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ABSTRACT

Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science
based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which
outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP)
framework provides a systematic approach for organizing knowledge that may support such inference. Likewise,
computational models of biological systems at various scales provide another means and platform to integrate current
biological understanding to facilitate inference and extrapolation. We argue that the systematic organization of knowledge
into AOP frameworks can inform and help direct the design and development of computational prediction models that can
further enhance the utility of mechanistic and in silico data for chemical safety assessment. This concept was explored as
part of a workshop on AOP-Informed Predictive Modeling Approaches for Regulatory Toxicology held September 24–25, 2015.
Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization
and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of
risk assessment, but also as guide for both AOP and complementary model development is described. Finally, a proposal for
actively engaging the modeling community in AOP-informed computational model development is made. The contents
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serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to
support the next generation of chemical safety assessment.

Key words: Adverse Outcome Pathways; AOP; quantitative AOP; computational prediction model.

In recent years, several conceptual papers advocating the use of in-
novative mechanistically based approaches for assessing the po-
tential hazards and risks of chemicals for both human health and
the environment have been published (Garcia-Reyero and Perkins,
2011; Krewski et al., 2010). Ideally, these new approaches would in-
volve combining high-throughput and high-content data from in
vitro assays or small organisms with computational modeling to
predict toxicological effects of concern. Many computational meth-
ods have already demonstrated their usefulness in toxicology. For
example, machine learning and pattern recognition methods have
been used for identification of quantitative structure–activity rela-
tionships (QSARs) and genomic biomarkers (Bercu et al., 2010; Buick
et al., 2015; Garcia-Serna et al., 2015; Guyton et al., 2009; Maltarollo
et al., 2015; Neagu et al., 2007; Thomas et al., 2013). However, in order
to be considered credible for use in a regulatory decision-making
context, predictive models require a sound mechanistic foundation
built from knowledge of toxicological processes.

Adverse outcome pathways (AOPs) are intended to outline
and capture existing knowledge concerning the biologically plau-
sible and empirically supported foundations for predicting apical
toxicity from mechanistic data (OECD, 2013). In recent years, ac-
tivities in the international community, coordinated through the
OECD, have focused on providing a single, harmonized, point of
access to summary descriptions of AOPs, including associated
weight of evidence assemblies and evaluations via an AOP
knowledge base (AOP-KB; https://aopkb.org; last accessed October
24, 2016). The AOP-KB and content therein is organized in a sys-
tematic, searchable, and transparent manner according to an es-
tablished set of guidelines and principles (OECD, 2016; Villeneuve
et al., 2014) that facilitates evaluation of suitability for various reg-
ulatory applications. In particular, the AOP-Wiki module of the
AOP-KB, which has been publically accessible since September
2014, is a valuable source of documented pathway information
that incorporates assembly and evaluation of weight of evidence
supporting causal relationships between various key events in
the pathway, including quantitative understanding where it is
available. As a consequence of this organizational structure, the
growing knowledge base of AOP descriptions is well suited to aid
the development of computational prediction models that can
help bring about a new era in regulatory toxicology, using AOPs
for developing computational prediction models.

Recognizing the potential value of integrating the AOP frame-
work with development of computational prediction models, the
European Commission’s Joint Research Centre organized a work-
shop on the topic of “AOP-informed predictive modeling
approaches for regulatory toxicology”. September 24–25, 2015, 28
invited international experts in computational modeling, toxicol-
ogy, and risk assessment from academia, government, and the
private sector came together to explore the scientific opportunities
and stimulate greater communication and collaboration between
the AOP development and computational modeling communities.
Modelers were introduced to the principles and practice of AOP
description and invited to think about how this systematic organi-
zation of knowledge could aid model development. A number of
case examples exploring the different ways models and AOPs
could be integrated to address regulatory challenges were dis-
cussed. Issues related to regulatory uptake and application were

considered. Finally, the group discussed ways to further engage
the modeling community in the endeavor of AOP-informed pre-
dictive toxicology. The following highlights major points of discus-
sion and conclusions from the workshop and sets the stage for
further dialog regarding the role of computational modeling and
AOPs in the emerging paradigm for regulatory toxicology.

HOW CAN AOPs INFORM COMPUTATIONAL
MODEL DEVELOPMENT?

