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Melanocortin neurons conserve body mass in hyper- or hypo-caloric conditions by

conveying signals from nutrient sensors into areas of the brain governing appetite and

metabolism. In mice, melanocortin-3 receptor (MC3R) deletion alters nutrient partitioning

independently of hyperphagia, promoting accumulation of fat over muscle mass.

Enhanced rhythms in insulin and insulin-responsive metabolic genes during hypocaloric

feeding suggest partial insulin resistance and enhanced lipogenesis. However, exactly

where and howMC3Rs affect metabolic control to alter nutrient partitioning is not known.

The behavioral phenotypes exhibited by MC3R-deficient mice suggest a contextual role

in appetite control. The impact of MC3R-deficiency on feeding behavior when food is

freely available is minor. However, homeostatic responses to hypocaloric conditioning

involving increased expression of appetite-stimulating (orexigenic) neuropeptides,

binge-feeding, food anticipatory activity (FAA), entrainment to nutrient availability

and enhanced feeding-related motivational responses are compromised with MC3R-

deficiency. Rescuing Mc3r transcription in hypothalamic and limbic neurons improves

appetitive responses during hypocaloric conditioning while having minor effects on

nutrient partitioning, suggesting orexigenic functions. Rescuing hypothalamic MC3Rs

also restores responses of fasting-responsive hypothalamic orexigenic neurons in

hypocaloric conditions, suggesting actions that sensitize fasting-responsive neurons to

signals from nutrient sensors. MC3R signaling in ventromedial hypothalamic SF1(+ve)

neurons improvesmetabolic control, but does not restore appetitive responses or nutrient

partitioning. In summary, desensitization of fasting-responsive orexigenic neurons

may underlie attenuated appetitive responses of MC3R-deficient mice in hypocaloric

situations. Further studies are needed to identify the specific location(s) of MC3Rs

controlling appetitive responses and partitioning of nutrients between fat and lean tissues.
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Obesity is often attributed to a combination of genetic susceptibility and imbalances between
energy intake and expenditure (Hill et al., 2012; Speakman and O’Rahilly, 2012). The problem
facing modern societies is that obesity is now common: two-thirds of the population in the United
States are overweight or obese (Lewis et al., 2009). Obesity increases risk of cardiometabolic disease
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and some cancers, reducing quality and duration of life
(Lewis et al., 2009). Determining why some become obese
and some do not is fundamental to solving and perhaps
reversing current obesity trends. MC3Rs are a component of a
canonical hypothalamic neural network regulating body mass
and substrate partitioning between adipose and lean tissues
(Girardet and Butler, 2014). While not widely considered a target
for obesity treatment, here we discuss recent studies suggesting
the importance of MC3Rs in appetite and metabolic control.

AN OVERVIEW OF THE CENTRAL
NERVOUS MELANOCORTIN SYSTEM

At the core of central nervous melanocortin system are two
neuronal populations sending projections throughout the brain
from soma in the hypothalamic arcuate nucleus (ARC). These
neurons integrate humoral cues of metabolic condition (insulin,
acyl-ghrelin, leptin, glucagon-like peptide-1, glucocorticoids,
interleukins and estrogen) (Mauvais-Jarvis et al., 2013; Gautron
et al., 2015), metabolites such as glucose (Ibrahim et al., 2003;
Parton et al., 2007), and inputs from neurons releasing serotonin
(Burke andHeisler, 2015), glutamate (Krashes et al., 2014), orexin
(van den Top et al., 2004; Morello et al., 2016), and cannabinoids
(Koch et al., 2015; Morello et al., 2016).

