
RESEARCH ARTICLE

The Prognostic and Clinicopathological

Significance of Tumor-Associated

Macrophages in Patients with Gastric Cancer:

A Meta-Analysis

Songcheng Yin1☯, Jinyu Huang1☯, Zhan Li2, Junyan Zhang1, Jiazi Luo1, Chunyang Lu1,

Hao Xu1, Huimian Xu1*

1 Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China,

2 Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China

☯ These authors contributed equally to this work.

* xuhuimian@126.com

Abstract

Objective

Comprehensive studies have investigated the prognostic and clinicopathological value of

tumor-associated macrophages (TAMs) in gastric cancer patients, yet results remain con-

troversial. Therefore, we performed a meta-analysis to clarify this issue.

Methods

PubMed, Embase, and the Cochrane Library databases were searched to identify eligible

studies. We extracted hazard ratios (HRs) and odds ratios (ORs) with their corresponding

95% confidence intervals (95% CIs) to estimate the effect sizes. In addition, subgroup analy-

sis and sensitivity analysis were also conducted.

Results

A total of 19 studies involving 2242 patients were included. High generalised TAMs density

was significantly associated with poor overall survival (OS) (HR 1.49, 95% CI 1.15–1.95).

Subgroup analysis revealed that CD68+ TAMs had no significant effect on OS (HR 1.38,

95% CI 1.00–1.91). High M1 TAMs density was correlated with better OS (HR 0.45, 95% CI

0.32–0.65). By contrast, high density of M2 TAMs was correlated with a poor prognosis for

OS (HR 1.48, 95% CI 1.25–1.75). Furthermore, high M2 TAMs density was correlated with

larger tumor size, diffuse Lauren type, poor histologic differentiation, deeper tumor invasion,

lymph node metastasis, and advanced TNM stage.

Conclusions

Overall, this meta-analysis reveal that although CD68+ TAMs infiltration has the neutral

prognostic effects on OS, the M1/M2 polarization of TAMs are predicative factor of progno-

sis in gastric cancer patients.
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Introduction

Gastric cancer represents the fifth most common malignancy and the third leading cause of

cancer death in the world [1]. Despite recent advances in the diagnosis and medical treatment

of gastric cancer, patient survival remains poor, especially for those in the advanced stages of

the disease [2]. In addition, it has been reported that the current TNM classification scheme

does not adequately reflect the tumor biological behavior and patient prognosis for gastric can-

cer [3]. Therefore, it is imperative to identify biomarkers to predict tumor progression and

patient survival, as well as to provide novel therapeutic targets.

Tumor-associated macrophages (TAMs), as fundamental components of the inflammatory

microenvironment of tumors, originate from circulating monocytes and are recruited to the

tumor site [4, 5]. Different microenvironments can lead to two different polarizations of

TAMs: the classically activated type M1 phenotype and the alternatively activated M2 pheno-

type. M1 macrophages are considered to be induced by Th1 cytokines (e.g., interferon-γ),

microbial stimuli (e.g., lipopolysaccharide) and tumor necrosis factor α, with the function of

promoting an inflammatory response and antitumor activity. M2 macrophages are mainly

activated by Th2 cytokines (e.g., interleukin 4, interleukin 13), which participate in the anti-

inflammatory response, tissue remodeling, angiogenesis and tumor cell activation [5–8].

The role of TAMs in the tumor microenvironment as well as their prognostic value have

been widely discussed in many human cancers such as breast [9], lung [10], prostate [11], liver

[12] and gastric cancer [13]. However, there exists controversy regarding the impact of TAMs

on patient prognosis and clinicopathological characteristics of gastric cancer. Numerous publi-

cations have demonstrated that the TAMs density was associated with poor prognosis [13–15];

on the contrary, some studies hold different views [16–18]. Moreover, several articles reported

that the polarizing subtypes of TAMs have different prognostic effects [19, 20]. To resolve

these inconsistencies as well as to identify more precise prognostic biomarkers, we performed

a meta-analysis to evaluate the correlation between TAMs density and its prognostic and clini-

copathological significance in patients with gastric cancer.

