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 Background: Increased lipid accumulation in renal tubular epithelial cells (TECs) contributes to their injury and dysfunction 
and progression of tubulointerstitial fibrosis. Berberine (BBR), a natural plant alkaloid isolated from traditional 
medicine herbs, is effective in lowing serum lipid, and has a protective effect on chronic kidney disease (CKD) 
with dyslipidemia, including diabetic nephropathy. The aim of this study was to investigate the effect of BBR 
on palmitate (PA)-induced lipid accumulation and apoptosis in TECs.

 Material/Methods: Human kidney proximal tubular epithelial cell line (HK-2) cells were treated with PA, BBR, and/or palmitoyl-
transferase 1A (CPT1A) inhibitor Etomoxir. Intracellular lipid content was assessed by Oil Red O and Nile Red 
staining. Cell apoptosis rate was evaluated by flow cytometry assay. The expression of apoptosis-related pro-
tein cleaved-caspase3 and fatty acid oxidation (FAO)-regulating proteins, including CPT1A, peroxisome prolif-
erator-activated receptor a (PPARa), and PPARg co-activator-1a (PGC1a), was measured by Western blot anal-
ysis and immunofluorescence.

 Results: In the present study, PA treatment increased intracellular lipid deposition accompanied by elevated apoptosis 
in TECs compared with control group, whereas the protein expression of CPT1A, PPARa, and PGC1a, did not 
correspondingly increase in TECs. BBR significantly up-regulated the protein expression of CPT1A, PPARa, and 
PGC1a in TECs treated with or without PA, and reversed PA-induced intracellular lipid accumulation and apop-
tosis. Moreover, the CPT1A inhibitor Etomoxir counteracted the protective effect of BBR in TECs.

 Conclusions: These in vitro findings suggest that PA can induce intracellular lipid accumulation and apoptosis in TECs, and 
the mechanism may be associated with inducing defective FAO, whereas BBR can protect TECs against PA-
induced intracellular lipid accumulation and apoptosis by promoting FAO.
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Background

Chronic kidney disease (CKD) is usually accompanied by lipid 
abnormalities [1–3]. Since the “lipid nephrotoxicity hypothe-
sis” was first proposed by Moorhead in 1982 [4], increasing 
evidence has supported the hypothesis that filtered non-ester-
ified fatty acid or lipoprotein causes renal epithelial cell injury 
and promotes the progression of renal disease [5].

Intracellular lipid accumulation has been found in human and 
mouse kidneys with tubulointerstitial fibrosis [6]. Moreover, lip-
id accumulation in the kidney leads to structural impairment 
of tubular epithelial cells (TECs) and associated inflammation 
and fibrosis in high-fat diet (HFD)-fed mice [7]. These find-
ings demonstrate that lipid accumulation in TECs plays a crit-
ical role in tubulointerstitial fibrosis. TECs depend primarily on 
fatty acid oxidation (FAO) as their energy source. Intracellular 
lipid accumulation is associated with an imbalance between 
uptake and oxidation of fatty acids [8]. Moreover, it has been 
shown that improving FAO protects mice from tubulointersti-
tial fibrosis [6]. These findings suggest that defective FAO can 
lead to lipid accumulation in TECs and thus contribute to TEC 
injury and tubulointerstitial fibrosis.

Berberine (BBR), a natural plant alkaloid originally extracted 
from Coptis chinensis (“Huanglian” in Chinese), has been com-
monly used to treat diarrhea for at least a century in China, 
and its safety has been confirmed [9–11]. In recent years, it has 
been found that BBR is effective in lowering serum lipid (includ-
ing serum cholesterol, triglyceride, and LDL-cholesterol), has a 
significant effect on the treatment of CKD with dyslipidemia 
(including diabetic nephropathy), and has been widely used in 
clinical therapy [12,13]. However, the mechanism responsible 
for the renal-protective effect of BBR has not been completely 
understood. Some researchers reported that the renal-protec-
tive effect of BBR may be associated with anti-oxidative stress 
and inhibiting aldose reductase in diabetic nephropathy [14]. 
Recently, to further explore how BBR protects against cell and 
organ injury caused by dyslipidemia, studies on the effect of 
BBR on intracellular lipid were performed. It has been shown 
that BBR can reduce lipid accumulation and promote FAO in 
liver in db/db mice [15], and can ameliorate PA-induced apop-
tosis in pancreatic b cells in vitro [16]. However, the specific 
mechanism has not been well defined, and it remains unclear 
whether BBR has a similar effect in TECs. In the present study 
we investigated the effect of BBR on PA-induced lipid accu-
mulation and apoptosis in TECs using an in vitro model and 
sought to determine the underlying mechanism.