GABA-ergic neurons co-expressing orexigenic neuropeptides
agouti-related peptide (AgRP) and neuropeptide Y (NPY)
are activated upon fasting (Hahn et al., 1998; Betley et al.,
2015). Activation of NPY/AgRP/GABA (NAG) neurons rapidly
induces feeding and learned instrumental actions to obtain
food (Aponte et al., 2011; Krashes et al., 2011). In contrast,
ablation causes anorexia and impairs adaptation to hypocaloric
conditioning (Bewick et al., 2005; Luquet et al., 2005; Tan
et al., 2014). Another population of ARC neurons express
proopiomelanocortin (POMC), a propeptide converted to β–
endorphin (an endogenous opioid) and melanocortins (α–, β–
and γ–MSH and ACTH) (Figure 1A; Cone, 2006). Activation of
ARC POMC neurons in mice inhibits feeding behavior, albeit
over longer time frames compared to NAG neurons (Zhan et al.,
2013). In contrast, ablating POMC neurons or suppressing ARC
Pomc expression causes hyperphagic obesity syndromes (Smart
et al., 2006; Bumaschny et al., 2012; Zhan et al., 2013). Activation
of small population of POMC neurons in the nucleus of the
solitary tract of the hindbrain rapidly inhibits feeding, however
their ablation does not produce obesity (Zhan et al., 2013).

Cloning of the Melanocortin Receptors
Physiological responses to melanocortin ligands are mediated by
five receptors (MC1R-MC5R) (Cortés et al., 2014). Melanocortin
receptor pharmacology is complex, with two antagonists/inverse
agonists (AgRP and agouti signaling peptide) and MSH ligands
that exhibit varying degrees of receptor specificity (Figure 1B;
Cone et al., 1996). Other ligands and cell-surface proteins
have been identified that regulate melanocortin signaling (e.g.,
melanocortin receptor accessory proteins 1 and 2, mahogany,
mahoganoid, attractin-like protein, syndecans, ion channels and

defensins) (Kaelin et al., 2008; Nix et al., 2013, 2015; Anderson
et al., 2016).

Melanocortin regulation of energy balance is mediated by
two receptors expressed in the central nervous system. Mc3r
and Mc4r mRNA are expressed in overlapping and distinct
brain regions linked to appetite and metabolic control (Roselli-
Rehfuss et al., 1993; Mountjoy et al., 1994; Kishi et al., 2003;
Liu et al., 2003; Lippert et al., 2014; Mavrikaki et al., 2016).
Mc3r expression is concentrated in hypothalamic and limbic
structures, with dense expression in the ARC, ventromedial
hypothalamus (VMH), ventral tegmental area (VTA), andmedial
habenula (MHb) (Roselli-Rehfuss et al., 1993; Cone, 2005;
Lippert et al., 2014; Mavrikaki et al., 2016). Initial observations of
expression of both receptors in areas of the rodent brain linked
to appetite control (Roselli-Rehfuss et al., 1993; Mountjoy et al.,
1994), and stimulation of feeding by melanocortin antagonists
administered centrally (Fan et al., 1997), were crucial early steps
in revealing the physiological significance of the central nervous
melanocortin system. Chronic intracerebroventricular infusion
of AgRP, an MC3R/MC4R antagonist/inverse agonist (Ollmann
et al., 1997; Shutter et al., 1997), causes a hyperphagic obesity
syndrome (Small et al., 2001). The central nervous melanocortin
system is thus viewed as a promising target for developing
obesity therapies. The first trials of melanocortin agonists
for treating obesity failed due to cardiovascular responses
(Greenfield, 2011). However, a recent trial investigating RM-493,
a small peptide MC3R/MC4R agonist shown to have MC4R-
dependent effects on food intake and body weight (Kumar
et al., 2009), produced promising outcomes. In humans, RM-493
increased resting energy expenditure and reduced the respiratory
quotient (RQ), suggesting enhanced fat oxidation (Chen et al.,
2015). In obese non-human primates, administration of RM-
493 resulted in weight loss with a transient suppression of food
intake, increased total energy expenditure and improvements
in insulin resistance and cardiovascular function (Kievit et al.,
2013). Importantly, adverse cardiovascular responses that
led to the discontinuation of earlier compounds were not
evident.

