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One of the hallmarks of cardiovascular diseases is metabolic
perturbation, and one of the circulating metabolites that have
drawn much attention in recent years is the subclass of
ceramides. Ceramides are a class of sphingolipids composed
of sphingosine and a fatty acid. Ceramide levels are elevated
in the heart failure patients, suggesting a connection between
ceramide metabolism and progression of cardiovascular
diseases.1 In this issue of the journal, Targher et al. conducted
a study analysing 400 chronic heart failure (HF) patients to ex-
amine the link between ceramide levels and cardiovascular
mortality.2 The study is based on a comparative analysis,
which was conducted between survivors and non‐survivors
with pre‐existing HF over a median follow‐up period of
3.9 years.

Increased cellular ceramides have been linked to en-
hanced apoptosis, insulin resistance, and oxidative stress.3–
8 Ceramides are synthesized through three major pathways:
first, de novo condensation of palmitoyl CoA with serine cat-
alyzed by serine palmitoyltransferase (SPT),9 second, by
sphingomyelinase‐dependent hydrolysis of sphingomyelin,10

and third, from sphingosine through ceramide synthases
(Figure 1). De novo synthesis contributes 25–30% of total
ceramides and is activated in inflammation and hypoxia.11–

13 Two subunits of SPT (SPT1 and SPT2) form a heterodimer
and are both necessary for enzyme function. Specificity of
these pathways for ceramide subspecies is unclear; formation
of long‐chain ceramides (C22–C26) has been linked to cer-
amide synthase 2 (CerS2),14,15 and long‐chain ceramides and
very‐long‐chain ceramides are believed to have the greatest
impact on cardiac dysfunction.1,16 Our previous studies dem-
onstrated that ceramide accumulation causes cardiac remod-
elling and ultimately failure.1,16 Saturated fat increases
ceramides,17,18 and genetic and pharmacological inhibition of
ceramide synthesis ameliorates insulin resistance,5 a hallmark
of HF. In an earlier study, Yu et al. showed that total ceramide
levels had a positive correlation with cardiovascular morbidity
and increased mortality rates.19 By comparison of ceramide
levels between the two chronic HF patient groups, Targher

et al. revealed that only plasma Cer(d18:1/16:0) and
Cer(d18:1/24:1) levels increased in the patients who died of
cardiovascular diseases. Furthermore, an unadjusted compar-
ison showed that higher ratios of each ceramide with
Cer(d18:1/24:0) were significantly associated with increased
mortality. Adjustment for additional cardiovascular risk fac-
tors, however, weakened the association, in particular after
adjustment for levels of plasma NT‐proBNP and PTX3.2

In the current study, the selected population of patients
who later died from cardiovascular causes already had signif-
icantly higher levels of plasma PTX3 and NT‐proBNP at base-
line. These two well‐documented prognostic biomarkers are
associated with increased mortality and adverse cardiovascu-
lar events.20–22 Potentially, high plasma PTX3 and NT‐proBNP
are dependent predictors of a positive association between
ceramide levels and cardiovascular death. However, this re-
quires further confirmation by a larger cohort of patients,
preferentially between the patients with comparable levels
of PTX3 and NT‐proBNP. Chronic HF is associated with ele-
vated inflammatory state, especially in patients at advanced
stages of the disease.23,24 Considering that levels of PTX3
and NT‐proBNP as well as ceramides are regulated by specific
immune responses,25–27 elevated levels of these three
markers in patients with HF who later died of cardiovascular
disease may arise from enhanced inflammation. Inclusion of
additional adjustments for inflammatory parameters will al-
low to better evaluate the effect of ceramide levels on cardio-
vascular outcome in the future.

The fact that ceramide levels increase after heart injury
renders its prognostic value to predict cardiovascular out-
come. However, the results reported by Targher et al. impli-
cate an impact of ceramide levels on cardiovascular events
and should be evaluated in the context of other studies to
avoid overestimation or underestimation of the outcomes.
A better understanding of the pathways underlying the regu-
lation of ceramide metabolism will certainly favour selection
of suitable adjustment variables when evaluating effects of
ceramides for clinical application.
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Altogether, cardiometabolites are a class of biomarker
molecules that have gained new attention not only as indica-
tors of cardiovascular metabolism but also concerning their
prognostic role and impact on cardiovascular outcomes.
New powerful methods for the detection and quantification
of these molecules will allow testing their specific role in rou-
tine clinical applications. Furthermore, definition of their role

and impact will provide opportunities for novel pharmacolog-
ical interventions in cardiovascular diseases and beyond.
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palmitoyltransferase and contributes to around 30% of the total ceramide pool. This pathway is activated in hypoxia and inflammation and is inhibited
by myriocin. The salvage pathway forms ceramides from sphingosine catalyzed by ceramide synthases (CerS1–CerS6) with tissue and ceramide species
synthesis specificity. CerS1, CerS2, and CerS5 are all expressed in the myocardium, and CerS2 mediates synthesis of long‐chain ceramides C22–C24.
This pathway can be inhibited by fumonisin. The sphingomyelin pathway is catalyzed by sphingomyelinase.
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