (± 6.3 years) participated in the included studies. 
Table 1 presents the characteristics and outcomes of the 
11 studies.

3.2  Risk of Bias Assessment and Methodological 
Quality

Figure 2 shows the funnel plot, including all 11 studies 
in this meta-analysis. A visual inspection of the funnel 
plot and the Egger’s regression intercept test (intercept 
4.26; p = 0.07) indicated a tendency of reporting bias. The 
methodological quality, as assessed with the PEDro scale, 
revealed a range of scores between 5 and 8 points (out of 
10) for all the included studies. The average PEDro score 
value was 6.36 (± 0.92), indicating a low risk of bias [34, 
35]. The two assessors agreed with 93.4% of the 121 cri-
teria (11 studies × 11 scores). The mismatched outcomes 
were discussed, and the assessors agreed on the scores 
presented in Table 2.

3.3  Overall Effects

The meta-analysis on joint ROM revealed a moderate effect 
size in favor of foam rolling compared to the control condi-
tion (ES = 0.823; Z = 3.237; 95% CI 0.325–1.322; p = 0.001; 
I2 = 72.76). Figure 3 presents the forest plot of the meta-anal-
ysis, sorted by the standard difference in means beginning 
with the lowest value (0.104) up to the highest value (5.744).

3.4  Subgroup Analysis

A summary of all the subgroup analyses is provided 
in Table 3. The subgroups analyzed were the weeks of 
intervention (≤ 4 weeks vs > 4 weeks), the muscle tested 
(hamstrings, quadriceps, triceps surae, and the rest of the 
muscles), and the study design (RCT vs CT).
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Q statistics of the subgroup analyses revealed no sig-
nificant differences between study designs (RCTs vs CTs).

Subgroup analysis showed that when the muscle group 
was considered there was a significant difference (p = 0.047) 
between muscle groups (hamstrings vs quadriceps vs tri-
ceps surae versus rest of the muscles). When foam roller 
was applied to hamstrings, quadriceps, and the rest of the 
muscles, it was effective in increasing ROM in the experi-
mental compared to the control group (p < 0.001, p = 0.034, 
and p = 0.006, respectively). However, when foam roller was 
applied to triceps surae muscle no difference was observed 
in dorsiflexion (p = 0.949).

Moreover, subgroup analysis of the intervention dura-
tion indicated significant differences between interventions 
lasting ≤ 4 weeks compared to > 4 weeks (p = 0.049). Whilst 
studies lasting ≤ 4 weeks showed no significant difference 
in ROM improvements between the foam rolling and the 
control condition (p = 0.326), studies > 4 weeks of training 
showed significant ROM increases in the experimental com-
pared to the control groups (p = 0.001).

4  Discussion

The purpose of this review was to assess if foam-rolling 
training interventions can increase joint ROM in healthy 
participants. The main meta-analysis, which included a 

total of 11 studies, 46 effect sizes, and 290 participants 
(23.9 ± 6.3 years) revealed an increase in joint ROM with 
a medium magnitude of change (ES = 0.823; p = 0.001) 
in the experimental compared to the control groups. Sub-
group analyses showed no significant difference between 
study designs (RCTs vs CTs). In contrast, when the muscles 
examined in the eligible studies were considered, significant 
increases in ROM were found when foam roller was applied 
on quadriceps and hamstrings but not on triceps surae. Fur-
thermore, it was found that foam-rolling interventions longer 
than 4 weeks are needed to induce significant increases in 
joint ROM.

A recent meta-analysis [12] showed that a single foam 
roller treatment can acutely increase joint ROM with a 
medium effect size (ES = 0.74; p < 0.001). Along this line, 
in this meta-analysis it was found that foam roller train-
ing interventions longer than 4 weeks demonstrate similar 
ROM increments (ES = 0.823). Furthermore, Wilke et al. 
[12] found a small effect size for ROM increases following 
triceps surae treatment (ES = 0.43; p < 0.05), but a moder-
ate effect for hamstrings (ES = 1.0; p < 0.05) and quadriceps 
(ES = 0.83; p > 0.05). This was partly confirmed by our 
results indicating small (ES = 0.425; p < 0.05) and moder-
ate effect sizes (ES = 0.645; p < 0.05) for quadriceps and 
hamstrings, respectively. In contrast, our analyses for the 
triceps surae muscle showed a non-significant trivial effect 
size in ankle dorsiflexion following several weeks of foam 