Adverse outcome pathways are a conceptual framework that
portrays existing knowledge concerning the linkage between
some molecular initiating event (MIE) and an adverse outcome
(AO) that occurs at a level of biological organization considered
relevant to regulatory decision-making (Ankley et al., 2010).
Individual AOPs are represented as sequences of measureable
key event (KE) nodes that reflect a causal progression from an
initial perturbation of normal biology, caused through direct in-
teraction with a chemical, to a series of system failures at
higher levels of biological organization (Figure 1). Key events are
linked via Key Event Relationships (KERs) that define both the
structural and functional relationship between a given pair of
KEs and compile specific empirical evidence that supports the
idea that if the upstream KE is altered to a sufficient degree, pre-
dictable changes (qualitative or quantitative) can be expected in
the downstream event in the sequence. AOPs are described us-
ing modular assemblies of KE and KER descriptions. These mod-
ular descriptions, properly structured and connected in the
AOP-KB, provide the foundation for construction and analysis
of AOP networks (Figure 1) that can provide a more comprehen-
sive, integrated, and biologically realistic synthesis of available
knowledge concerning the ways chemicals can adversely im-
pact organisms. Overall, AOPs and AOP networks provide struc-
ture for our knowledge of how an MIE (or MIEs) can lead to
deviations from normal healthy function of a biological system
(ie, adverse outcome[s]). From a modeling perspective, structur-
ing of knowledge is extremely informative for model design and
development. In particular, AOPs can help reduce an initially
overwhelmingly complex biology to the essentials necessary for
a predictive model, avoiding model overload. First, the sum-
mary of an AOP represented in the form of a box and arrow dia-
gram that identifies the KEs and KERs (Figure 1) provides an
overall conceptual model that bounds the modeling challenge
within a specific biological domain. It defines, for example, the
key chemical–biological interaction that triggers a toxicologi-
cally relevant biological perturbation by identifying the MIE.
This can immediately inform the development of quantitative
structure–activity relationship (QSAR) models and chemical cat-
egories useful for defining the chemical space for which the
AOP is likely to have relevance. It then identifies the key biologi-
cal pathways, functions and compartments (ie, cell types, tis-
sues, organs) in which the biology to be modeled operates.
Because each KE is defined at a particular level of biological or-
ganization, the AOP also provides a road map of the biological
scales at which a single model, or series of models, must oper-
ate. In this way, the AOP suggests the heuristic domain and
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biological scope/space in which the prediction models should
function. A second level of information in the AOP description
that guides the development of prediction models is the
description of the KEs (OECD, 2016). In many cases, those with
the computational modeling expertise may not be familiar with
the biology represented in the AOP. The biological description
of the KEs presented in the AOP-WIKI module of the AOP-KB
(https://aopwiki.org/; last accessed October 25, 2016; the first infor-
mation field on each KE page) provides the entry point or gateway
that can introduce the modeler to the biology encompassed by
the AOP and its events. Whereas this description may not be suf-
ficient to fully support model design and formulation, it can sug-
gest the appropriate biological subject matter experts with which
the modeler may want to consult and partner. Additionally, it
may be helpful in identifying the type of modeling approaches,
mathematical, formalisms, and parameters that could be em-
ployed. For example, a KE involving enzyme inhibition may
require identification of the type of inhibition (eg, competitive,
irreversible) and related kinetic constants. A KE involving cell pro-
liferation or selective cell death may indicate the need to employ
an agent-based modeling approach, whereas one involving an
increased risk of disease may require a probabilistic approach.

Key Event descriptions associated with an AOP also contain
useful information regarding how a KE is measured. This infor-
mation helps define the kinds of data likely to be available, or
which could be generated to inform model development.
Identification of specific assays may, in some cases, provide
useful information regarding data sources that the modeler(s)
could utilize for model development purposes. For example, for
KEs measured in ToxCast assays (Kavlock et al., 2012), association
of the KE with an assay identifies a database (Actor/iCSS dash-
board; http://actor.epa.gov/dashboard/; last accessed October 24,
2016) of relevant data that may be useful for model development.
Depending on the experimental method(s) used, additional in-
formation might be required to translate the raw output of the

method to in vivo relevant data. Future modules of the AOP-KB (ie,
Effectopedia) aim to provide standardized summaries of the data
itself along with meta-information describing the test methods
and transformation functions need to put those data into appro-
priate in vivo context. The identification of specific approaches
used to measure a given KE can suggest the types of data that
may serve as inputs to the model, and parameters that may be
useful to simulate from an interpretive standpoint. For example, if
the AOP involves enzyme inhibition that leads to a decrease in a
circulating hormone followed by a loss of function in a particular
cell type, one might want to design a model that can take a stan-
dardized measure of a chemical’s potency to inhibit the enzyme
and predict the dose-response and time-course behavior of the
circulating hormone concentration, subject to feedback regulation
and other modulating factors represented in the model (see Case
Example 1). Finally, identification of the methods used to measure
the KEs can provide insights into the time-scales over which the
variables represented as KEs can be measured. This provides in-
formation regarding the level of temporal resolution that the mod-
els should be designed to predict.