Material and Methods

Cell culture

Human kidney proximal tubular epithelial cell line (HK-2) cells 
were obtained from the American Type Culture Collection 
(Manassas, VA, USA). HK-2 cells were cultured in DMEM/F12 
medium supplemented with 10% fetal bovine serum (FBS, 
Gibco, USA), 100 U/ml penicillin, and 100 mg/ml streptomy-
cin in a humidified 5% CO2 incubator at 37°C. For treatment 
of HK-2 cells, sodium palmitate (Sigma, USA, P9767) was pre-
pared as a 2.5 mmol/L stock solution, as described previous-
ly [17]. For treatment of HK-2 cells, BBR (Sigma, USA) was pre-
pared as a 25 mmol/L stock solution by dissolving it in DMSO, 
and Etomoxir (Selleck, USA) was prepared as a 50 mmol/L stock 
solution by dissolving it in DMSO. Cells were treated with so-
dium palmitate after pretreatment with BBR and/or Etomoxir, 
and then intracellular lipid accumulation, FAO-related protein 
expression, and cell apoptosis were assessed.

Flow cytometric assay

Apoptosis was detected using the Annexin V-FITC/propidi-
um iodide (PI) apoptosis assay kit (Sungene Biotech, China). 
Briefly, treated cells were collected by centrifugation, washed 
twice with ice-cold PBS, and then resuspended in 500 μl of 
1× Annexin V binding buffer containing 5 μl of Annexin V-FITC 
and 3 μl of PI. After incubation for 10 min at room tempera-
ture, the percentage of apoptotic cells was analyzed using a 
flow cytometer (BD FACSCalibur, Becton-Dickinson, USA). The 
apoptosis rate of HK-2 cells was calculated as early apoptotic 
(annexin V+/PI–) rate plus late apoptotic (annexin V+/PI+) rate.

Western blot analysis

Cells were lysed in RIPA lysis buffer (Beyotime, China), soni-
cated for 15 s, and then centrifuged at 12 000 g for 15 min at 
4°C. Then, the protein samples were mixed with loading buf-
fer, heated at 100°C for 5 min, separated by electrophoresis in 
10% or 12% tris-glycine polyacrylamide gradient gels, trans-
ferred onto PVDF membrane (Millipore, USA), blocked with 5% 
non-fat milk for 1 h at room temperature, and then incubated 
overnight at 4°C with different primary antibodies: mouse anti-
carnitine palmitoyltransferase 1A (CPT1A, 1: 1000, Abcam, UK), 
rabbit anti-cleaved-caspase3 (1: 1000, CST, USA), rabbit anti-
peroxisome proliferator-activated receptor a (PPARa, 1: 500, 
Santa Cruz, USA), rabbit anti-PPARg co-activator-1a (PGC1a, 
1: 1000, Novus, USA), or mouse anti-b-actin (1: 5000, Sungene 
Biotech, China). After washing with TBS-T, the membrane was 
incubated with goat anti-mouse IgG(H+L) horse-radish peroxi-
dase (1: 8000, MultiSciences, China) or goat anti-rabbit IgG(H+L) 
horse-radish peroxidase (1: 8000, MultiSciences, China) for 1 h 
and then incubated with ECL reagent (Advansta, USA). Protein 
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blot images were captured by an imaging densitometer (Fusion 
FX5, Vilber Lourmat, France), band densitometry was scanned 
by the Fusion analysis software, and targeted protein expres-
sion levels were quantitated relative to b-actin and expressed 
as fold change (normalized to control group).

Immunofluorescence

Cells were fixed with 4% paraformaldehyde for 30 min, per-
meabilized with 0.1% Triton X-100 for 10 min, blocked with 
5% BSA (Sigma, USA) for 1 h at room temperature, incubat-
ed overnight at 4°C with mouse anti-CPT1A antibody (1: 400, 
Abcam, UK), washed with PBS 3 times, and then incubated 
with green-fluorescent Alexa Fluor 488 goat anti-mouse IgG 
antibody (1: 400, Invitrogen, USA) for 1 h. After washing with 
PBS 3 times, cells were stained with 4, 6-diamidino-2-phenyl-
indole (DAPI; Invitrogen, USA) for 3 min and visualized with a 
fluorescence microscope (DM4000 B LED, Leica, Germany) at 
wavelengths of 488 nm for excitation and 525 nm for emission.