Fig. 1  PRISMA flowchart
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rolling (ES =  − 0.024). Since the triceps surae is more distal 
compared to the quadriceps or the hamstrings, it is likely 
that less pressure can be applied on the muscle during a 
foam-rolling exercise compared to more proximal muscle 
groups. This might explain the difference found in this meta-
analysis in the effect sizes between triceps surae and other 
major lower limb muscles (i.e., hamstrings, quadriceps) and 
also in the study of Wilke et al. [12]. The effect of the pres-
sure applied on the triceps surae during foam rolling should 
therefore also be addressed in future studies by an additional 
load as suggested by Starrett and Cordoza [36]. A further 
explanation for the lack of changes in ankle ROM when 
foam rolling is applied on triceps surae muscle might be the 
relatively short duration training sessions used in the eligible 
studies. In the three studies examining triceps surae muscle, 
the participants were asked to foam roll their calves for 20 
or 40 s [37], 3 × 20 s [38], and 3 × 30 s [27]. As a significant 
increase in ankle ROM was found only by Kiyono et al. [27] 
when 90 s of foam roller was used three times per week over 
5 weeks, an association between intervention duration and 
ROM increases is possible. Moreover, it should be noted that 
the three studies that applied foam rolling of the calves have 
used different ankle ROM assessments. Whilst Kiyono et al. 
[27] performed a dynamometry measurement for assessing 
ankle ROM, Guillot et al. [37] used a weight-bearing lunge 
test and the participants of Stovern et al. [38] performed an 
active dorsiflexion in a sitting position. Hence, this vari-
ability of the research designs combined with the limited 
number of studies could have likely contributed to the trivial 
effect size in ankle ROM found in our meta-analysis. In addi-
tion, since the ankle joint has a much more limited ROM 
than the hip or knee due to bone and ligament structures 
[39, 40] this could possibly limit the potential for long-term 
increases in ankle joint flexibility. Moreover, the human 
triceps surae muscle tendon unit comprises muscles with 
short muscle fascicles and long tendinous tissues extending 

from the calcaneus insertion to the most distal part of the 
soleus [41]. Higher values in Achilles tendon stiffness [42] 
have been reported compared with values obtained for the 
human patellar tendon [43, 44] and this may also limit ROM 
increases following a long-term intervention. The combina-
tion and interaction of these aforementioned structural char-
acteristics of the ankle and the triceps surae muscle tendon 
unit possibly explain the lack of significant increases in 
ankle ROM following a long-term foam-rolling intervention. 
The acute increase in ankle ROM following a single bout 
of foam rolling [12] is likely triggered by changes in pain 
perception [13] rather than structural changes. Moreover, it 
was assumed that the study duration could play an impor-
tant role for long-term joint ROM increases. The subgroup 
analysis for study duration showed a significant difference 
on joint ROM between > 4 weeks’ intervention time and 
studies of ≤ 4 weeks (p = 0.049). However, when perform-
ing subgroup analyses between ≤ 5 weeks and > 5 weeks or 
between ≤ 6 weeks and > 6 weeks’ intervention time no such 
difference (5 weeks cut-off: Q = 0.000; df (Q) = 1; p = 0.996; 
6 weeks cut-off: Q = 0.450; df (Q) = 1; p = 0.503) was found. 
Hence, we believe that 4 weeks was the right cut-off point 
for the studies eligible for this review. Consequently, ROM 
adaptations following foam rolling should exceed 4 weeks 
of training and practitioners as well as future researchers 
should take this threshold into account (see also Table 3).

Finally, subgroup analysis comparing RCTs and CTs 
revealed no significant differences between study designs 
(p = 0.359). However, we would like to report possible limi-
tations in our meta-analysis due to the inclusion of various 
studies with different study designs. For example, LeGal 
et al. [45] used a repeated measures design where the par-
ticipants served as their own controls (throughout a 5-weeks 
period) prior to the 5-weeks intervention. Hence, this led 
to a lower variance in the ROM parameters compared to 
regular CTs (with different participants as controls) or RCTs. 

