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ABSTRACT: Theories of interpreting polymer physics and
rheology at the molecular level from experiments, including
small-angle scattering, typically rely on the assumption that
polymer chains possess a Gaussian configuration distribution.
This assumption frequently fails to describe features of real polymer
molecules both at equilibrium (when polymers have nonlinear
topology or heterogeneous chemistry) and out of equilibrium
(when they are subjected to nonlinear deformations). To better
describe non-Gaussian polymer conformation distributions, we
propose a moments analysis based on the Gram−Charlier
expansion as a natural framework for describing structure and
scattering from non-Gaussian polymers. The expansion describes
the conformation distribution in terms of cumulants (equivalent to moments of the distribution) of the underlying segment density
distribution function, providing low-dimensional descriptors that can be inferred directly from measured scattering in a way that is
agnostic to a polymer’s topology, chemistry, or state of deformation. We use this framework to show that cumulants can be used to
“fingerprint” non-Gaussian conformation distributions of polymers either at equilibrium (applied to sequence-defined
heteropolymers) or out of equilibrium (applied to polymers experiencing nonlinear deformation due to flow). We anticipate that
this new analysis method will provide a general framework for examining nonideal polymer configurations and the properties that
arise from them.

■ INTRODUCTION
Molecular theories for polymers often rely on the assumption
that the configuration of polymer chains behave ideally,
according to a Gaussian distribution.1,2 This includes statistical
properties such as the distribution of end-to-end vectors or the
distribution of segmental density about the polymer center of
mass. Furthermore, the Gaussian chain model is also often
used to describe coarse-grain inter- and intramolecular
interactions between polymers, as well as effective interactions
in binary (polymer−polymer and polymer−solvent) mixtures.
As a result, many properties of polymers are theoretically
described in terms of Gaussian parameters such as the radius of
gyration (for isotropic structures) or equivalently the gyration
tensor (for anisotropic structures) or other properties derived
from them.

While the assumption of a Gaussian configurational
distribution is generally suitable for describing the structure
and properties of long-chain homopolymers at or near
equilibrium (e.g., under linear deformations), it often proves
insufficient in describing the complex nature of real polymer
chains, especially in scenarios involving nonlinearity, hetero-
geneity, and dynamic or out-of-equilibrium processes.3

Common instances involving such deviations from Gaussian

statistics include heteropolymers such as biopolymers,4

polymers with nonlinear or branched topologies,5 entangled
polymers where correlations between different segments lead
to non-Gaussian spatial distributions,6,7 polymers in confine-
ment or at interfaces,8,9 glassy or highly cross-linked
polymers,10 and polymers subjected to nonequilibrium
conditions such as during deformation or under external
forces.11 The non-Gaussian characteristics of the distribution
functions can arise from a number of factors including
excluded volume effects,12,13 nonlinear chain stiffness,14 and
hydrodynamic interactions,15,16 complex topology-defined
internal dynamics,17 and comonomer-specific interactions.18

Hence, there is a significant need for a framework to describe
non-Gaussian statistics of the configurational distributions that
are compatible with both experiments and molecular
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simulation to achieve a comprehensive understanding of their
structure−property relationships.

A motivating example of non-Gaussian behavior involves
polymer deformations in flow, which strongly influence
polymer dynamics, processing, and mechanical properties.
Under sufficiently strong hydrodynamic forces, polymer
conformations undergo a significant departure from Gaussian
behavior, due to both the spectrum of configurational
relaxation dynamics and the finite extensibility of chain
segments, under highly nonlinear deformations. Understanding
and studying the non-Gaussian response of polymers in
different flow fields has been a central focus in polymer physics
since its early stages.19,20 For example, in extension-dominated
flows, the competition of hydrodynamic forces and nonlinear
entropic forces leads to the well-studied coil−stretch transition
due to non-Gaussian polymer stretching.21,22 By contrast, in
shear-dominated flows, polymers do not achieve quasi-steady
stretching and instead continually experience temporal
fluctuations between stretching and tumbling, leading to
highly non-Gaussian average distributions in the polymer
conformations.23,24 These phenomena are typically described
in simple rheological theories by modeling chains as nonlinear
elastic springs21 with finite extensibility,25 resulting in
predictions of heterogeneous distributions of stretch along a
chain.26 Hur et al.19 showed that in such cases, the spatial
distribution of the polymer segments about its center of mass
shifts from a nearly Gaussian shape at low deformation rates to
a broad-shaped, skewed distribution at higher deformation
rates. Benoit et al.27 have shown that on extension, the chain
ends appear to extend more than the central section indicating
a nonuniform stretch distribution across the length of the
chain. As a result, the applicability of Gaussian statistics and
properties based on them is strongly limited in the limit of
large deformations and strain rates, motivating the need for a
more general framework to assess non-Gaussian polymer
configurations.