Measurement of intracellular lipid content

Intracellular lipid content was measured with Oil Red O and 
Nile Red staining. Cells were first fixed with 4% paraformal-
dehyde for 30 min. For Oil Red O staining, cells were stained 
with Oil Red O (0.18g/ml, Sigma, USA) for 15 min at 37°C, and 
then counterstained with hematoxylin for 3 min. For Nile Red 
staining, cells were incubated with Nile Red (0.1 ug/ml, Sigma, 
USA) for 10 min, and then stained with DAPI for 3 min. Then, 
cells were visualized under a microscope (DM4000 B LED, 
Leica, Germany). All fluorescence intensity was quantified us-
ing Image J software.

Statistical analysis

Data are presented as mean ±SEM from 3 independent ex-
periments. Analyses were carried out using GraphPad Prism 
Software version 7.00 (San Diego, CA). Differences among dif-
ferent groups were analyzed using one-way analysis of vari-
ance (ANOVA) followed by Tukey’s post hoc test for analysis 
of differences between groups. The level of statistical signifi-
cance was defined as p<0.05.

Results

BBR ameliorated PA-induced apoptosis in TECs

HK-2 cells were treated with different concentration of PA 
for 24 h, and cleaved-caspase3 protein expression was mea-
sured by Western blotting. There was a significant increase 
in cleaved-caspase3 protein expression in the 300 μmol/L PA 
group and 450 μmol/L PA group compared with the control 

group (Figure 1A, 1B). Moreover, cleaved-caspase3 protein ex-
pression in the 450 μmol/L PA group was dramatically higher 
than that in the 300 μmol/L PA group (Figure 1A, 1D). Thus, 
we chose PA at a concentration of 450 μmol/L to treat HK-2 
cells in the following experiments. Using annexin V-FITC/PI 
staining and flow cytometric analysis, we also confirmed that 
the exposure of HK-2 cells to 450 μmol/L PA induced obvious 
apoptosis in TECs (Figure 1E, 1F). In addition, HK-2 cells were 
incubated with 450 μmol/L PA in the presence or absence of 
12.5 μmol/L BBR for 24 h, and BBR treatment ameliorated PA-
induced apoptosis (Figure 1C–1F).

BBR decreased PA-induced lipid accumulation in TECs

Intracellular lipid content was detected with the use of Oil Red 
O and Nile Red staining. PA induced a significant increase of 
lipid content in HK-2 cells, whereas BBR significantly reduced 
PA-induced intracellular lipid accumulation (Figure 2A–2C). Oil 
Red O can stain neutral triglycerides, and Nile Red can stain 
varies of neutral lipids including neutral triglycerides and cho-
lesteryl esters. Therefore, increased intracellular lipid induced 
by PA contained neutral triglycerides.

BBR promoted FAO of TECs

To investigate how BBR decreases PA-induced lipid accumula-
tion in TECs, we assessed the expression of FAO-related pro-
teins, including CPT1A, PPARa, and PGC1a, by Western blot-
ting. After treatment with 2.5 μmol/L or 12.5 μmol/L BBR, 
the expression of each of these 3 proteins was significant-
ly up-regulated compared with the control group, whereas 
12.5 μmol/L BBR caused a higher level than that of 2.5 μmol/L 
BBR (Figure 3A, 3B). We chose BBR at a concentration of 
12.5 μmol/L to treat HK-2 cells in the following experiment. 
Our results showed that BBR promoted the protein expres-
sion of CPT1A, PPARa, and PGC1a in the presence or absence 
of PA treatment (Figure 3C, 3D). Using immunofluorescence 
staining, we also found that BBR increased the protein ex-
pression of CPT1A, the key enzyme in the regulation of FAO, 
in the presence or absence of PA treatment (Figure 3E, 3F). 
Taken together, these results suggest that BBR promotes FAO 
in TECs treated with or without PA. However, there was no 
statistically significant difference in the protein expression of 
CPT1A, PPARa, or PGC1a between the PA group and control 
group (Figure 3C–3F).