In the absence of selective melanocortin receptor ligands,
targeted deletion of the melanocortin receptors provided
important information concerning the functional specificity of
neural melanocortin receptors. MC3Rs are not required for
suppression of food intake in response to MSH analogs (Marsh
et al., 1999; Chen et al., 2000a,b; Kumar et al., 2009), and
for appetite control during exposure to palatable high-fat/high
sucrose diets (Butler et al., 2000, 2001; Albarado et al., 2004;
Sutton et al., 2006; Srisai et al., 2011). Unlike MC4Rs, MC3Rs
are not required for appetitive and metabolic responses to
serotoninergic compounds (Heisler et al., 2002, 2006; Zhou
et al., 2007). Deletion of the gene encoding either MC3R or
MC4R causes obesity in mice, with both affecting partitioning
of nutrients between adipose and non-adipose tissues (Huszar
et al., 1997; Butler et al., 2000; Chen et al., 2000a). The two
receptors were originally considered to function independently,
as Mc3r;Mc4r double knockouts exhibit an additive obese
phenotype (Chen et al., 2000a). As discussed later in this review,
our data suggest MC3Rs may regulate MC4R activity by altering
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FIGURE 1 | Post-translational processing of POMC (A) and melanocortin receptor pharmacology (B). (A) The propeptide proopiomelanocortin (POMC) is

post-translationally modified by serine proteases propeptide (also known as prohormone) convertases 1/3 and 2. (B) MSH peptides and ACTH peptides activated

following release from POMC differ in affinity for the 5 members of the melanocortin receptor family: γ–MSH exhibits preferential affinity for MC3Rs; ACTH is the only

agonist for MC2Rs; ASIP exhibits high affinity for MC1R and MC4R, while AgRP is a selective antagonist for MC3R and MC4R. Note that this is a simplified schematic,

and does not show the melanocortin receptor accessory proteins (MRAP1, MRAP2) that associate with the melanocortin receptors to modify receptor activity or

coupling to β–arrestins which mediates receptor internalization and activation of intracellular signaling cascades. Receptor binding of the MSH results in activation of

the stimulatory subunit of trimeric G protein receptor complex (α,β,γ) for all members of the family, resulting in increased adenylate cyclase (AC) activity and

accumulation of cAMP. Agouti signaling peptide (ASIP) and agouti-related peptide (AgRP) were initially described as antagonists, however they may have biased

agonist properties, activating receptor coupling to other G protein complexes. Lists of physiological processes are shown below each receptor.

the response of “1st order” neurons releasing the endogenous
ligands to signals of metabolic state.

Genetic screens of obese populations confirmed the
importance of normal melanocortin receptor function in
the defense of body weight from early childhood. Missense
mutations in the POMC and MC4R genes are associated with
severe hyperphagic obesity syndromes that manifests within the
first 1–2 years of life (Farooqi and O’Rahilly, 2008). The central
nervous melanocortin system responds to environmental cues
through epigenetic modifications that have long-lasting effects on
expression of genes promoting lean phenotypes (Benite-Ribeiro
et al., 2016; Kühnen et al., 2016). Methylation in a variably
methylated region (VMR) of the POMC gene allele is associated
with altered body mass in humans (Kühnen et al., 2016).
Methylation of this region is sensitive to metabolic conditions
in utero, and to paternal methylation patterns. Altered POMC
expression as a consequence of developmental conditions could
therefore contribute to obesity later in life. While the evidence
for direct causality is less clear, MC3R haploinsufficiency is
linked to increased risk of childhood obesity (Feng et al., 2005;
Tao, 2010; Lee, 2012; Lee et al., 2016).

IS THERE A ROLE FOR MC3Rs IN
APPETITE REGULATION?

Expression of MC3Rs in limbic and hypothalamic structures
suggests functions related to controlling complex behaviors,
including appetite (Roselli-Rehfuss et al., 1993; Lippert et al.,
2014; Mavrikaki et al., 2016). However, as discussed above
characterization of feeding behavior in Mc3r knockout (−/−)
mice on mixed or congenic (C57BL/6J) backgrounds has been
inconclusive (Butler et al., 2000; Chen et al., 2000a; Butler,
2006; Sutton et al., 2006; Ellacott et al., 2007; Begriche et al.,
2011a).