Materials and Methods

Search strategy and selection criteria

A comprehensive literature search of PubMed, Embase, and the Cochrane Library databases

was conducted from their inception through August 17, 2016. The following key words were

variably combined: “stomach”, “gastric”, “neoplasm”, “cancer”, “carcinoma”, “tumor”, “mac-

rophage”, “tumor-associated macrophage”, and “tumor-infiltrating macrophage”. Addition-

ally, we also manually checked the reference entries of the relevant literature to minimize any

omissions that may have occurred during the search process. This meta-analysis was based on

previously published articles; therefore, ethical approval was not required.

To identify eligible studies, the inclusion criteria for this meta-analysis was established as

follows: (1) gastric cancer as the target disease, (2) detected macrophage density in primary

tumor tissues, (3) correlation of macrophage density with either prognosis (e.g., OS, DFS) or

clinicopathological characteristics, (4) sufficient data to extract hazard ratios (HRs), the odds

ratio (ORs), and their 95% confidence intervals (CIs), and (5) full text publications in English.

Specific types of literature such as reviews, comments and conference abstracts were not

included in our meta-analysis. If overlapping patients were reported with different TAMs

markers or distribution among the articles, all of the reported incidents were included for dif-

ferent objective analysis. The process of the literature search was independently finished by

two authors (Songcheng Yin and Jinyu Huang).
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Quality assessment

The Newcastle-Ottawa scale (NOS) [21] was used to evaluate the quality of the original studies.

This scale mainly involves three components: patient selection, study comparability and out-

come assessment. Each of the included studies obtained a score between 0 and 9. Studies with

an NOS score�6 were regarded as high quality. Two authors (Songcheng Yin and Zhan Li)

independently performed this assessment, and discrepancies were resolved by discussion.

Data extraction

Two reviewers (Songcheng Yin and Jiazi Luo) independently performed the data extraction.

The relevant data from the included studies comprised the first author’s name, publication

year, country or area, number of patients, age, gender, makers of macrophage, detection meth-

ods of macrophage density, cut-off value, clinicopathological parameters, and survival data.

Any inconsistencies were resolved through negotiation and consultation.

Statistical analysis

The hazard ratios (HRs) with 95% confidence intervals (CIs) were applied to investigate the

association between the TAMs density and survival of patients with gastric cancer. For time-

to-event outcomes, HRs and their 95% CIs were given directly in most of the original studies.

However, several articles presented Kaplan–Meier curves rather than the HR; therefore, the

HR was calculated from the survival curves using the methods reported by Parmar and Tierney

[22, 23]. Odds ratios (ORs) with confidence intervals (CIs) were used to evaluate the correla-

tion between the TAMs density and clinicopathological characteristics. A combined HR and

OR>1 suggested a worse prognosis in the high TAMs density group and was regarded to be

statistically significant if the 95% CI did not overlap 1.

Heterogeneity among the studies was assessed by the Cochran’s Q statistic and I2 tests [24].

Either P<0.10 or I2 statistic >50% defined significant heterogeneity across the articles, in

which case the random effects model was performed; otherwise, the fixed effects model was

implemented. To find the source of heterogeneity and assess its effect on the outcome of vari-

ous variables, a subgroup analysis was conducted. In addition, whether the combined results

were stable, we performed a sensitivity analysis to gauge this stability. Meanwhile, Begg’s test

[25] and Egger’s test [26] regression model were used to test for publication bias. All statistical

analysis programs were performed using STATA version 12.0 (Stata, College Station, TX,

USA), and all P values were two-sided.

Results

Search results

A total of 1257 articles were initially identified in our systematic literature search. Following

the exclusion of duplicate publications, 1041 records remained. After screening the titles and

abstracts, another 988 articles were excluded. Then, we systematically reviewed the remaining

full text articles and precluded another 34 studies because of inconsistencies with the selection

criteria. Finally, 19 articles [13–20, 27–37] published between 2003 and 2016 were included in

this meta-analysis (Fig 1).