In this work, we attempt to take some initial steps toward
developing such a framework. We focus particularly on a
description of the segment density probability distribution
function (subsequently referred to as the segment PDF), which
describes the spatial distribution of different polymer segments
with respect to the center of mass.28 For ideal chains at
equilibrium, works by Isihara29 and by Debye and Bueche30

showed analytically that the PDF under such situations is
Gaussian, with variance given by the mean-square radius of
gyration R g

2 of the polymer chain. Although the density PDF
is spherically symmetric at equilibrium, the instantaneous
shape of the polymer can be highly anisotropic, and this
anisotropy can be described by decomposing Rg

2 into
components along its three principal axes for any given chain
conformation, referred to as the gyration tensor =G R Rg g of
the molecule.31 We chose the segment density distribution as
the primary choice for describing non-Gaussian polymer
conformations in this work because it can be easily accessed
in both molecular simulations and experimental measurements
including small-angle scattering.

In principle, spectroscopic measurements such as polarized
light birefringence32 as well as small-angle scattering using
various radiation sources (light,33 X-rays,34 and neutrons35)
can be used to characterize intramolecular polymer structure.
In these methods, the size and shape of an isolated polymer
molecule can be determined by studying the angular

dependence of scattered light, as initially described by Peterlin
et al.36 Recently, the advent of single-molecule imaging
techniques on DNA using fluorescence microscopy allows for
the direct observation of polymer chain configurations and
provides unambiguous insights into the principles governing
polymer mechanics.37−40 Similarly, advanced spectroscopic
techniques such as double electron−electron resonance
(DEER)41,42 and Förster resonance energy transfer
(FRET)43,44 measure the ensembles of distances between
molecular probes, providing full distributions of chain-end
conformations. Experimental findings from both bulk and
single-molecule structural characterization techniques coupled
with molecular simulations have played a pivotal role in
developing and predicting the nonequilibrium behavior of
polymers.45 Among these methods, scattering stands out as the
most accessible approach to unambiguously examine both the
global and local structures of polymer chains, either at
equilibrium or under the influence of external forces like
flow.46−49 In particular, there has been growing recent interest
in directly correlating the rheological response of a polymer
fluid to the internal structure on all relevant length scales, and
measurements to probe the spatiotemporal evolution of
structure in the nonequilibrium deformed state have been
outlined in a recent review by Eberle and Porcar.50

The scattered intensity measured in small-angle light, X-ray,
or neutron scattering (SALS, SAXS, and SANS) encodes the
entire segment density distribution of the polymer. Existing
analyses for scattering from polymers either explicitly assume a
Gaussian PDF or resort to Fourier-space measures of the
scattering function that require a specific real-space structural
model to be physically interpreted. For example, the canonical
Guinier approximation is used to estimate Rg models, the low-q
scattering (where q is the scattering vector) via a Gaussian
approximation, but ignores higher-q features of the scattering
arising from finer-scale details of the density PDF.51 Likewise,
conventional scattering functions with full q-range support for
polymers at equilibrium, such as the Debye model, assume a
Gaussian intrachain PDF.52 These conventional models are
clearly inadequate for chains with a non-Gaussian structure.
For the case of polymers in deformation and flow, scattering
becomes anisotropic due to preferential stretching and
orientation of chains. Typical analyses for anisotropic
scattering compute low-dimensional descriptors of the
scattering anisotropy, providing Fourier-space measures that
must be interpreted by using a material-specific model.
Previous scattering analyses to extract information regarding
polymer configurations in flow have been limited to primitive
reduced-dimensional quantification of scattering anisotropy
(e.g., anisotropy parameters)53 or eigenfunction expansion
methods (e.g., spherical harmonics)54,55 which require a
number of physical assumptions to map the resulting scattering
coefficients to real-space structure. For example, the spherical
harmonic expansion (SPE) approach of Chen and co-
workers56−58 describes the scattering through a complete set
of Fourier-based spherical harmonic amplitude coefficients. In
principle, the resulting q-dependent harmonic coefficients
represent specific scattering symmetries and thus contain a
unique real-space interpretation. However, doing so requires
collapsing the coefficients onto a real-space PDF function,
which so far has been assumed to be Gaussian. More recent
models attempt to describe anisotropic polymer scattering
using a scattering form factor from a thermodynamically
consistent connected-rod chain model;59 however, this model
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also assumes a particular form of the chain configuration that
may fail for sufficiently nonlinear deformations.