Key Event Relationship descriptions (OECD, 2016) are simi-
larly useful. The KER description gives a summary of the weight
of evidence (WoE) that establishes the causal nature of the rela-
tionship between 2 measurable biological events (Becker et al.,
2015). The structure of the KER immediately defines key input
and output parameters relevant for model simulation. Defining
the biological plausibility of the relationship between the pair of
KEs highlights the important biological context and the pro-
cesses that need to be captured in the relationship model.
Furthermore, the empirical evidence summarized in the KER
description, provides references that can provide data for model
parameterization, fitting, and/or testing.

The KER descriptions also include a narrative section on the
quantitative understanding of the relationship between the KEs
(OECD, 2016). At present, OECD guidance provides only a very

FIG. 1. Conceptual representation of the adverse outcome pathway (AOP) framework including modular representation as Key Events (KEs) and Key Event

Relationships (KERs), 2 specialized types of KEs, molecular initiating events (MIEs) and adverse outcomes (AOs), that serve as upstream and downstream anchors in an

AOP, and assembly of multiple AOPs sharing common KEs and/or KERs into an AOP network.
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general indication of the types of information which should be
captured. Modelers attending brought new insights regarding
the types of information that AOP developers could capture in
order to help facilitate model development. Specifically, it was
recommended that AOP developers more explicitly identify
sources of data on response–response relationships (ie, input–
output relationships between neighboring KEs). Where possible,
this should include the general form of the relationship (eg,
whether there is a linear, sigmoidal, threshold or Bayesian rela-
tionship between changes in KEs upstream (KEup) and those
downstream (KEdown)). It should also indicate the range of un-
certainty in the relationship when it can be at least approxi-
mated. For example, based on a measure of KEup, can KEdown be
predicted within a factor of 2, or 1000? Alternatively, if the rela-
tionship is probabilistic, how much certainty is there that
KEdown will be significantly perturbed given a defined magni-
tude of change in KEup? Known sources of uncertainty should
be defined: For example, is there uncertainty due to inter-
individual variability, measurement error (informed by the de-
scription of approaches used to measure the KE), or modulating
environmental factors such as temperature, pH, photoperiod,
etc. This type of information can direct how models are struc-
tured and which key parameters need to be incorporated to ac-
curately predict response–response behaviors.

Beyond the form and uncertainty of the response–response
relationships, it would be useful to describe the approximate
time-scale over which a change in KEup impacts KEdown. Are
these tightly coupled, whereby KEdown changes in a matter of
seconds following an alteration in KEup, or do they operate on
much different time-scales, KEdown lagging behind the changes
in KEup by minutes, hours, or days? Ideally, data on the kinetics
or dynamics of the relationship between KEs would be included.
However, even a general sense of the temporal scale over which
the relationship operates may be highly informative for model
development.

Effectopedia, another module of the AOP-KB under develop-
ment, is expected to make the AOP-KB even more useful for
modeling purposes. Effectopedia is being designed to provide
data structure for explicit representation of response–response
relationships along with their corresponding uncertainty
bounds. Implementation of this module should greatly stream-
line access to the data describing response–response relation-
ships. It may even allow for implementation of predictive
models directly in the KB.

Overall, information captured in the descriptions of AOPs and
associated KEs and KERs provide a wealth of information that
can aid predictive model development. The modular organization
of content in the AOP-KB allows for implicit creation of AOP net-
works, in which certain KEs, KERs, or sequences of KEs and KERs,
serve as points of convergence for multiple independent AOPs
(Figure 1). Modeling these convergence points within an AOP net-
work may yield greater return on the resources invested. It can
also suggest how a series of models could most effectively be
structured. For example, Ankley et al. (2010) described a series of
AOPs converging at a common KE of impaired production of a
key egg yolk precursor, vitellogenin (VTG), in fish. Whereas multi-
ple models may be needed to link diverse upstream MIEs (eg, aro-
matase inhibition [see Case Example 1], estrogen receptor
antagonism, androgen receptor agonism) to predicted reductions
in VTG, the downstream KEs for multiple AOPs converge such
that only a single model is needed to predict impacts reduced
VTG on fish reproduction. Conversely, in the case of multiple
AOPs related to thyroid axis disruption (Case Example 3), genes
and proteins involved in thyroid hormone synthesis and

homeostasis and their regulation is well conserved among verte-
brates, such that a common model that captures multiple MIEs
and upstream portions of the pathways could be developed.
However, the downstream consequences of reduced serum thy-
roid hormone concentrations (a key point of convergence in that
AOP network) diverge across species, suggesting independent
models may be needed to translate well-conserved effects of
chemical perturbation on thyroid hormone concentrations to di-
vergent AOs across species. Examples like this illustrate how AOP
networks can be an important source of information to both pri-
oritize the AOP elements for which computational models should
be developed and facilitate efficient structuring and coupling of
models that can be used to simulate individual AOPs, or form
more comprehensive predictive models of network behavior.
Building AOPs in such a network environment is also consistent
with the intrinsically interconnected nature of biological systems
and promotes understanding of important modifying factors, re-
sulting from intersection and interactions with other AOPs, that
may be needed to build effective predictive models.