Study characteristics

Among the included studies, different markers (CD68, CD163, CD204, etc.) were used to label

the TAMs types and their localized distribution (e.g., intratumor and stroma). Some partici-

pants were enrolled twice for marker-specific or distribution-specific analyses in different
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articles [13, 28, 36, 37]. Therefore, 2242 gastric cancer patients were included in this meta-

analysis. CD68+ was used as an ordinary maker of TAMs in 15 articles. M1 TAMs (labeled by

CD11c, and NOS2) and M2 TAMs (labeled by CD163, CD204, and CD206) were reported in 2

and 9 articles, respectively. The fundamental features and study quality of the 19 eligible stud-

ies are summarized in Table 1.

TAMs density and OS in gastric cancer patients

There is a phenomenon that multiple markers were used to estimate the impact of TAMs den-

sity on patient survival. When CD68 and other marker data were reported in a single study, we

choose CD68, a common macrophage marker, as the indicator of TAMs detection to prevent

the incorporation of duplicate samples. The pooled HR showed that a highly generalized

TAMs density was significantly associated with poor OS (HR 1.49, 95% CI 1.15–1.95, Fig 2A).

Due to the presence of significant heterogeneity among the studies (I2 = 62.7%, P = 0.001), the

random effects model was adopted. Among the 12 studies, 11 studies estimated the TAMs

Fig 1. Flow chart of the study selection process.

doi:10.1371/journal.pone.0170042.g001
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density in both the intratumor and stroma regions. While the study by Park [30] respectively

assessed intratumoral and stromal TAMs density, we extracted only the intratumoral data.

However, the results did not change after removing this study (HR 1.46, 95% CI 1.11–1.92).

In view of the variety of markers used to detect TAMs density and the existence of substan-

tial heterogeneity, we conducted a subgroup analysis according to the different markers and

polarizations. We examined the effect of CD68+, M1 and M2 TAMs on the overall survival of

patients with gastric cancer. There was no significant association between the CD68+ TAMs

density and OS (HR 1.38, 95% CI 1.00–1.91, P = 0.052, I2 = 68.4%, P = 0.001, random effects

model, Fig 2B). A high M1 TAMs density was correlated with better OS (HR 0.45, 95% CI

0.32–0.65, P<0.001, I2 = 0%, P = 0.592, fixed effects model, Fig 2C). Nevertheless, a high den-

sity of M2 TAMs was correlated with a poor prognosis for OS (HR 1.48, 95% CI 1.25–1.75,

P<0.001, I2 = 25.2%, P = 0.22, fixed effects model, Fig 2D).

TAMs density and DFS in gastric cancer patients

Several studies provided data concerning the association between TAMs infiltration and DFS

stratified by different TAMs markers (CD68+ and M2 TAMs) and localized distribution (intra-

tumor and stroma).

The pooled HRs from three studies indicated that there was no association between the

CD68+ TAMs density and DFS in either the intratumor (HR 0.61, 95% CI 0.36–1.04,

P = 0.068, I2 = 36.4%, P = 0.208, Fig 3A) or stroma (HR 1.20, 95% CI 0.72–2.00, P = 0.458,

I2 = 8.1%, P = 0.337, Fig 3B). Two studies estimated the correlation between M2 TAMs and

DFS in the intratumor and stroma (Fig 3C and 3D). The pooled HRs showed that the density

of M2 TAMs was not correlated with DFS in either the intratumor (HR 0.80, 95% CI 0.22–

Table 1. Characteristics of studies included in the meta-analysis.