From this summary, we see that there is a need for methods
to analytically quantify the non-Gaussian PDF of polymers that
can be easily extracted from experiments and simulations. In
addition to their utility in the analysis of scattering, such
methods could be useful in developing structure−property
relations for non-Gaussian polymers. For example, there has
been significant effort in trying to express the non-Gaussian
nature of polymer conformations analytically by calculating
their higher-order moments.3,60,61 Moments are attractive as
low-dimensional descriptors of non-Gaussian distributions and
can be used to calculate transport properties including
mechanical stresses.62 In this work, we attempt to develop a
generally applicable mathematical framework to “fingerprint”
non-Gaussian features of polymer conformations that can be
used to extract moments of a non-Gaussian polymer PDF
using both real-space and Fourier-space (scattering) data.
Toward this aim, the Gram−Charlier (G-C) expansion is a
valuable mathematical technique used to approximate
unknown probability distribution functions by expanding
around a reference normal (Gaussian) distribution, offering a
more detailed characterization of the distribution shape. This
method was first used in the realm of polymer physics by
Montroll63 to calculate higher-order moments of the
distribution of end-to-end vectors of a chain on a square
lattice. More recent works by Yoon and Flory60 and
Carmichael64 utilized the G-C analysis to describe non-
Gaussian end-to-end distributions from Monte Carlo simu-
lations. In this work, we develop the mathematical analysis
required to apply the G-C analysis to describe segment density
distributions in both real space (measured from molecular
simulation) and Fourier space (measured from scattering) and
validate the ability of the analysis to provide identical
descriptions of the PDF in either representation. Then, as
initial motivating demonstrations, we apply the analysis to two
specific cases of non-Gaussian conformations: sequence-
defined biopolymers at equilibrium (in which heterogeneous
polymer−polymer interactions induce non-Gaussian chain
conformations) and flexible linear polymers in flow (in
which nonlinear deformations produce an anisotropic non-
Gaussian PDF).

■ THEORY
Describing Polymer Configuration Distributions

Using Moments. We seek a mathematical framework to
describe complex configuration distributions of individual
polymer chains that is agnostic to the details of their chemistry,
topology, or mechanical and thermodynamic behavior so that
it can be generally applicable to a number of contemporary
polymers, processes, and measurement methods. Such
distributions could be based on a number of possible
descriptors of the chain conformation. One possibility is to
describe configurations based on the spatial distribution of the
segments about the center of mass, also referred to as the
segment or pair density probability distribution function r( ),
where r is the Euclidean distance from the center of mass of
the polymer. This quantity is easily accessed in both molecular
simulations and experimental measurements, including small-
angle scattering. It is also used in molecular theories to
compute various properties, such as hydrodynamic inter-
actions,65,66 and so is a natural choice for developing
structure−property relationships. One might consider alter-

natives for this choice. For example, the distribution of end-to-
end vectors R( )ee is easily measured in molecular simulation
but is more difficult to access in experiments�a notable
exception is double electron−electron resonance (DEER)
spectroscopy, which was recently used to characterize R( )ee
of dilute polymers in solution.41,42,67 Furthermore, Ree is an
incomplete descriptor for more complex polymers including
branched and topology-defined polymers as well as chemical
heteropolymers, whose structure defies description by simple
measures of chain length. Nevertheless, one could in principle
employ the analysis to follow any distributed measure of the
chain configuration.

While the full reconstruction of a 3D segment density
distribution from a 2D scattering pattern is mathematically
impossible, we propose to use moments of this distribution as
a means of reconstruction. The established mathematical
development of the density distribution in terms of moments is
described in Section S1. In brief, moments (or equivalently
cumulants) are low-dimensional descriptors of a probability
distribution function and are agnostic to the details of the
distribution. In principle, the exact reconstruction of a
distribution function requires measuring an infinite set of
moments or cumulants. However, there exist well-established
statistical methods whereby the exact distribution function can
be expressed by expanding the summation of moments around
a reference distribution. In doing so, the exact moment
generating function is efficiently approximated using a
relatively small number of moments or cumulants, allowing
the entire unknown distribution function to be approximated
using a small set of descriptors.

One such method, which we will employ exclusively in this
work, is the Gram−Charlier (G-C) expansion method68,69

which allows one to extract moments and cumulants quickly
from experiments and simulations, providing physically
meaningful and interpretable information regarding the
polymer configuration, while remaining indifferent to the
precise shape of the underlying distribution. The G-C
expansion (Section S1) uses the Hermite polynomials as a
natural orthogonal basis for the expansion of a linear
combination of increasing order differentiations of a reference
normal distribution. The weights (coefficients) for these
Hermite polynomials are found to be the cumulants of the
original unknown distribution. Thus, the Gram−Charlier
expansion provides a route to reconstruct an unknown
distribution through estimation of a small set of cumulants
that can be directly quantified from the data.