Development of predictive models is best achieved through
multi-disciplinary teams often composed of modelers, subject-
matter experts, and experimentalists. The contact information
for developers, captured in the AOP-KB, provides a useful re-
source for modelers developing prediction models based on
AOPs by facilitating collaboration and enabling insights that
may not be represented in the existing AOP descriptions. This
type of interchange is particularly important given that the AOP
developers may not have the background needed to identify the
types of data and information that would be informative for
modeling. Thus, there is a strong role for the AOP-KB to play in
not only developing AOP networks, but also professional net-
works and multidisciplinary teams that can implement a suc-
cessful iterative approach to model development.

CASE EXAMPLES OF AOP-INFORMED
COMPUTATIONAL PREDICTION MODELS

The utility of AOPs for development of computational predic-
tion models for regulatory toxicology is more than just concep-
tual. There are already examples of how AOP knowledge has
informed the development of predictive models suitable to a va-
riety of applications, ranging from screening and prioritization
of chemical testing to quantitative risk assessment. These ex-
amples demonstrate the diversity of model types and data that
can be employed. They also highlight that modeling can be fo-
cused either on an entire AOP, or portions of an AOP, as appro-
priate to a given assessment.

Case Example 1: Aromatase Inhibition Leading to Reproductive
Impairment in Fish
A well-established AOP (https://aopwiki.org/wiki/index.php/Aop:25;
last accessed October 25, 2016) describes the linkage between inhib-
ition of ovarian aromatase (CYP19; which converts testosterone to
17b-estradiol [E2]) in female fish and AOs at the individual (embryo
production) or population level (total number of fish). Intermediate
KEs in the AOP capture E2-induced synthesis of vitellogenin (VTG;
egg yolk protein) in the liver, and subsequent incorporation of the
protein into developing oocytes in the ovary. This AOP description
includes a WoE evaluation, which rated the support for the AOP as
“strong” from a technical perspective (Becker et al., 2015). Given
interest in aromatase inhibition as a mode of endocrine disruption,
this AOP was used as a case study to illustrate how computational
prediction models can be aligned with and complement an AOP.
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The overall approach involved linking a series of models
reflecting different portions of the AOP (Figure 2). The first portion
of the AOP (first 5 KEs) is simulated by a biologically based dose–
response (BBDR) model of hypothalamic–pituitary–gonadal (HPG)
axis that quantitatively associates the degree of inhibition of
CYP19 activity (KE1) with (reduced) plasma E2 concentration (KE3)
and, ultimately, depressions in hepatic VTG production (KE4) and
circulating VTG (KE5) (Breen et al., 2013, 2016; Cheng et al., 2016; Li
et al., 2011a). The HPG axis model accounts for feedback and adap-
tation/compensation in the system, in order to simulate complex
response–response relationships among the KEs as a function of
dose and time (Breen et al., 2013, 2016). The next portion of the
AOP (KEs 6–7) is captured by a statistical model that uses circulat-
ing VTG concentrations as an input parameter to simulate and
predict oocyte growth dynamics in the context of egg production
(Li et al., 2011b; Watanabe et al., 2016). Finally, egg production data
are used as input parameters into the Leslie matrix of a density-
dependent population model that can be used to forecast poten-
tial impacts on population trajectories (Miller and Ankley, 2004;
Miller et al., 2015).

This series of linked models can be used for quantitative risk
assessment, with the initial input based upon degree of inhibi-
tion of CYP19 by a test chemical, a direct measurement of the
MIE that can be made using either an in vivo or in vitro test sys-
tem. This is a relevant application in the context of interna-
tional endocrine disruptor screening and testing programs
(OECD, 2010). With this basic model construct, it is also possible
to use measures of intermediate KEs within the AOP to quanti-
tatively estimate “downstream” responses, including the AOs.
For example, Miller et al. (2015) recently used the approach to
successfully make quantitative predictions of fecundity of the
white sucker (Catostomus commersonii) at a site impacted by a
pulp and paper mill where depressed sex steroid synthesis was
measured in resident fish. From this, Miller et al. (2015) were
able to make quantitative long-term predictions of status of the
white sucker population under varying scenarios, in order to
inform resource managers evaluating different risk mitigation/
treatment options. Even if one feels the certainty in the models
predictions is insufficient to directly support a risk assessment
or regulatory decision, they provide hypotheses which can
guide the design of studies that test both the quantitative

veracity of an AOP and the presumption that the relationship of
KEs to the adverse outcome are correct.