Study Year Region Cases Stage Makers Methods Cut-off Outcome NOS

Zhang [13] 2016 China 178 I–IV CD68 IHC Score�6 OS 7

Kim [27] 2016 Korea 396 I–IV CD68/CD163 IHC NR OS 6

Yan [28] 2016 China 178 I–IV CD163 IHC Score�6 OS 8

Ichimura [29] 2016 Japan 119 I–III CD204 IHC Density�0.22% OS 7

Park [30] 2016 Korea 113 I–IV CD163 IHC Density�77% OS/DFS 8

Ding [31] 2016 China 48 I–IV CD68 IHC NR - 6

Lin [17] 2015 Taiwan 170 Early/ Advanced CD204 IHC Intensity >50% OS 6

Zhang [19] 2015 China 180 I–IV CD68/CD11c/CD206 IHC Density OS 8

Kim [32] 2015 Korea 143 I–III CD68/CD163 IHC Score�1 DFS 6

Wu [15] 2015 Taiwan 103 I–IV CD68 IHC �671 cells/HPF OS 9

Pantano [20] 2013 Italy 52 I–III CD68+NOS2/CD68+CD163 IF Median score OS 9

Peng [33] 2012 China 184 I–IV NR IF Density >20% OS 6

Osinsky [16] 2011 Ukraine 105 I–IV CD68 IHC Density >23% OS 6

Wang [18] 2011 China 107 T2–T3 CD68 IHC >67.2 cells/HPF OS 8

Kawahara [34] 2010 Japan 111 I–IV CD68/CD163 IHC NR OS 7

Haas [35] 2009 Germany 52 I–IV CD68 IHC Median density DFS 8

Ohno [36] 2005 Japan 84 T2–T3 CD68 IHC Density�21.4% DFS 9

Ishigami [14] 2003 Japan 97 I–IV CD68 IHC �200 cells/HPF OS 7

Ohno [37] 2003 Japan 84 T2–T3 CD68 IHC Density�4.7% DFS 9

IHC, immunohistochemistry; IF, immunofluorescence; OS, overall survival; DFS, disease-free survival; NOS, Newcastle-Ottawa Scale; HPF, high-power

fields; NR, not reported.

doi:10.1371/journal.pone.0170042.t001
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2.87, P = 0.728, I2 = 73.4%, P = 0.053) or stroma (HR 0.53, 95% CI 0.27–1.04, P = 0.063, I2 =

27.3%, P = 0.241). Due to the limited number of articles, one should be cautious regarding the

interpretation of these results.

TAMs density and clinicopathological features

To further elucidate the role of TAMs infiltration on tumor progression, we investigated the

correlation between TAMs density and the clinicopathological features of gastric cancer

according to different markers and polarizations. Because only one study reported M1 TAMs

data, we focused on CD68+ TAMs and M2 TAMs. All of the studies describing the patients’

clinicopathological characteristics detected TAMs in both the intratumor and stroma except

the study by Park [30], in which the intratumoral data were used.

As shown in Table 2, the CD68+ TAMs density was not associated with age (older vs. youn-

ger: OR 0.83, 95% CI 0.56–1.24, P = 0.365), gender (male vs. female: OR 0.73, 95% CI 0.53–

1.00, P = 0.051), tumor size (large vs. small: OR 1.27, 95% CI 0.89–1.80, P = 0.185), depth of

invasion (T3–T4 vs. T1–T2: OR 1.54, 95% CI 0.90–2.63, P = 0.112), lymph node metastasis

Fig 2. Forest plots of HRs for the correlation between TAMs density and OS. (A) Generalized TAMs. (B) CD68+ TAMs. (C) M1 TAMs. (D) M2 TAMs.

doi:10.1371/journal.pone.0170042.g002
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(present vs. absent: OR 1.67, 95% CI 0.92–3.03, P = 0.093), or Lauren type (diffuse vs. intesti-

nal: OR 1.49, 95% CI 0.77–2.88, P = 0.232). However, a high density of CD68+ TAMs was sig-

nificantly correlated with advanced TNM stage (III–IV vs. I–II: OR 2.61, 95% CI 1.82–2.73,

P<0.001) and poor histological differentiation (poorly vs. well to moderately: OR 1.73, 95% CI

1.00–2.98, P = 0.048).

In addition, the pooled analysis revealed no significant association between M2 TAMs and

age (older vs. younger: OR 1.09, 95% CI 0.60–1.97, P = 0.780) or gender (male vs. female: OR

0.79, 95% CI 0.59–1.06, P = 0.117). Nevertheless, a high M2 TAMs density was correlated with

several clinical parameters, including tumor size (large vs. small: OR 1.61, 95% CI 1.17–2.23,

P = 0.004), depth of invasion (T3–T4 vs. T1–T2: OR 2.56, 95% CI 1.24–5.28, P = 0.011), lymph

node metastasis (present vs. absent: OR 2.17, 95% CI 1.40–3.38, P = 0.001), TNM stage (III–IV

vs. I–II: OR 2.26, 95% CI 1.32–3.87, P = 0.003), Lauren type (diffuse vs. intestinal: OR 1.52,

95% CI 1.10–2.11, P = 0.012), and histological differentiation (poorly vs. well to moderately:

OR 2.78, 95% CI 1.94–3.97, P<0.001) (Table 2).