Thus, we see that the general problem of measuring the
complete density distribution of a polymer chain (or an
ensemble of chains) can be reduced to the problem of
measuring the series of moments of the distribution. We thus
posit that the set of moments { }n or cumulants { }n of r( )
provides a robust mathematical “fingerprint” of arbitrarily
complex polymer configurations, an idea that we will begin to
explore in this work. In particular, we propose that such a
description is particularly well-suited for topologically or
chemically complex polymers at equilibrium as well as for
polymers experiencing nonlinear deformations. In all these
cases, we expect that r( ) will differ significantly from the
Gaussian distribution that is typically expected for linear
homopolymers at equilibrium or in linear deformations which
is typically assumed in most analyses of polymer structure. The
idea is to approximate the unknown non-Gaussian r( ) using
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the Gram−Charlier approach in terms of a reference Gaussian
polymer chain and use this to develop a fitting scheme for the
scattering intensity where the fit parameters are the higher-
order cumulants of r( ).

The adaptation of the Gram−Charlier expansion scheme to
the segment density distribution has been outlined in detail in
Section S1. The final analytical expression for the one-
dimensional G-C expansion for the unknown chain PDF in
terms of its cumulants and Hermite polynomials is
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where the normal distribution x( ) is the leading term of the
expansion and the corrections to this are the higher-order
cumulants of the unknown PDF normalized by the standard
deviation of the normal distribution. For the use of integral
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=
+ + + +

× [ +
!

+
!

+
!

+ ]( ) ( ) ( )
x x

He x He x He x

( ) 1
2

exp
2

24
24 12 4 . . .

1
4 6 8

. . .

2

2

8

8
4

4
6

2
8

4
4 4

6
6 6

8
8 8

i
k
jjjj

y
{
zzzz

(2)

The normalization prefactor will change based on the number
of terms kept in the expansion, and eq 2 shows the
normalization for terms up to n = 8.
Small-Angle Scattering: The Fourier-Space Gram−

Charlier Expansion. We use the Gram−Charlier representa-
tion of the chain PDF (eq 2) to derive an analytical form of the
scattering intensity for a polymer with general non-Gaussian
conformation distribution. In the limit of an isolated polymer
chain, the (one-dimensional) scattered intensity is given by a
Fourier transform of the chain segment PDF as follows:

= +I q K x e x( ) 1 ( ) diqxi
k
jjjj

y
{
zzzz (3)

Substituting eq 2 for x( ) from yields the Fourier-space
representation of the Gram−Charlier expansion. Fortunately,
due to the properties of the Gram−Charlier series, the Fourier
transform can be calculated analytically to arbitrary n, yielding
(for the n = 8 case)
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where q is the (1D) scattering wavevector, K is a q-
independent amplitude factor which is system-specific and
depends on the concentration and scattering length densities
of polymer and solvent, = = R2

2
3 g is the (Gaussian) size

of the polymer chain for an isotropic chain configuration, and
{ }n are the higher-order cumulants that quantify the non-
Gaussian characteristics of the conformation distribution. For
example, κ4 is the fourth cumulant and is related to the fourth
moment by = +34 2

2
4. In the work to follow, eq 4 will be

used to fit various 1D averages of predicted or measured
scattering intensities. Further details of the G-C analysis of
polymer scattering and how it is applied to both simulated and
experimentally measured scattering data will be discussed in
the applied case studies to follow.

■ CASE STUDY I: INFERRING NONIDEAL POLYMER
CONFORMATIONS AT EQUILIBRIUM

Ideal flexible polymers are expected to exhibit a Gaussian
segment density distribution at equilibrium, and this ideal
model adequately captures the long-wavelength structure
observed for equilibrium homopolymers in the melt and in
solution.2,35 However, polymers with more complex chemistry
can possess significant deviations from ideal Gaussian
conformations at equilibrium. Examples include heteropol-
ymers�such as random, blocky, or sequence-defined copoly-
mers�as well as topology-defined polymers including
branched, star-like, dendrimeric, and bottlebrush architectures,
especially in good solvents where excluded volume effects
result in non-Gaussian density profiles near the backbone.70

We hypothesize that the G-C analysis presented here can be
useful to mathematically describe the non-Gaussian con-

formations of such nonideal polymers. In particular, the
analytical result of eq 4 provides a route to quantify the non-
Gaussian moments of the PDF directly from small-angle
scattering data. In this section, we test this idea for a model
class of sequence-defined polypeptoid heteropolymers that
have been previously demonstrated by both molecular
simulation and advanced electron paramagnetic resonance
spectroscopy experiments to possess non-Gaussian conforma-
tions due to intramolecular associative interactions.71