Case Example 2: Skin Sensitization in Mammals
Another well-characterized AOP involves a MIE of covalent modifi-
cation of cellular proteins in the skin by electrophilic chemicals,
which results in an AO of sensitization of the skin to allergens
(https://aopwiki.org/wiki/index.php/Aop:40; last accessed October
25, 2016; OECD, 2012). Intermediate KEs in the AOP capture proc-
esses related to the induction of inflammatory cytokines by den-
dritic cells and keratinocytes, and activation and proliferation of
T-cells that ultimately cause sensitization (Kimber et al., 2012).
The scientific support for this AOP is considered to be strong
(Patlewicz et al., 2015; Perkins et al., 2015) so it also offers an excel-
lent basis for development of quantitative models relating the MIE
to the AO (Maxwell et al., 2014). In particular, there is a strong regu-
latory and scientific interest in applying mechanistic understand-
ing captured in the AOP to help reduce and replace the need for
animal testing associated with the hazard characterization and
risk assessment of skin sensitizing chemicals for use in cosmetic
and other consumer care products (eg, soaps, lotions).

To date, over 20 in vitro test methods have been developed to
either assess skin sensitization hazard potential or characterize
sensitizer potency [reviewed in Reisinger et al. (2015)]. The skin
sensitization AOP has enabled a clearer dialogue with regula-
tory authorities and risk assessors on the mechanistic relevance
of each of these in vitro approaches either when applied in isola-
tion or when these datasets are combined using integrated test-
ing strategies (ITS)/data integration procedures (DIP). Twelve
skin sensitization DIPs have been identified and discussed as
case studies within the OECD “Skin Sensitization IATA guidance
working group” (including Bauch et al., 2012; Gomes et al., 2012;
Hirota et al., 2015; MacKay et al., 2013; Natsch et al., 2015;
Patlewicz et al., 2014; Takenouchi et al., 2015; van der Veen et al.,
2014). As part of the research to develop these DIPs, a variety of
different statistical and modeling approaches have been applied
to skin sensitization datasets and this analysis has refined our
mechanistic understanding of the disease process and enabled
these mechanistic insights to be applied to decision-making.
Jaworska et al. (2013) represent a good example of how these
mechanistic insights can be applied to structure the weighting

FIG. 2. Illustration of the alignment between multiple computational models and an adverse outcome pathway linking aromatase inhibition to reproductive dysfunc-

tion and declining population trajectory in fish. Model constructs allow for quantitative extrapolation across key events at multiple levels of biological organization

ranging from molecular scale interactions to population-level effects.
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and integration of skin sensitization data to predict sensitizer
potency information. The authors describe a quantitative mod-
eling approach for prediction of skin sensitization based on a
Bayesian network construct that utilizes cumulative evidence
from multiple in vitro assays reflecting different KEs within the
AOP. Pirone et al. (2014) describe an optimized, open-source ver-
sion of the skin sensitization model that classifies chemicals as
non-, weak-, moderate-, or strong-sensitizers. The Bayesian
network approach appears to be particularly well suited to
interfacing with the AOP framework, as it allows the integrated
consideration of mechanistic data from multiple biological lev-
els of organization.

A further example is the toxicokinetic/toxicodynamic (TK/
TD) modeling approach taken by MacKay et al. (2013) who have
extended an existing skin bioavailability model (Davies et al.,
2011) to enable the probability of allergy in a given human popu-
lation to be predicted using a TD model of skin protein haptena-
tion, DC antigen presentation and CD8þT cell activation. As
these pathways represent only a subset of the skin sensitization
AOP steps/key events, an analysis of model uncertainty has
been undertaken to enable the impact of these assumptions on
the model prediction to be quantified and explicitly repre-
sented. As this approach has been designed for application in
skin sensitization risk assessment, the consequence of this
level of mechanistic transparency is to empower the risk asses-
sor to judge for themselves whether the level of uncertainty is
appropriate for a given application of the model.

Case Example 3: Inhibition of Thyroid Hormone Synthesis/
Degradation Leading to Varied Developmental Effects
Pathways associated with the hypothalamic–pituitary–thyroidal
(HPT) axis control aspects of early development and metabolic
homeostasis in all vertebrates. Enough is known concerning basic
HPT functional biology, and the effects of chemical perturbation
on this biology, that it is possible to depict the axis as an AOP net-
work comprised of multiple MIEs and discrete early KEs that con-
verge at a shared node/KE of (reduced) plasma thyroid hormone
(TH) concentrations, which subsequently can be associated with
various stage/species-specific AOs (Crofton, 2008; Perkins et al.,
2013). Prominent MIEs include perturbation of proteins involved
in the production of TH (eg, decreased activity of thyroperoxidase,
inhibition of the sodium iodide symporter [NIS]), as well as its
enhanced degradation/elimination (eg, via induction of UDPG-
transferases [UDPGT]). The types of AOs that can be linked to
quantifiable depressions in plasma TH can be as varied as
increased incidence of developmental neurological effects (eg, IQ
decreases) in humans, to delayed amphibian metamorphosis
that result in potential population-level impacts.