Fig. 2  Funnel plot analysis
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Consequently, the effect size of LeGal et al. [45] was by far 
the highest with 5.7, and led to a potential risk of publica-
tion bias (Fig. 2). However, even when we excluded this 
study, the overall result of the meta-analysis was similar 
despite the lower effect size in absolute value but not in 
the magnitude (ES = 0.606; Z = 4.680; 95% CI 0.35–0.859; 
p < 0.001; I2 = 0.00). Moreover, one study applied a unilat-
eral design with the contralateral leg as control following 
3 weeks of foam roller training [46]. Although, there are 
studies reporting contralateral effects following a single bout 
of foam rolling [47, 48], to date it is not known if long-term 
foam-rolling interventions can induce crossover effects. 
According to recent unilateral study designs with longer-
term static stretching training interventions, an increase in 
joint ROM of the contralateral leg has been observed follow-
ing 12 and 24 weeks of training [24, 25]. Increased ROM of 
the stretched limb has been attributed to musculotendinous 
and neural responses [2, 15]. Stretch-induced musculotendi-
nous changes with the stretched limb can include an increase 
in muscle compliance [49, 50], viscoelastic tissue changes 
[51], and muscle architectural adaptations [52, 53]. How-
ever, as the contralateral limb in the included studies was 
not mechanically stretched, musculotendinous mechanisms 
cannot be assumed. Therefore, it is possible that a CNS-
mediated effect induced by unilateral foam rolling could 
affect the ROM of the contralateral, non-stretched muscle 
[54]. Assuming such a contralateral effect in the control leg 
in the study of Sandrey et al. [46], the inclusion of this study 
makes the results of the current meta-analysis even more 
robust. However, future RCTs (i.e., unilateral treatment in 
the intervention group vs control group without interven-
tion) should investigate the chronic contralateral effect of 
foam rolling.

Whilst the effects of a long-term stretching interven-
tion on ROM have been comprehensively investigated 
during the past two decades [19–25], only 11 studies 
dealing with long-term training effects of foam rolling on 
ROM could be detected for this meta-analysis. Accord-
ing to our analysis, longer-term foam rolling leads to a 
chronic increase of ROM. Hence, it would be interest-
ing to compare the magnitude in the increase of ROM 
between foam rolling and stretching. Apart from the two 
already included studies in the main analysis [55, 56], we 
have also found a further study in our systematic search 
[57] where the effects of foam rolling with either static 
stretching [56, 57], or PNF stretching [58] were compared. 
Our analysis showed that based on these three studies no 
significant difference between stretching and foam rolling 
exists (Fig. 4; [ES = 0.516; Z = 1.566; 95% CI − 0.130 to 
1.161; p = 0.12; I2 = 60.25]). However, caution must be 
taken when interpreting this result since only three studies 
compared these two modalities (stretching vs foam roll-
ing). Interestingly, the individual results of Smith et al. Ta
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[57] showed a significant positive effect of stretching com-
pared to foam rolling when applied on triceps surae. As 
mentioned above, our subgroup analysis showed that ankle 
dorsiflexion was not increased after foam-rolling interven-
tion in triceps surae. Hence, according to this evidence, 
static stretching may be more effective than foam rolling 
in increasing ankle ROM when applied to triceps surae. 
Future studies should consider different intermuscular 
responses to foam rolling and stretching.

Furthermore, it would be important to investigate which 
mechanism causes an increase in ROM following a foam-
rolling training intervention. There was only one of the 11 
studies that assessed neurological (tolerance to stretch) but 
also structural (muscle stiffness) parameters to identify pos-
sible mechanisms [27]. Foam rolling is a type of soft tissue 
self-massaging that aims to release the soft tissue from the 
traction exerted by a fascia that has become either inelastic 
or adherent to adjacent tissues due to injury or pathology 

Fig. 3  Forest plot presenting the 11 included studies investigating the effects of FR on ROM CI confidence interval, combined mean of the 
selected outcomes of one study, FR foam rolling, ROM range of motion, Std diff standardized difference

Table 3  Statistics of the subgroup analysis

Positive values of Std diff in means indicates a favorable effect for foam rolling (and vice versa) on range of motion
CI confidence interval, CT controlled trial, RCT  randomized controlled trial, Std diff standardized difference
a Significant difference between groups
b Significant difference within a group
c Muscles with < 3 studies were summarized to one group (i.e., Rectus femoris, Infraspinatus, Adductors)

Subgroup Number of meas-
ures

Std diff in means (95% CI) p Value Q statistics

Type of study
 CT 3 1.822 (− 0.495 to 4.139) 0.123
 RCT 8 0.73 (0.443 to 1.017)  < 0.001b

 Overall 11 0.746 (0.462 to 1.031)  < 0.001 (Q = 0.840; df (Q) = 1; p = 0.359)
Intervention duration
  ≤ 4 weeks 3 0.253 (− 0.252 to 0.757) 0.326
  > 4 weeks 8 1.084 (0.428 to 1.740) 0.001b

 Overall 11 0.562 (0.162 to 0.962) 0.006 (Q = 3.880; df (Q) = 1; p = 0.049)a

Muscle tested
 Hamstrings 8 0.645 (0.319 to 0.971)  < 0.001b

 Quadriceps 5 0.425 (0.033 to 0.818) 0.034b

 Triceps surae 3  − 0.024 (− 0.763 to 0.714) 0.949
 Rest of the  musclesc 3 2.864 (0.826 to 4.903) 0.006b