Non-Gaussian Behavior of Sequence-Defined Poly-
peptoids. DeStefano et al.71 synthesized a library of sequence-
specific polypeptoids comprising hydrophilic residues (N-
methoxy ethyl glycine), hydrophobic residues (N-phenethyl
glycine), and terminal spin labels (nitroxide radical-based
TEMPO spin probes) with precisely patterned arrangement of
the monomers to investigate the influence of hydrophobic
sequence on the chain conformation as shown in Figure 1a.
For this work, we examine three of these polypeptoid
sequences with a degree of polymerization DP = 20
monomers. Namely, “0H”, “3H,” and “Mid” have the same
degree of polymerization with molecular weights ranging from
2500 to 2800 g/mol, but varying the number and placement of
the hydrophobic moieties. Sequence “0H” has no hydrophobic
groups on the chain, “3H” has three hydrophobic groups
located at each chain end, while “Mid” has six hydrophobic
groups placed in the middle of the chain. In previous work, it
was shown that controlling the monomer sequences of these
polypeptoids alters their conformational landscapes, resulting
in significant deviations from ideal chain statistics. In
particular, the end-to-end distance distribution P R( )ee of the
sequences was experimentally estimated using double elec-
tron−electron resonance (DEER) spectroscopy, which is a
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pulsed electron paramagnetic resonance technique that
measures distances between spin labels, thus providing access
to conformational distributions.

The reported findings from DEER indicated that the
hydrophobic patterned sequences possess non-Gaussian
conformations, with increasing non-Gaussian character in the
order “0H” < “Mid” < “3H”. That is, hydrophobic intra-
molecular associations drive increasing nonideal conforma-
tions, and this nonideal behavior is enhanced when the
hydrophobic moieties are proximal to the ends of the chain.
This is more clearly exemplified by comparing the second
moment of P R( )ee , which gives an estimate of the RMS end-to-
end distance Ree

2 1/2 (refer to Figure S1). The smaller Ree
2 1/2

seen for the “3H” polypeptoid compared to the composition-
ally equivalent “mid” sequence was rationalized by hypothesiz-
ing that end associations more significantly confine the chain
conformation, whereas in the “Mid” configuration, the chain
ends are more free to sample a variety of configurations
resulting in decreased skewness (increased symmetry) than
“3H” but more than the homopolymer-like “0H”. The non-
Gaussian behavior of the polypeptoids therefore arises from a
combination of intramolecular associations and sequence-
defined chemistry. The transition from a Gaussian-coil-like
structure to more nonclassical conformations upon patterning
hydrophobes in the peptoids was confirmed by DEER,
establishing the foundation for this case study. To complement
the DEER measurements, we applied G-C analysis on the
scattering data collected for these systems. This approach
allowed us to discern trends in the segment density
distribution of the sequences while remaining neutral with
the specifics of polymer chemistry.
Gram−Charlier Analysis Applied to Equilibrium SANS

from Polypeptoids. In the Theory section, we showed that the

Gram−Charlier expansion provides analytical results for the
scattered intensity from an ensemble of isolated individual
chains (eq 4). As such, the G-C analysis can be used as a fitting
tool for one-dimensional averaged scattering intensity data to
directly quantify deviations from Gaussian conformations. To
this end, we applied eq 4 to 1D radially averaged SANS
measurements of the sequence-defined peptoids. The SANS
measurements were taken at the extended q-range small-angle
neutron scattering diffractometer instrument (EQ-SANS, BL-
6) at the Oak Ridge National Laboratory (ORNL) Spallation
Neutron Source.72,73 Purified and filtered polypeptoid samples
were dissolved at 25 mg/mL ( *c0.07 ) in a 50−50 mixture of
deuterated tetrahydrofuran and deuterium oxide (by volume).
The three 20-mer polypeptoid samples (“0H”, “Mid”, and
“3H”) were loaded into quartz banjo cells with a 2 mm path
length and equilibrated to 20 °C. 2D scattering patterns were
taken at two sample-to-detector distances (4 and 2.5 m), both
with a neutron wavelength band defined by a minimum
wavelength of 2.5 Å. Data were reduced to an isotropic
scattering pattern using standard python scripts.74,75 Measured
scattering intensities were calibrated using a Porasil B standard
and corrected to remove scattering of the empty banjo cell.
The resulting 1D scattering spectra are plotted for the three
polypeptoid sequences in Figure 1b.

We note two key assumptions we make in applying our
analysis (specifically, the application of eq 4) to the measured
scattering from peptoid solutions. First, we assume that the
scattering interference arising from intermolecular interactions
is negligible; that is, the solutions are sufficiently dilute. Here,
SANS from the peptoid samples was measured at a
concentration of *c0.07 , where *c is the overlap concentration
estimated from the measured Rg values, such that any
intermolecular interactions are minimized. Second, we assume

Figure 1. (a) Different polypeptoid sequences with varying hydrophobe content and patterning along the polymer backbone. (b) Left: radially
averaged SANS spectra showing fits to the 1D-Gram−Charlier expansion (solid line) and excluded volume model (dashed line) for the different

peptoid sequences; right: reconstructed real-space segment density PDFs from the corresponding G-C fit parameters ( =Rg
3