Sensitivity analysis

We conducted a sensitivity analysis by removing each individual study to evaluate the effect of

individual datasets on the pooled HRs and ORs. The results shown in Fig 4A–4C indicated

that the pooled HRs for OS was not substantially changed. Similarly, our findings of the pooled

ORs for the clinicopathological characteristics were also robust (S1 and S2 Figs).

Fig 3. Forest plots of HRs for the correlation between TAMs density and DFS. (A) Intratumor CD68+ TAMs. (B) Stroma CD68+ TAMs. (C) Intratumor

M2 TAMs. (D) Stroma M2 TAMs.

doi:10.1371/journal.pone.0170042.g003
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Table 2. The relationship between TAMs and clinicopathological characteristics.

Clinicopathological features No. of studies Pooled OR P value Heterogeneity Effect model Publication bias

(95% CI) I2 (%) P value PEgger PBegg

CD68+ TAMs

Age 4 0.83 (0.56–1.24) 0.365 6.4 0.361 Fixed 0.590 0.734

Gender 6 0.73 (0.53–1.00) 0.051 0.0 0.791 Fixed 0.564 0.452

Tumor size 4 1.27 (0.89–1.80) 0.185 45.1 0.141 Fixed 0.740 1.000

Lauren classifcation 4 1.49 (0.77–2.88) 0.232 63.9 0.040 Random 0.489 0.308

Grade of differentiation 5 1.73 (1.00–2.98) 0.048 53.9 0.069 Random 0.903 1.000

Depth of invasion 6 1.54 (0.90–2.63) 0.112 50.2 0.074 Random 0.090 0.707

Lymph node metastasis 7 1.67 (0.92–3.03) 0.093 69.0 0.004 Random 0.735 1.000

TNM stage 5 2.61 (1.82–3.73) <0.001 31.4 0.212 Fixed 0.333 0.462

M2 TAMs

Age 5 1.09 (0.60–1.97) 0.780 66.1 0.019 Random 0.821 0.806

Gender 6 0.79 (0.59–1.06) 0.117 0.0 0.453 Fixed 0.232 0.707

Tumor size 4 1.61 (1.17–2.23) 0.004 46.2 0.134 Fixed 0.530 0.734

Lauren classifcation 5 1.52 (1.10–2.11) 0.012 23.7 0.264 Fixed 0.315 0.462

Grade of differentiation 4 2.78 (1.94–3.97) <0.001 16.9 0.307 Fixed 0.457 0.734

Depth of invasion 5 2.56 (1.24–5.28) 0.011 75.2 0.003 Random 0.453 1.000

Lymph node metastasis 6 2.17 (1.40–3.38) 0.001 52.9 0.059 Random 0.788 1.000

TNM stage 6 2.26 (1.32–3.87) 0.003 67.5 0.009 Random 0.828 1.000

doi:10.1371/journal.pone.0170042.t002

Fig 4. Sensitivity analysis of TAMs on OS and funnel plots of publication bias in analysis of OS. (A) Sensitivity analysis of generalised TAMs. (B)

Sensitivity analysis of CD68+ TAMs. (C) Sensitivity analysis of M2 TAMs. (D) Funnel plot for generalised TAMs on OS. (E) Funnel plot for CD68+ TAMs.

(F) Funnel plot for M2 TAMs.

doi:10.1371/journal.pone.0170042.g004
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Publication bias

Both Begg’s test and Egger’s test were applied to estimate the publication bias. The P values

from these two tests suggested no evidence of publication bias on TAMs and OS (generalized

TAMs: PBegg = 0.127, PEgger = 0.152, Fig 4D; CD68+ TAMs: PBegg = 0.602, PEgger = 0.686, Fig 4E;

M2 TAMs: PBegg = 0.466, PEgger = 0.145, Fig 4F). The publication bias of M1 TAMs on OS and

TAMs on DFS were not performed because of the small number of available articles. More-

over, all of the instances of P>0.05 (Begg’s test and Egger’s test) indicated that the assessment

of publication bias was not significant in analysis of the clinicopathological features (Table 2).