Recent results from a recent experiment in mice with
“humanized” MC3Rs may suggest a role in appetite control
(Lee et al., 2016). Risk of childhood obesity is increased
in homozygous carriers of two MC3R sequence variants
(C17A+G241A) that reduce receptor binding and maximal
cAMP accumulation in cell-based assays (Feng et al., 2005).
Mice homozygous for the mutant hMC3R containing the double
mutation (MC3RhDM/hDM) exhibit reducedmusculoskeletal mass
and increased adiposity when compared to mice inheriting
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“wild type” hMC3Rs (MC3RhWT/hWT) (Lee et al., 2016).
MC3RhDM/hDM mice are also hyperphagic; while the difference
is small (1–2 kcal/mouse/day), over time this could produce
significant changes in adiposity (Butler and Kozak, 2010).
However, hyperphagia does not explain the nutrient-partitioning
defect reducing musculoskeletal growth, which has been
postulated to result from amild Cushingoid phenotype (Renquist
et al., 2012).

How the feeding phenotype ofMC3RhDM/hDM mice compares
to outcomes from other studies using Mc3r-deficient mice is
unclear. While classical gene targeting techniques result in
complete loss of MC3R signaling, some signaling is presumably
retained in MC3RhDM/hDM mice. Information on the impact of
the (C17A+G241A) mutation on second messenger signaling
thus far has been limited to measuring cAMP accumulation
in the presence of the synthetic analog [Nle4, D-Phe7]-α-
MSH. Information on how the mutation alter other signaling
mechanisms and responses to other ligands such as AgRP are not
available, but could be relevant given that physiological responses
to centrally administered melanocortin agonists involve distinct
G protein signaling mechanisms (Li et al., 2016).

MC3R Role in Appetite Regulation Is
Context-Dependent and Exposed in
Hypocaloric Conditions
Overall, the lack of conclusive evidence supporting a role for
MC3Rs in appetite control in ad libitum fed situations, combined
with comparatively modest changes in body mass (Butler et al.,
2000, 2001; Chen et al., 2000a), explains why many laboratories
overlooked neural MC3Rs. Evaluating behavioral and/or
metabolic responses of mice to environmental challenges can be
informative when investigating the functions of genes involved
in behavior and metabolism. For example, cold stress is often
used to assess mobilization of energy reserves and futile cycles to
maintain body temperature (Kozak and Anunciado-Koza, 2008).
Another example is transitioning between chows and obesogenic
diets to assess behavioral and metabolic control (Collins et al.,
2004). Mc3r-deficient mice tolerate cold and control appetite
when challenged with palatable diets (Butler et al., 2000, 2001;
Chen et al., 2000a; Sutton et al., 2006; Ellacott et al., 2007).
However, a behavioral phenotype is observed in Mc3r−/−
mice subjected to hypocaloric restricted feeding protocols to
assess motivational responses anticipating food presentation
(Sutton et al., 2008; Begriche et al., 2011a,b, 2012; Girardet
et al., 2014a, 2017). These outcomes suggest that MC3Rs play
a role in mediating appetite responses to situations of nutrient
scarcity.

Mice provided unrestricted access to a running wheel exhibit
food anticipatory activity (FAA) when subjected to a hypocaloric
diet (70–75% of habitual intake) presented at 24 h intervals
(Mistlberger, 2011). FAA involves a progressive rise in activity
preceding food access, and has been suggested to involve a
circadian oscillator (“food-entrainable oscillator,” or FEO) that
is independent of the light-entrained master clock. FAA is
attenuated in Mc3r−/− mice housed in a 12 h light:dark
setting (Sutton et al., 2008); the same study reported that

Mc3r−/− mice failed to increase wakefulness in anticipation
of food presentation. Entrainment to food presentation is
also attenuated, but not completely inhibited, when FAA is
assessed in constant dark (Begriche et al., 2011b). Based on
the weakened anticipatory responses observed during restricted
feeding, MC3Rsmay act as a modulator of the inputs (or outputs)
of FEOs (Mistlberger, 2011). Entrainment to food availability
is thought to involve coordinated responses of FEO distributed
throught the body (Mohawk et al., 2012). However, it is no
clear how MC3Rs exert regulatory control over rhythms in FEO
activity.