4
and higher-order

cumulants { }n ). The shaded area around the curves represents the 95% confidence intervals of the reconstructed 1D real-space segment density
distribution. Reported fourth-order cumulants were normalized by σ.
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that the radial scattering length density (SLD) profile that
determines the measured scattering is directly proportional to
the segment density PDF of the polymer, such that eq 4 can be
directly applied. While eq 4 is exact for a homopolymer, this
relationship might not hold for a heteropolymer like the
peptoid sequences used in this study, which contain chemically
distinct monomers with different SLDs. To check the
approximate accuracy of this assumption for heteropolymers,
Section S2 extends eq 3 to the case of a polymer with
heterogeneous monomer SLDs. For the specific monomer
SLDs of the present peptoids (see Section S2), we confirmed
that heterogeneities in the SLD distribution in this specific case
do not significantly alter the predicted scattering or values of
the higher-order moments extracted from the G-C analysis
relative to the case of a homopolymer (Table S3).

To demonstrate the utility of the G-C analysis of the SANS
data developed here relative to conventional models, we
compare the G-C fits of the data to a more conventional
excluded volume (EV) polymer model where the form factor
and the Rg can be expressed as76

= + +I q x
q R

x x( ) 2 (1 )exp
6

(2 1)(2 2) d
0

1 2
g
2

2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
(5)

Here, ν is the excluded volume parameter (which is related
to the high-q Porod exponent, =m 1/ ), and Rg is the radius
of gyration. A fit of eq 5 to the polypeptoid SANS data (dashed
lines) with adjustable values of Rg and ν (with best-fit values
reported in Section S2) does a relatively poor job describing
the data, especially in the low-q region, and thus overestimates
the Rg of the polymer (refer to Table S1). By contrast, the G-C
analysis (eq 4) provides an excellent quantitative description of
the measured scattering when fitted to the scattering profiles
(solid lines). Notably, the G-C analysis is able to better capture
the low-q scattering intensity, as well as the sharper transition
between the low-q plateau and moderate-q shoulder exhibited
for all of the polymer sequences. The G-C analysis therefore
provides quantitative information about the distribution of Rg
through higher-order cumulants {κn}. The fitting using eq 4
was constrained to a range of <q 0.3Å 1 to obtain a
satisfactory fit, since the Gram−Charlier expansion fails to
describe higher-q features where intrasegmental correlations
are probed. This limitation does not impact the ability of the
expansion scheme to extract the non-Gaussian characteristics
of the chain, which is primarily manifested through κ4 and is
insensitive to the scattering data beyond q 0.1Å 1. Similarly,
the higher-order cumulants κ6 and κ8 exhibit nonzero values in
a pattern consistent with increased non-Gaussian chain
conformations from “0H” to “Mid” to “3H” (Table S2).

The radius of gyration Rg of the polymer chain can also be
independently evaluated using a conventional Guinier analysis
of the low-q scattering using

=I q I
q R

lim ln ( ) ln
3qR 1

0

2
g
2

g (6)

The values of Rg obtained as a fitting parameter from the G-C
analysis are closer to those obtained from the Guinier analysis,
whereas the EV model fit significantly overpredicts the values
of Rg (refer to Table S1). As the hydrophobes are placed closer
to the chain ends, the polymers tend to assume a compact ring-
like shape, producing an increase in Rg and a subsequent

decrease in Ree as seen for “3H”. By contrast, placing the
hydrophobes in the center of the chain causes the ends to be
more free and collapse in the center, leading to smaller Ree than
“0H” and lower Rg than “3H”. More importantly, the presence
of non-Gaussian conformations is reflected in the nonzero
higher-order cumulants, such as κ4 shown in the labels in
Figure 1b. As expected from the DEER measurements in
Figure 1b, the value of κ4 changes from almost zero for the
homopolymer “0H” in the absence of hydrophobic moieties
(indicating near-Gaussian conformations) to increasingly
nonzero values when hydrophobes are introduced in the
sequence, reflecting the increasing non-Gaussian nature of the
chain conformations.

Furthermore, because of the 1:1 interchangeability of the
cumulants between the real-space and Fourier-space descrip-
tions of the G-C expansion described in the Theory section,
the G-C analysis of polymer scattering provides a direct
mathematical reconstruction of the inferred real-space segment
density PDF, which can be used to visualize the non-Gaussian
features of the 1D PDF (Figure 1b). Specifically, as captured
by the relative values of Rg and κ4, the intramolecular PDF
broadens and develops a longer non-Gaussian tail as
hydrophobic moieties are introduced to the peptoid sequence
and as these hydrophobes are placed proximal to the chain
ends. We note that for the “0H” sequence, the inferred PDF
exhibits anomalous negative values at longer distances from the
chain center�this arises because the fitting scheme
implemented does not constrain r( )avg to be strictly positive.
Although this spurious feature does not affect the comparisons
made in the present study, the G-C expansion and fitting
schemes could be modified to include a constraint that
penalizes negative values of x( ) as proposed previously.77

These negative values arise from the truncation of the G-C
series, and as a result, such constraining will be truncation-
dependent and therefore ad hoc, and so we choose not to
include it in this work.