Discussion

It is well known that Hanahan and Weinberg emphasized the central role of tumor cells in

tumor progression based on changes in the intracellular signaling of the tumor [38]. After a

decade, they published another important review to further propose the key role of the tumor

microenvironment in the occurrence and development of tumors [39]. The tumor microenvi-

ronment is mainly composed of tumor cells, immune cells, the extracellular matrix, and cyto-

kines [40]. Recently, immunotherapy targeting immunosuppressive proteins such as cytotoxic

T-lymphocyte associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1) has pro-

vided more treatment options for cancer patients [41, 42]. Because the composition of the

tumor microenvironment and the interactions among the molecules within this setting are

complex, exploring novel targets for combination therapy is still crucial. TAMs, as important

members of the tumor microenvironment, have two polarization subtypes: M1 and M2. M1

TAMs function by combating pathogens and tumor cells [7, 43]. In contrast, M2 TAMs are

involved in promoting tumor progression. M2 TAMs not only inhibit immune response by

producing TGF-β and IL-10 but also produce a variety of enzymes to degrade the matrix,

which promotes the dissolution of the matrix membrane, interstitial digestion and remodeling.

Moreover, they produce cytokines (e.g., VEGF, PDGF) that participate in angiogenesis and

lymphatic vessel formation. Therefore, TAMs themselves and their polarization mechanism

are regarded as novel therapeutic targets for cancer patients [4, 7, 44].

Indeed, the density of TAMs was found to be involved in the prognosis of various cancers.

Nonomura suggested that a higher TAMs density correlated with poor recurrence-free sur-

vival in patients with prostate cancer [11]. Mei reported that high levels of M1 or M2 were

associated with good or poor survival, respectively, in patients with non-small cell lung cancer

[45]. However, there are still inconsistent prognostic data of TAMs and their polarization sub-

types in gastric cancer. Therefore, we performed this meta-analysis to evaluate the prognostic

impact and clinicopathological significance of TAMs in patients with gastric cancer.

We primarily assessed the association between generalized TAMs density and overall sur-

vival. The overall analysis showed that high density of generalized TAMs predicts a poor OS.

Subgroup analysis indicated that the CD68+ TAMs density had no significant association with

OS. However, a high M1 TAMs density was significantly correlated with better OS. In contrast,

a high density of M2 TAMs was significantly correlated with a poor OS. It is well known that

TAMs are a heterogeneous group of immune cells. The M1 and M2 phenotypes are more accu-

rate descriptors of TAMs after polarization. A subgroup analysis revealed completely different

significantly prognostic effects of both phenotypes, which was consistent with the function of

M1 and M2 TAMs regarding anti- and pro-tumor progression, respectively. However, CD68

is a common marker that identifies both M1 and M2 TAMs and cannot reflect the TAMs

polarization subtypes. The reason that CD68+ TAMs are not reliable as a prognostic marker in

our analysis might be because of the neutralization of the M1 and M2 prognostic effects. Tak-

ing this into account, the relationship between CD68 and OS was not critically significant

Tumor-Associated Macrophages and Gastric Cancer

PLOS ONE | DOI:10.1371/journal.pone.0170042 January 12, 2017 9 / 14



(P = 0.052). CD68 as a common marker of TAMs, whose relationship with OS was inconsis-

tent with the result of generalized TAMs. Therefore, the result that high generalized TAMs

density was associated with OS might be not robust. However, the M1 or M2 TAMs are predi-

cative factor of prognosis in gastric cancer patients.