CPT1A inhibitor counteracted the protective effect of BBR 
against PA-induced lipid accumulation and apoptosis in 
TECs.

To determine whether the protective effect of BBR against PA-
induced lipid accumulation and apoptosis is associated with 
elevating FAO, HK-2 cells were treated with 40 μmol/L CPT1A 
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inhibitor Etomoxir for 48 h. Results showed that Etomoxir in-
duced significantly increased intracellular lipid-droplet forma-
tion, accompanied by increased cleaved-caspase3 protein ex-
pression and apoptosis in HK-2 cells treated with PA and BBR 
(Figure 4A–4G), suggesting that inhibition of FAO counteract-
ed the protective effect of BBR.

Discussion

Clinical and experimental evidence indicates that dyslipidemia 
contributes to CKD progression by inducing inflammatory, oxi-
dative stress, and endoplasmic reticulum stress, and lipid-low-
ering agents might protect renal function [18]. Excess lipid, es-
pecially triglycerides, beyond that needed for cellular structures 
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Figure 1.  Berberine ameliorated palmitate-induced apoptosis in HK-2 cells. (A) Representative Western blot analyses of cleaved-
caspase3 expression in HK-2 cells treated with different concentrations of palmitate for 24 h. (B) Densitometric analysis 
of cleaved-caspase3 expression in Figure A. (C) Representative Western blot analyses of cleaved-caspase3 protein 
expression in HK-2 cells treated with or without 450 μmol/L palmitate in the presence or absence of 12.5 μmol/L berberine. 
(D) Densitometric analysis of cleaved-caspase3 expression in Figure C. (E) Representative cytograms of apoptosis. 
(F) Quantification of cell apoptosis. All the statistical data are expressed as the mean ±SEM; n=3. * p<0.05 vs. 0 μmol/L or 
control group, & p<0.05 vs. 300 μmol/L, # p<0.05 vs. PA group.
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and ATP generation is stored as lipid droplets in adipocytes. 
However, too great of an excess will overburden these cells and 
cause ectopic deposition of lipids in non-adipose cells such as 
proximal tubular cells. Lipid droplets are often seen in proxi-
mal tubular cells in nephrotic syndrome [19]. When the lipid-
storage capacity of non-adipose cells is exceeded, triglycer-
ides are hydrolyzed to produce excess free fatty acids (FFAs), 
which can increase reactive oxygen species production and 
endoplasmic reticulum stress, leading to cell dysfunction and 
injury, collectively termed lipotoxicity [5,20]. Apoptosis is one 
of major types of cell death, a key and active process to keep 
tissue homeostasis and to clear potentially harmful cells away 

in multicellular organisms [21], and inappropriate (either too 
much or too little) apoptosis is widely involved in the patho-
physiology of human diseases [22]. Kinetic experiments us-
ing mouse models of focal and segmental glomerulosclerosis 
showed that apoptosis of TECs is the main cause of tubular 
atrophy, which has been confirmed as an important predictor 
of CKD progression [23]. In the present study, we demonstrat-
ed that PA treatment increased intracellular lipid deposition, 
including triglycerides deposition, accompanied by elevated 
apoptosis in TECs, indicating that excessive intracellular lip-
id leads to lipotoxicity and therefore induces TECs apoptosis.
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Intracellular lipid accumulation is attributed to the imbalance 
between uptake and oxidation of fatty acids [8]. FAO requires 
fatty acids to translocate into mitochondria, which is a rate-
limited step regulated by CPT1 in the oxidation of long-chain 
fatty acids [24]. CPT1A, the primary isoform expressed in the 
kidneys [25], is responsible for transporting acyl CoA into mi-
tochondria [26]. PPARa promotes the protein expression of 
CPT1A with the cooperation of PGC1a [27], and consequently 