Overall, through this example, we demonstrate that the
application of the G-C analysis to equilibrium small-angle
scattering can be used to test for nonideal polymer
conformations in a model-independent manner that is agnostic
to the details of polymer chemistry. More importantly, the G-C
analysis provides unambiguous quantification and interpreta-
tion of non-Gaussian features of the intramolecular PDF,
including the ability to fully visualize the PDF as expressed by
the set of extracted cumulants. For the specific case of the
sequence-defined polypeptoid heteropolymers examined here,
the results provided an interpretation for the differences in
intramolecular structure that required no assumptions about
the specific molecular configuration and that qualitatively
reproduces the configurational information obtained through
other independent experiments (in this case, P R( )ee from
DEER measurements). Because of the different nature of

r( )avg (which encodes the density of individual polymer

segments around the center of mass) and P R( )ee (which
encodes pair distances between the chain ends), the two
measurements defy direct quantitative comparisons. For that,
we turn to an additional case study where the scattering “data”
are produced from molecular simulation; that is, the exact PDF
represented by the scattering is known, and therefore, the
accuracy and precision of the G-C analysis can be more
quantitatively established.
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■ CASE II: CHARACTERIZING NONLINEAR POLYMER
DEFORMATIONS IN FLOW

To demonstrate that the Gram−Charlier expansion can be
extended to describe non-Gaussian polymer conformations for
nonequilibrium systems, we applied the analysis to molecular
simulations of polymers undergoing nonlinear deformations in
shear flow. The influence of flow introduces deviations in the
conformational distributions of polymer chains from ideal
Rouse or Zimm statistics due to factors such as nonlinear
stretching, hydrodynamic interactions, excluded volume, and
frictional drag. In addition, shear flow produces time-
fluctuating combinations of stretching and rotation that should
be evident in the time-averaged PDF. To test this idea, we
apply the G-C analysis to simulated data on isolated polymers
in shear flow. Applying the method to simulations presents a
number of advantages for an initial demonstration of the
method. First, because the “ground truth” of the simulated data
is known, we can validate the Fourier-space representation of
the method to be applied to scattering by comparing
cumulants extracted from the “known” real-space chain
segment PDF (by fitting to eq 2) to that extracted from
simulations of the scattering intensity (by fitting to eq 4).
Second, one can evaluate the convergence and error of the
analysis by truncating the cumulant expansion of eq 2 to
various terms and also the sensitivity of the analysis to varying
amounts of experimentally relevant noise added to the
simulated scattering (by adding a random contribution to eq
4). Third, the use of simulated scattering data avoids potential
complications associated with experimental material systems
and scattering measurements including molecular polydisper-
sity, intermolecular interactions, nonhomogeneous deforma-
tions, and measurement resolution. Finally, by connecting the
simulations to a specific physical model(s) of polymer
mechanics, we can attempt to provide physical interpretability
of the resulting cumulants. A thing to note here is that the
experimental measurements for polymers in flow have added
complexities such as polydispersity and intermolecular
interactions, which convolutes the interpretation of the
analysis. Furthermore, in nearly every sample environment
for generating sufficiently large strain rates to produce non-
Gaussian conformations, there are inherently gradients in the
strain rate that must be considered in the interpretation of the
scattering intensity, which typically averages over these
gradients. We feel that a thorough investigation of the effects
of these experimental factors and artifacts on the G-C analysis
requires a more extensive experimental study beyond the scope
of the current work.

An important consideration in the application of the G-C
analysis to deformed polymers is that the current form of the
expansion used is supported only on a one-dimensional space
of the polymer conformation. As such, to apply the current
analysis to flowing polymers�which possess an anisotropic
three-dimensional PDF�requires one-dimensional preaverag-
ing of the PDF. In the analysis to follow, this will be performed
by computing various projections of the fully 3D PDF (or its
equivalent scattering pattern) to a single direction (chosen
here to be the flow direction). This procedure will necessarily
introduce errors between the apparent 1D values of the
cumulants and their “true” 3D equivalents. In the analysis to
follow, we will evaluate the extent of this error and determine
whether the 1D version of the analysis suffices to describe the
non-Gaussian structure of the PDF. Ideally, for polymers in

deformation, flow, or other situations producing an anisotropic
PDF, one would extend the analysis to the multidimensional
case. The general procedure for doing so has been outlined in
previous works78 and has been performed to O(κ4). However,
extending the analysis to higher-order moments is nontrivial, as
the resulting tensorial forms for the cumulants must obey the
relevant symmetries of polymer mechanics and rheology (e.g.,
corotational invariance). As such, we leave a general treatment
of the 3D analysis to future work.
Brownian Dynamics Simulations of Isolated Poly-