Moreover, neither CD68+ TAMs nor M2 TAMs was associated with DFS. However, these

results were merely derived from three studies and two studies, respectively. We anticipate fur-

ther research in this area to evaluate the relationship between TAMs and DFS. In the aspect of

the analysis of clinicopathological features, a high CD68+ TAMs density was associated with an

advanced TNM stage and poor histological differentiation. A high M2 TAMs density was cor-

related with larger tumor size, deeper tumor invasion, lymph node metastasis, advanced TNM

stage, diffuse Lauren type, and poor histological differentiation. In general, a high density of

M2 TAMs can signify poor clinicopathological characteristics in patients with gastric cancer.

The tumor promoting activity observed by TAMs can be attributed to the function of M2

TAMs [46–48]. Many researchers have reported the characteristics of M2 TAMs in the tumor

progression of different malignant tumors. Intraperitoneal TAMs that polarized towards the

M2 phenotype facilitated peritoneal dissemination in gastric cancer by introducing peritoneal

mesothelial cell injury and promoting tumor cell proliferation [49, 50]. Zhang et al. reported

that M2 TAMs displayed the ability to induce the expression of VEGF-C in Lewis lung carci-

noma cells and to increase lymphangiogenesis [51]. In human basal cell carcinoma (BCC), M2

TAMs enhanced the potential of invasion and angiogenesis through a COX-2-dependent path-

way, resulting in the elevated release of VEGF-A, bFGF and MMP-9 from BCC cells [52]. In

our meta-analysis, we also observed the poor prognostic impact of M2 TAMs in gastric cancer.

In addition, corosolic acid, a triterpenoid compound, has been shown to significantly inhibit

macrophage polarization into the M2 phenotype and suppress subcutaneous tumor develop-

ment and lung metastasis in a murine cancer model [7]. As a result, targeted therapy based on

this mechanism has the potential to be applied clinically, and accordingly, gastric cancer

patients with a high M2 TAMs density may obtain a survival benefit from this approach.

Previously, there were two meta-analysis involving the density of TAMs and the prognosis

of gastric cancer. Zhang et al. reported that TAMs had a negative effect on OS in gastric cancer,

but only 5 studies were included in this analysis [53]. The other publication by Liu et al. sum-

marized from 11 studies and showed no association between TAMs and OS in gastric cancer

[54]. There was a clear inconsistency between the results of these two publications. To clarify

this confusion, we conducted this meta-analysis. Comparing with the previous meta-analyses,

we used a broad search strategy to systematically search electronic databases and manually

scanned reference entries of relevant literature. As a result, the 19 eligible studies included in

our meta-analysis. Our original goal was to assess the prognostic value of generalized TAMs

density in gastric cancer patients. Nevertheless, taking into account the complexity of TAMs, it

might be not reliable to evaluate the relationship between generalized TAMs and OS simply.

Thus, we performed stratified analysis according to the polarization of TAMs, which was not

conducted in previous articles. And the results showed that completely different significantly

prognostic effects of M1 and M2 TAMs, respectively. The inconsistence of previous meta-anal-

ysis might be due to huge heterogeneity of TAMs. We performed specifically concentrate on

the prognostic value of the TAMs subtypes, which has made our meta-analysis more construc-

tive and advisable.

However, some limitations exist in our study. First, there was significant heterogeneity

among the analysis of CD68+ TAMs on OS and TAMs on clinicopathological features. Never-

theless, it is well known that heterogeneity among the studies exists when conducting meta-

analysis of observational studies [55, 56]. In our meta-analysis it might be derived from the dif-

ferences in sample size, demographic data, tumor location, EBV status and experimental
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technique. We adopted a more conservative approach and used the random effects model if

there was significant heterogeneity. Second, the included studies used different types of anti-

bodies or dilution ratios even if detecting the same TAMs marker. In addition, there was no

international unification cutoff value to identify the density of the TAMs. Third, the number

of the included studies was not enough to analyze the prognostic role of M1 TAMs, which was

in turn weakened the power of the results.

In summary, our findings reveal that although CD68+ TAMs infiltration has the neutral

prognostic effects on OS, the M1/M2 polarization of TAMs are predicative factor of prognosis

in gastric cancer patients. Additional well-designed studies, especially multicenter and ran-

domized controlled trials, are warranted to confirm our results and would provide more valu-

able prognostic information for gastric cancer patients.
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