 Overall 19 0.527 (− 0.150 to 0.009)  < 0.001b (Q = 7.952; df (Q) = 3; p = 0.047)a
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[59, 60]. Although it is not clear if foam rolling releases 
myofascia [10], acute increases in soft tissue elasticity, pain 
threshold, and subsequently stretch tolerance have also been 
observed [13] and it is assumed that altered pain percep-
tion is also a possible mechanism for long-term increases 
in ROM rather than changes in muscle stiffness [27]. Fur-
thermore, such neurological changes may be caused by the 
friction-induced increases in temperature of the skin, muscle 
tissue, and fascia as well as the stress generated by the pres-
sure exerted by rolling the muscles [61].

Regarding the various possibilities to roll a muscle in 
terms of frequency or in terms of pressure, little information 
is reported in the included studies. Only 4 of the 11 stud-
ies reported the frequency of the foam rolling application 
(i.e., time that was used to roll back and forth; see Table 1). 
Behm et al. [11] in their clinical commentary, suggested 
that the optimal frequency for an acute increase in ROM is 
likely 2–4 s of rolling time for a single roll in one direction 
over the length of a body part. However, this has not been 
tested for longer training durations, therefore future studies 
should compare the effects of different rolling frequencies. 
Although 8 of the 11 studies reported the pressure applied 
on the foam roller, it is not possible to compare the results 
due to the various types of reporting rolling pressure (e.g., 
7/10 visual analogue scale [VAS]  vs pressure with little 
discomfort). Therefore, the authors encourage use of both 
VAS and objective measures (force assessed on a force plate) 
in future studies, which would allow a better comparison of 
the results between the studies.

Since a single foam-rolling treatment with an additional 
vibration stimulus has the potential to induce positive results 
in terms of ROM [12, 62] and performance parameters [17, 
63], future studies on the long-term effects of foam rolling 
should take vibration foam rolling into account. Moreover, 
future studies should test performance parameters (i.e., 
strength) to detect possible changes due to a long-term foam 
rolling intervention as seen following a stretching stimulus 
[25]. There is some evidence of performance increments 

following acute foam-roller interventions [64] and 5 of the 
11 studies included in this meta-analysis reported strength-
based measurements and particularly promising results fol-
lowing foam rolling [26, 38, 45, 58, 65].

This meta-analysis has some limitations. First, only three 
moderating variables (i.e., weeks of intervention, muscles 
tested, and study design) were considered for subgroup 
analyses. This potentially obscures further potential vari-
ables (sex, activity level, rolling intensity, rolling frequency), 
which might have explained the increase in ROM following 
a foam-rolling training intervention. Second, a moderate 
to high heterogeneity was found in the main meta-analysis 
(I2 = 72.76). This can be likely explained by, for example, 
varying outcome measures, participants, or intervention 
duration. However, the most likely explanation was the 
study of LeGal et al. [45] with by far the highest effect 
size of 5.7. Conducting the meta-analysis without LeGal 
et al. [45] would lead to similar results but low heterogene-
ity (ES = 0.606; Z = 4.680; 95% CI 0.35–0.859; p < 0.001; 
I2 = 0.00). Third, the conclusions drawn from our results are 
mainly based on a young adult population (23.9 ± 6.3 years). 
Hence, future studies should also investigate younger and 
older populations.

5  Conclusion

In conclusion, our meta-analysis showed that long-term 
foam-rolling interventions can increase joint ROM in 
young healthy participants. However, ROM increases may 
be muscle-and/or joint-dependent as foam rolling on the 
triceps surae muscle did not increase ankle dorsiflexion. 
Moreover, our results indicate that an intervention of more 
than four weeks is needed to observe significant changes in 
ROM. Future studies should investigate the effects of a high-
volume foam-rolling intervention, the effects of a vibration 
foam-rolling intervention, the contralateral effects of foam 
rolling, the possible differences in intramuscular responses 

Fig. 4  Forest plot comparing the effects of FR and STR on ROM CI confidence interval, FR foam rolling, ROM range of motion, Std diff stand-
ardized difference, STR stretching
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(e.g., calf vs quadriceps rolling), strength-based effects (e.g., 
maximum torque values), and the mechanism underpinning 
increases in ROM. Moreover, a quantification of the pressure 
applied on the foam roller (i.e., with force plates) and also 
different frequencies of the foam-rolling application (e.g., 
1 s per roll from distal to proximal vs 4 s per roll) should 
be examined in order to obtain a clearer picture of the long-
term effects of foam rolling.
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