A recent paper from Roger Cone’s laboratory suggested
another interpretation of the FAA phenotype associated with
loss of MC3R. Renquist et al. reported that the fasting responses
of NAG neurons are not observed in Mc3r−/− mice (Renquist
et al., 2012). We subsequently reported increased hypothalamic
AgRP and Npy expression in the hypocaloric conditions used to
induce FAA is also not observed inMc3r-deficient mice (Girardet
et al., 2014a, 2017). Collectively, these results suggest activation of
NAG neurons by signals of negative energy balance contributes
to the expression of FAA. Adult mice lacking NAG neurons
adapt poorly to a hypocaloric feeding protocol used to induce
FAA (Tan et al., 2014). FAA involves increased food seeking
and motivational responses to seek food (Aponte et al., 2011;
Krashes et al., 2011). Similar responses occur upon activation of
NAG neurons (Aponte et al., 2011; Krashes et al., 2011), although
another interpretation is that activation of NAG neurons delivers
a “negative valence” signal (Betley et al., 2015) causing avoidance
of situations associated with a painful experience (hunger).

Mc3r-deficient mice also exhibit attenuated appetitive
responses to hypocaloric conditioning. Wild-type mice subjected
to hypocaloric feeding protocols exhibit binge-feeding behavior,
reducing meal frequency and increasing meal size to consume
most of the food within 1 h of presentation (Bruss et al., 2010;
Begriche et al., 2012; Girardet et al., 2017). This behavioral
adaptation is attenuated in Mc3r−/− mice: food intake in
the 1 h following presentation is markedly reduced with no
compensation later in the feeding cycle and changes in meal
structure (fewer, larger meals) are also attenuated (Begriche
et al., 2012; Girardet et al., 2017). Motivation to self-administer
food-rewards during hypocaloric conditions is also attenuated
in Mc3r-deficient mice (Mavrikaki et al., 2016). However, self-
administration is normal in Mc3r-deficient mice in ad libitum
feeding conditions and increased motivation to self-administer
more palatable sucrose diets is retained (Mavrikaki et al., 2016).
The behavioral phenotype associated with MC3R-deficiency is
therefore contextual and dependent on energy balance. Mc3r-
deficient mice may not experience the “pain” of hunger, and are
not be motivated to avoid unpleasant experiences associated with
nutrient insufficiency.

These observations also suggest a new and perhaps simpler
interpretation of the phenomenon observed in Mc3r−/− mice
during restricted feeding. In the absence of MC3Rs, NAG
neurons are desensitized to internal cues of metabolic state
provided by hormones and metabolites, the release of which
follows patterns that are sensitive to food consumption (Tschop
et al., 2006). This model also explains why the release of other
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neuropeptides and neurotransmitters from NAG neurons does
not compensate for the absence of MC3Rs. The rapid stimulation
of feeding behavior following activation of NAGneurons requires
the release of GABA or NPY from NAG neurons, while release of
AgRP elicits a delayed yet prolonged increase in feeding behavior
that is dependent on MC4Rs (Krashes et al., 2013).

MC3Rs in Hypothalamic and Limbic
Structures Promote Appetitive Responses
to Hypocaloric Conditions
We developed the LoxTBMc3r mouse, allowing us to reactivate
of Mc3r transcription using Cre transgenics, inserting a “lox-
stop-lox” sequence in the 5′UTR (Begriche et al., 2011a).
The response of NAG neurons to hypocaloric conditioning is
restored in LoxTBMc3r mice in which hypothalamic expression
was rescued using Nkx2.1-Cre (Girardet et al., 2017). This
study also observed that restoring FAA in LoxTBMc3r mice is
independent of improvements in adiposity. These results suggest
that actions involving NKX2.1(+ve);MC3R(+ve) neurons in
the hypothalamus are sufficient to restore “normal” activity of
NAG neurons. This could indicate a developmental role in
which NAG neurons fail to develop normal responses to altered
signals of metabolic state in the absence of MC3Rs. Alternatively,
MC3Rs in the mature hypothalamus may exert an active “gating”
function; determining whether rescuing MC3Rs in the adult
mouse restores responses of NAG neurons to metabolic cues
could address this question.