increases FAO [28]. Recently, it was proposed that the coop-
eration of PPARa and PGC1a plays a critical role in matching 
FAO capacity to substrate availability [29]. Therefore, in gener-
al, if FFA supply increases, the expression of PPARa and PGC1a 
will correspondingly increase and thus up-regulate CPT1A ex-
pression. Otherwise, the imbalance between high FFA level 
and relatively low FAO level will induce excessive intracellular 
lipid accumulation and then cause lipotoxicity, leading to cell 
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Figure 4.  CPT1A inhibitor counteracted the protective effect of BBR against PA-induced lipid accumulation and apoptosis in HK-2 
cells. HK-2 cells were pretreated with or without 40 μmol/L Etomoxir for 24 h, and then treated with 12.5 μmol/L BBR in the 
presence or absence of 450 μmol/L PA for 24 h. Intracellular lipid content was detected by Oil Red O staining (400×) (A) and 
Nile Red staining (400×) (B). The lower panels showed enlarged views of the boxed areas in the upper panels in Figure A. 
The rightmost panels showed that enlarged views of the boxed areas in the left panels in Figure B. (C) Fluorescent intensity 
from 5 randomly selected microscopic fields per group in Figure B was captured and analyzed. (D) Representative Western 
blot analyses of cleaved-caspase3 protein expression. (E) Densitometric analysis of cleaved-caspase3 protein expression in 
Figure D. (F) Representative cytograms of apoptosis. (G) Quantification of cell apoptosis. All the statistical data are shown as 
the mean ±SEM, n=3. * p<0.05 vs. control group. # p<0.05 vs. PA group. & p<0.05 vs. PA+BBR group.
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dysfunction and apoptosis. In the present study we investi-
gated the protein expression of CPT1A, PPARa, and PGC1a in 
TECs after PA treatment. However, the expression of key fac-
tors regulating FAO did not correspondingly increase, while 
FFA supply increased remarkably, suggesting that PA induces 
defective FAO in TECs, which might be responsible for intra-
cellular lipid accumulation and apoptosis. D’Agati et al. found 
that renal triglyceride accumulation can be caused by defec-
tive FAO, which is mediated by PPARa and its target enzymes, 
including CPT1 [28]. However, the exact mechanism by which 
high lipid levels induce defective FAO in TECs is still uncertain 
and is the subject of ongoing investigations.

BBR has recently been demonstrated to have great effects on 
correcting lipid metabolism disorders [12,13]. In vivo and in vi-
tro experiments suggest BBR can ameliorate PA-induced fat 
deposition in hepatocytes, and suppress inflammation, oxida-
tive stress, and triglyceride accumulation in the liver of HFD-
fed mice, thus inhibiting the progression of hepatic steatosis to 
steatohepatitis [30–33]. Moreover, it has been shown that BBR 
protects HFD-induced kidney damage in a mouse model [34], 
but the underlying mechanism has not been well defined. Our 
study shows that BBR can effectively protect TECs against PA-
induced intracellular lipid accumulation and apoptosis, indicat-
ing that BBR protects the kidneys from lipid nephrotoxicity by 
reducing intracellular lipid accumulation. We further found that 
BBR greatly elevated CPT1A, PPARa, and PGC1a expressions 
in TECs. In HFD-fed fish, it is reported that BBR also increased 
hepatic CPT1A and PPARa mRNA expression, and decreased 
fat accumulation, alleviating oxidative stress and apoptosis in 
the liver [35]. We speculated that increasing FAO might be the 
mechanism underlying the protective effect of BBR against PA-
induced intracellular lipid accumulation and apoptosis. As CPT1A 
is the rate-limiting enzyme for FAO, we further inhibited FAO 

with the CPT1A inhibitor Etomoxir in the present study, and 
found that Etomoxir counteracted the protective effect of BBR 
in TECs. All these results demonstrate that BBR can prevent in-
tracellular lipid accumulation and therefore reduce apoptosis 
in PA-treated TECs by promoting FAO. In addition, some stud-
ies have found that BBR can activate AMP-activated protein 
kinase (AMPK) in fat and liver cells [14,36]. Moreover, previ-
ous studies have demonstrated that activating AMPK inhibits 
the activity of acetyl CoA carboxylase, and thus reduces mal-
onyl CoA levels, resulting in increased CPT1 expression [37]. 
However, it remains unclear whether BBR promotes FAO by 
activating AMPK, which requires further studies in the future.

Conclusions

We have shown that PA can induce intracellular lipid accumu-
lation and apoptosis in TECs, and defective FAO might be the 
mechanism. In addition, to the best of our knowledge, we pro-
vide the first evidence to suggest a new mechanism of BBR 
action in TECs that involves, sequentially, promoting FAO, low-
ering PA-induced excess intracellular lipid accumulation, and 
attenuating apoptosis. However, this was an in vitro study, and 
further in vivo studies are needed to confirm these results.
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