There have been a number of efforts to produce quantitative
models focused on associations between TH and AOs. Some of
this work has involved consideration of chemical dose in the con-
text of response–response relationships among KEs. For example,
Parham et al. (2012) and Wise et al. (2012) describe quantitative
statistical models for the association between decreased TH and
neurodevelopmental effects of PCBs of differing potency relative
to their induction of UDPGTs, using both rodent and human data.
Employing a more mechanistic approach, Fisher et al. (2013)
developed a BBDR model that relates reductions in serum iodide
concentrations (which could be caused by inhibition of NIS) to
decreases in TH that could ultimately lead to developmental neu-
rotoxicity. In more recent work, Lumen et al. (2015) conducted a
quantitative sensitivity analysis for a BBDR model describing rela-
tionships between maternal TH synthesis and subsequent trans-
fer of hormone to the developing fetus. These types of analyses

can be guided by KEs described and depicted in HPT AOP net-
works (Perkins et al., 2013).

This Case Example differs from the approach of the previous
2 in a couple regards. First, the theoretical modeling framework
is considered as an interactive network in which discrete
responses elicited via multiple MIEs converge on a shared node,
decreased TH concentrations, which provide a basis for predict-
ing any of a number of different AOs. Second, in this context, as
opposed to Case Examples 1 and 2, only the initial portion of the
AOPs leading to the convergent KE of reduced serum TH con-
centration is quantitatively modeled. However, this is com-
pletely adequate for some intended regulatory uses. The
evidence for an association between a defined percent reduction
in maternal serum TH concentration and adverse neurodevelop-
mental effects in humans is adequate for assessors to reason-
ably conclude that the effect is adverse (Gilbert, 2011). Indeed,
the connection between alterations in serum TH and adverse
effects at the individual or population level are supported by the
remainder of the AOP description (eg, https://aopwiki.org/wiki/
index.php/Aop:134; last accessed October 25, 2016). In this man-
ner, the strength of the AOP downstream of reduced serum TH
KE helped focus model development on upstream key events for
which relevance to adversity was less widely accepted.

Case Example 4: Activation of Estrogen Receptor-a Leading to
Diverse Adverse Outcomes
For some applications, quantitative modeling may only need to
capture the MIE and/or very early KEs of an AOP. An example of
this is illustrated by ongoing activities through the US
Environmental Protection Agency’s Endocrine Disruptor
Screening Program (EDSP), the objective of which is to identify
chemicals with potential to cause adverse effects through alter-
ation of pathways associated with HPT and HPG function (US
EPA, 2014). One MIE of concern is activation of the estrogen
receptor-alpha (ERa). Estrogenic chemicals have been associated
with a large number of different AOs involving reproduction
and development in vertebrates (WHO/IPCS, 2002). Scientists
involved with the EDSP effort recently described the develop-
ment of a network model to predict the potential for chemicals
to act as estrogens in vivo based on a chemical’s ability to elicit
responses in high-throughput (HTP) in vitro assays that capture
multiple aspects of the MIE, including binding to ERa, receptor
dimerization, chromatin binding, transcriptional activation,
and ER-dependent cell proliferation (Browne et al., 2015; Judson
et al., 2015). The quantitative model provides potency values for
test chemicals relative to E2 (the ERa endogenous ligand), and
was evaluated/validated by comparing model output to results
from the uterotrophic assay, an in vivo pathway-based system
considered to be a “gold standard” for identifying ERa agonists
(Browne et al., 2015; Kleinstreuer et al., 2015).

Whereas this particular quantitative model only reflects
early portions of AOPs relevant to interaction with the ERa, it
nonetheless has substantial utility for addressing one of the
challenges faced by EDSP. Specifically, it is being utilized by the
USEPA to prioritize 10 000-plus chemicals for more resource-
intensive in vivo testing necessary to assess potential risks,
based on their predicted estrogenic potency. A recent “proof of
concept” study conducted through the EDSP indicates that the
quantitative model predictions, in conjunction with a rapid
exposure assessment, provide a reasonable basis for test chemi-
cal prioritization based on agreement between the in vitro-based
predictions and in vivo results available for a reference set
of estrogenic compounds (US EPA, 2014). In this hazard-based
scenario, the AOP provides a toxicological “anchor” for
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selection/use of the HTP assays in the context of application of
the computational model to hazard assessment.