MC3Rs expressed in the limbic system may regulate
feeding-related motivational responses. MC3Rs are expressed
in dopamine transporter (DAT) (+ve) and (−ve) neurons in
the VTA, with female Mc3r-deficient mice exhibiting lower
dopamine and altered sucrose consumption and taste preferences
(Lippert et al., 2014). Operant conditioning experiments suggest
increased food-related motivational responses associated with
hypocaloric diets are attenuated inMc3r-deficientmice. Rescuing
Mc3r transcription in DAT(+ve) neurons in the VTA improved
motivational responses (Mavrikaki et al., 2016) without restoring
binge-feeding observed following the prolonged inter-meal
interval. Compulsive behavioral responses to consume large
meals in situations of negative energy balance may thus require
MC3R activation in additional brain areas, and not only in the
limbic system. A caveat to interpreting these studies is that they
only usedmale mice; sex differences in the functions ofMC3Rs in
regulating feeding-related reward pathways exist (Lippert et al.,
2014). Further studies using LoxTBMC3R mice to investigate
the role of MC3Rs expressed in the VTA of females in regulate
sucrose consumption and taste preferences are clearly needed.

MELANOCORTIN-3 RECEPTORS: ROLE IN
METABOLIC CONTROL

Early experiments examining hypophyseal and autonomic
outputs from the CNS controlling metabolism by melanocortins
suggested no requirement forMC3R signaling. Acute stimulation
of sympathetic activity by melanotan-II (MTII), an α–MSH
analog, requires functional MC4Rs (Haynes et al., 1999).
The regulation of energy expenditure by melanocortins is

mediated by MC4Rs expressed by cholinergic sympathetic pre-
ganglionic neurons; glucose control involves MC4Rs expressed
on both sympathetic and parasympathic cholinergic pre-
ganglionic neurons (Rossi et al., 2011; Sohn et al., 2013; Berglund
et al., 2014).

Similar to appetite control, the role of MC3Rs in metabolic
homeostasis may also be contextual. We have reported two
studies suggesting that MC3R signaling has a role in maintaining
metabolic homeostasis and insulin sensitivity. The first study
examined metabolic responses ofMc3r−/−mice subjected to the
hypocaloric conditioning protocol used to induce FAA (Sutton
et al., 2010; Begriche et al., 2011b; Girardet et al., 2014b).
Mc3r−/−mice fed a single low-fat/high carbohydrate meal at 24
h intervals exhibited rhythms in hyperinsulinemia and insulin-
regulated genes involved in lipid synthesis in the liver that peaked
around meal presentation. This outcome suggests partial insulin
resistance, with hepatic insulin sensitivity retained while other
tissues (presumably skeletal muscle) are insulin resistant. While
rhythms in insulin and glucose ad libitum fed Mc3r−/− mice
were normal, this result might be misleading. Fasting insulin,
fasting glucose and glucose tolerance are normal in muscle-
specific insulin receptor knockout mice (MIRKO) (Bruning et al.,
1998).Moreover, muscle insulin resistance redistributes nutrients
to adipose tissue, increasing adiposity (Kim et al., 2000). It is
therefore possible that Mc3r−/− mice are insulin resistant in
skeletal muscle; showing this is the case requires more sensitive
methodologies for measuring glucose metabolism. It might also
be informative to examine entrainment of metabolic control to
hypocaloric conditioning in MIRKO.

The second study involved rescuing Mc3r expression in
steroidogenic factor-1 (SF1, also known as NR5A1) expressing
neurons in the VMH (Begriche et al., 2011a). Early studies
using in situ hybridization revealed the VMH as a site of dense
Mc3r expression (Roselli-Rehfuss et al., 1993). Mice expressing
Cre in VMH SF1(+ve) neurons (SF1-Cre) have been used
to manipulate the expression of genes expressing hormone
and growth factor receptors (leptin, insulin, estrogen, BDNF),
second messenger signaling pathways and transcription factors
involved in metabolic control (Kim et al., 2011; Klöckener
et al., 2011; Orozco-Solis et al., 2015, 2016; Berger et al., 2016).
VMH SF1(+ve) regulate glucose metabolism, regulate glucose
production (Tong et al., 2007; Garfield et al., 2014; Meek et al.,
2016). SF1(+ve) neurons are thus involved in the defense of body
weight and metabolic control.