Based on case examples already available, the potential util-
ity of the integrated application of AOPs and computational
models is apparent. Whereas an AOP description lays out the
sign posts within a biological system that indicate progression
toward an AO, computational models can quantitatively simu-
late the dynamics of the complex biology at multiple scales that
dictate dose–response and time–course behaviors and define
the conditions under which perturbation of early KEs in the
pathway will ultimately lead to the AO, or not (eg, Case Example
1, Case Example 3). In particular, computational models are well
equipped to represent multi-factorial cellular processes and
mechanisms such as feedback, feed forward, and ultra-
sensitive motifs (Zhang et al., 2014) that give rise to systems
behaviors that are neither intuitive, nor easily represented in a
text-based AOP description. In addition to representing and
simulating the biological systems themselves, computational
models can help integrate diverse data streams from a range of
pathway-based assays to provide potency estimates that can be
used to directly inform risk (eg, Case Example 2) or to prioritize
compounds for more detailed testing (eg, Case Example 4).
Ultimately, whereas both AOPs and computational models help
organize and apply existing knowledge and data they do so in
different ways. Consequently, through effective integration
computational models can enhance the predictive utility of
AOPs and vice versa.

ENSURING AOP INFORMED PREDICTIVE
MODELS ARE FIT FOR REGULATORY PURPOSES

Understanding and acceptance by the regulatory community is
essential to the application of AOPs and associated quantitative
models in a range of envisaged applications, including inte-
grated approaches to testing and assessment (IATA) and/or
dose–response assessment for individual and/or groups of
chemicals. Principles that contribute to regulatory uptake of
evolving technologies and quantitative modeling, described
previously (Meek and Lipscomb, 2015), are relevant in the con-
text of AOPs and computational prediction models that align
with them (IPCS, 2010; Meek et al., 2013). In particular, consider-
ation of the uncertainties associated with an AOP or model-
based prediction is a critical in determining fit-for-purpose.

In principle, the degree of uncertainty that can be tolerated in
AOP and/or associated quantitative models derives from the
problem formulation phase of a risk assessment (NRC, 2009).
During problem formulation, model developers, intended users,
and decision makers collaborate closely to define the scope and
regulatory purposes for which a prediction model is needed, the
type of model best suited to meet the regulatory objectives, the
data criteria, and the model’s domain of applicability (US EPA,
2009). An individual AOP is not a complete, detailed, representa-
tion of complex biological processes. Rather it describes, in a sim-
plified but structured way, existing knowledge concerning
specific motifs of failure of a biological system, culminating in an
adverse outcome (Villeneuve et al., 2014). In this respect, an AOP
itself can be considered a conceptual model, in that it represents
a useful abstraction of the real world. As described above, these
conceptual models (AOPs) can be gainfully employed to aid
develop computational models predictive of toxicity. The desired
level of detail in the resulting AOP or computational model(s), ie,
the complexity or granularity required, depends, among other
factors, on its regulatory application (ie, problem formulation).

Different regulatory applications have different needs in terms of
level of confidence in the assessment, which determines the level
of uncertainty of the model that is acceptable. Model uncertainty
is influenced by model complexity (US EPA, 2009). Model com-
plexity, in turn, depends on the toxicological knowledge that is
available; compared with information-rich AOPs, information-
poor AOPs may give rise to computational models which are
based on more assumptions and thus have a higher level of
uncertainty. Although a higher level of uncertainty may sound
undesirable, the development of a computational model focused
on the regulatory objectives, rather than complete recapitulation
of the system, is actually useful as it saves time and reduces data
requirements. Consultation and engagement of both the develop-
ment (ie, modelling) and application communities in model
refinement (IPCS, 2010) is also advised as a basis to inform the
extent of testing and sensitivity analysis of either models or AOPs
require for specific application.

Because AOPs are, by definition, not chemically specific
(Villeneuve et al., 2014), predictive models derived from them
will also be non-chemically specific by nature. This is advanta-
geous in the sense that resources invested in developing AOP-
based prediction models should have general applicability for a
range of chemicals exhibiting similar bioactivity. However, it is
also recognized that chemical-specific exposure considerations
which drive many of the uncertainties in a given risk assess-
ment are not explicitly accounted for in AOP-based models.
Therefore, in practice, the output of AOP-informed models
needs to be evaluated together with the output of
physiologically-based toxicokinetic (PBTK) models and models
that estimate exposure, preferably in a quantitative fashion.
Recognizing this need, the Aggregate Exposure Pathway (AEP)
framework was recently proposed as a companion to the AOP
framework (Teeguarden et al., 2016). The interface of AEPs with
AOPs and between toxicokinetic and toxicodynamic models
occurs at the MIE, where a chemical reaching its target site of
action triggers an AOP. In applying AOP and AEP-based predic-
tion models for regulatory purposes, the relevant uncertainties
in each need to be considered.

ENGAGING THE MODELING COMMUNITY—A
PROPOSAL

The discussion and examples in the preceding sections have
demonstrated that AOPs and context-specific problem formula-
tion can help focus and inform the development of computa-
tional toxicity prediction models. However, the question remains,
“how can we engage the broader computational modeling com-
munity in utilizing AOP knowledge and related data to develop
tractable and effective predictive models that transform chemical
risk assessment and regulatory decision-making in accordance
with the vision for toxicity testing in the 21st century?” The OECD
and other organizations have provided AOP training to a variety
of stake-holders in the toxicology research and regulatory com-
munities. However, to date, those outreach efforts have not spe-
cifically targeted major biological modeling audiences. Increased
efforts in that regard would be useful. Likewise, longer term there
is a need to reshape academic program introduce more quantita-
tive modeling into toxicology curricula and to stimulate stronger
interaction and collaboration between quantitatively trained indi-
viduals and applied toxicologists.