We crossed SF1-Cre and LoxTBMc3r mice, rescuing Mc3r
expression in the VMH (VMH-MC3R). Analysis of body
composition (fat mass, fat-free mass) using a regression
approach (Packard and Boardman, 1988; Allison et al., 1995)
indicates that the nutrient partitioning phenotype is not rescued
(Figures 2A–C). The expression of FAA was also not rescued
(Begriche et al., 2011a). However, significant improvements in
fasting insulin were observed in the absence of changes in fasting
glucose (Figures 2D,E). In addition, changes in hepatic gene
expression suggesting increased fatty acid flux were also partially
reversed (Begriche et al., 2011a). The dissociation of the effects
of MC3R on obesity from altered metabolic control suggests that
MC3Rs expressed by SF1(+ve) neurons in the VMH are involved
in metabolic control.
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FIGURE 2 | Improved insulin sensitivity in VMH-MC3R mice is independent of reduced adiposity (A–E) and model describing the physiological roles of

MC3Rs in the brain (F). A regression approach plotting fat mass (FM, A) and fat-free mass (FFM, B) determined using NMR demonstrates the nutrient partitioning

phenotype. As body mass increases, gains in FM are proportionately increased while gains in FFM are proportionately reduced in homozygous carriers of the

“lox-stop-stop” suppressed Mc3r gene (Mc3rTB/TB). Analysis of body composition using analysis of covariance (ANCOVA) using total body mass as a covariate

indicates the predicted reduction of FFM and increased FM in Mc3rTB/TB mice. In Mc3rTB/TB mice where transcription in the ventromedial hypothalamus has been

rescued (VMH-MC3R), the slope of association between FM and FFM as a function of body mass is similar to Mc3rTB/TB mice (A,B); estimated marginal means

derived from ANCOVA are also similar in VMH-MC3R and Mc3rTB/TB mice (C). Fasting insulins are significantly increased in Mc3rTB/TB mice compared to controls

and VMH-MC3R mice (D, *p < 0.05), with no difference in blood glucose (E). Model describing functional distribution of MC3Rs in the CNS suggested by studies

using Cre transgenes to restore transcription in the VMH (SF1-Cre), VTA (DAT-Cre) and hypothalamus (Nkx2.1-Cre). MC3Rs expressed on SF1(+ve) neurons in the

VMH are sufficient to improve metabolic control, while MC3Rs expressed in dopamine transporter (DAT) (+ve) neurons in the VTA restore feeding-related motivational

responses during situations of caloric insufficiency. MC3Rs expressed in Nkx2.1-Cre(+ve) neurons are sufficient to restore normal responses of NAG

(GABA/AgRP/Npy) neurons to signals of negative energy state, and for expression of food anticipatory activity and binge-feeding responses during situations of

negative balance. While some Nkx2.1(+ve);MC3R(+ve) neurons reside in the hypothalamus, their specific location and identity remain unknown. In addition, while the

actions of Nkx2.1(+ve);MC3R(+ve) neurons appears to be critical for the normal regulation of NAG neurons in response to metabolic cues, the underlying mechanism

remains unknown.

Regulation of peripheral metabolism by MC3Rs may not
be “acute,” in that stimulation of MC3Rs in the absence of
MC4Rs does not produce rapid changes. However, reduced
fasting insulin in Mc4r−/− mice treated with an MSH
analog for 14d suggests MC4R-independent effects on insulin
sensitivity (Kumar et al., 2009). Whether this response involved
MC3Rs expressed in the VMH or elsewhere has not been
determined.

SUMMARY AND FUTURE PERSPECTIVES

The functions of neural MC3Rs received little attention
after the publication of the phenotypes of Mc3r−/− mice
in 2000. However, MC3Rs in the CNS regulate feeding-
related motivational behaviors and glucose homeostasis.
Both phenotypes appear to be context-dependent, increasing
in prevalence with negative energy balance. Hypothalamic

MC3R signaling maintains sensitivity of the nutrient-sensing
networks in the hypothalamus to signals of metabolic condition
(Figure 2E). In humans, MC3R polymorphisms have been
associated with reduced interest in food (Lee et al., 2007;
Obregon et al., 2010; Aris et al., 2015). Given the contextual
nature of the feeding phenotype in mice, studies examining
feeding behavior in humans with MC3R polymorphisms should
consider energy balance in their experimental design. Finally,
while making progress in identifying MC3Rs involved in appetite
control, the location(s) of MC3Rs affecting nutrient partitioning
remains unclear.
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