In the near term, crowd sourcing-based challenges offer
another possibility that has been effective for engaging the
modeling community in specific problems. In general, such
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challenges have defined an intellectual problem for modelers to
address and provided a forum for them to share their proposed
solution(s) along with a peer-reviewed publication, notoriety,
and maybe a cash prize for winners. An early example related
to modeling biology is the Dialogue on Reverse Engineering
Assessment and Methods, or DREAM conference, which initially
focused on computational methods to infer cellular networks
from high-throughput data (Stolovitzky et al., 2007). In the past
10 years, the DREAM challenges have continued to grow in both
scope and complexity, not only building communities of
researchers focused on a common goal, but also producing
robust performance evaluation criteria to assess and rank solu-
tions (Meyer et al., 2011). Similar crowd-sourcing challenges are
being applied to a wide range of biological problems including:
drug development (Meyer et al., 2012), cross-species translation
(Biehl et al., 2015; Rhrissorrakrai et al., 2015), population-wide
chemicals sensitivity in the Tox21 1000 Genomes project (Eduati
et al., 2015), and chemical toxicity predictions in the Tox21 Data
Challenge (Abdelaziz Sayed et al., 2016; Capuzzi et al., 2016; Mayr
et al., 2016; Huang et al., 2016; Koutsoukas et al., 2016; Stefaniak,
2015). These challenges do not just solve a problem, they also
bring scientific communities together in a repeatable model
that could provide a series of benefits to the AOP community.

In order to stimulate development of quantitative prediction
models aligned with AOPs, and attract greater involvement of
the broader modeling community, we recommend initiating a
program of AOP challenges to develop real-world applications
based on established AOP practices (OECD, 2013; https://aop
wiki.org/; last accessed October 25, 2016), such as the recent
announcement of the AOP Wiki Data Challenge (http://www.
piscltd.org.uk/aop-prize/; last accessed October 25, 2016).
Challenge formats could include: building the most predictive
model for existing AOPs using a specific challenge data set;
quantitatively defining a new AOP for an outcome of interest (eg,
replacing animal testing for a particular purpose); integration of
multiple AOPs or an AOP network into one consistent decision-
making workflow (eg, to enable risk assessment of a given class
of compounds). Challenges could be constrained to specific goals
using a defined data set such as response-response data, in vitro
assays, or ‘omics data. This would help focus efforts and reduce
potential advantages of groups with access to better data sets.
Depending on the goal, online resources could be drawn upon
through the course of the challenge, such as biological data for
benchmark chemicals, contact details for experts in the field
and/or webinars to help the challenge community use the AOP
knowledgebase. Each challenge should be time-bound and
would ideally have been demonstrated to be theoretically feasi-
ble in advance. There could also be very closely defined criteria
for ‘winning’ the challenge (eg, level of predictive accuracy,
improvement over existing approaches, novel insights of inter-
est), a test set of anonymized data that could be used at the con-
clusion of the challenge to demonstrate a “win” and “winners”
would be offered the opportunity to present their entry at a high
impact conference relevant to the challenge problem and to pub-
lish in a special issue of a high impact journal.

Adverse outcome pathway (AOP) challenge competitions
have the potential to achieve both short-term and long-term
benefits for the AOP community. In the short-term, it should
accelerate development of AOP-based predictive models that
could potentially be used in real-world applications, generate a
wealth of user input to broaden the content of the AOP knowl-
edgebase, refine our quantitative understanding of the nomi-
nated pathways and provide guidance into how different
approaches can be used to model AOPs for different

applications. Longer-term benefits could be even more signifi-
cant, the introduction of a generation of computer scientists
and mathematical modelers into a new field where they find
productive careers in predictive toxicology.

CONCLUSIONS

Predictive application of mechanistic data is envisioned as the
future of regulatory toxicology and risk assessment. AOPs are,
by design, intended to aid application of mechanistic data in
regulatory decision-making. However, qualitative description of
biologically plausible and empirically supported causal connec-
tions between biological changes measured at different levels of
organization and outcomes of regulatory significance may not
yield the quantitative precision and sophistication needed for
some regulatory applications. Development of predictive com-
putation models aligned with AOP knowledge and designed to
meet the needs of context-specific problem formulations repre-
sents another critical piece of the emerging paradigm. The time
is right for the toxicology community to engage and partner
with the computational modeling expertise to advance the sci-
ence of predictive toxicology.
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