mers in Shear Flow. In the simulations, a portion of the
chain containing several hundred monomers is represented as a
bead, and the bead is typically assumed to have point-like
dimensions, neglecting its internal structure. The bead is
connected to its neighboring beads by springs, which model
the entropic elasticity of the chain between the monomers and
are considered to be thin and flexible.79,80 In our coarse-
grained Brownian dynamics simulations, only a section of the
polymer chain, represented by beads, is tracked (refer to
Section S4 for details of the simulation). The number of beads
determines the resolution of the system: a higher number of
beads provide a greater observed resolution. However,
increasing the bead number significantly extends the
simulation time. The model employed here neglects excluded
volume interactions for computational efficiency. Many forces,
such as the spring force, Brownian force, and hydrodynamic
interactions, play important roles in the simulation.
Finite Extensibility. Two types of springs are used to model

the polymer chain: Hookean springs and finitely extensible
nonlinear elastic (FENE) springs. For Hookean springs,
F QHij ij

s , where =Q r rij i j is the extension of a spring
between beads i and j. The spring constant H is a measure of
the stiffness of the spring and is defined as the magnitude of
the spring force Fs required to stretch the spring by one unit of
length.81 FENE springs cannot extend indefinitely beyond their
contour length. The relationship between force and displace-
ment for a conventional FENE spring model is defined as82

=F
QH

1 ( )
ij

ij
Q

s

Q
2ij

0 (7)

where Q0 represents the maximal extension of the spring.
When the polymer experiences relatively small deformation
rates, the resulting deformation between beads is small and
polymers with Hookean springs and FENE springs behave
similarly. As Qij becomes larger, the nonlinearity of the FENE
spring becomes more pronounced, and differences in behaviors
of the two types of springs grow. In the following, we evaluate
the degree to which this nonlinearity manifests in the non-
Gaussian polymer configuration. To correctly model the
molecular weight dependence of the nonlinear polymer
deformation, the maximal extension of the FENE spring Q0
can be described as, =Q N A0 k,s k , where Nk,s is the number of
Kuhn steps represented by a single spring and represents the
average length of a flexible segment and Ak is the Kuhn length.
Since polymers with Hookean chains can be infinitely
stretched and have no limiting contour length, this parameter
only needs to be considered when simulations are conducted
with FENE springs. A dimensionless spring stiffness bs is

defined as82 =b
HQ

k Ts ( )
0
2

B
. The spring constant H can be written

as25 =H k T
Q A
3

( )
B

0 k
. Using the two previous equations, we obtain
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= =b N3
Q

As
3

k,s
0

k
. A dimensionless molecular parameter bm is

defined as =b N bm spr s, where Nspr is the number of springs in
the bead−spring model. In the simulations, bm is held constant
across different resolutions for the same size of molecules,
while bs varies based on the number of springs within the
model. The two FENE chains investigated in this work have bm
= 3000 and 450, where higher values of bm represent more
extensible chains.
Weissenberg Number. The Weissenberg (Wi) number

characterizes the dimensionless deformation rate of a fluid due
to shear and is defined here as the product of the shear rate γ̇
and the Rouse relaxation time λR, =Wi R . The relaxation
time for the linear polymer is defined as,

=
H j N8 sin ( /2 )j 2 (8)

The Rouse relaxation time λR is equal to λ1, the largest normal
mode of a Rouse chain. Large values of Wi are expected to
correspond to a more pronounced elastic response and a larger
deformation of the polymer chain and thus a more nonlinear
stretch of the springs comprising the chain. At sufficiently large
Wi, linear polymer chains stretch significantly in the flow
direction, reducing the probability of bead overlap and making
excluded volume interactions negligible.
Polymer Conformational Distributions in Flow from

Simulations. Simulations yield a data set comprising bead-
to-bead vectors { }rik , which are recorded in three dimensions,
rx, ry, and rz (Figure 2a). A suitable number of bins is selected

to discretize the range of r. Iterating through all values of r, we
count occurrences within each bin and subsequently normalize
the counts to approximate the segment density PDF r( ).
Figure 2b shows the 2D projection of the 3D PDF by taking a
slice in the r rx y plane at an rz value corresponding to the
midplane of the simulation. The ensemble-averaged gyration
tensor G can also be obtained from the simulations, where

= =G R R
N

N1
1 and R is the bead position vector with

respect to the center of mass of the chain. G is related to the
radius of gyration through = GR tr( )g . For a Rouse chain, this

can be analytically calculated using a normal-mode analysis, as
shown in eqn. S16. At equilibrium, the configuration is
isotropic, and one thus obtains = = =G G G R /3xx yy zz g

2 .
During flow (in the x-direction), Gxx increases in the value,
whereas the Gyy and Gzz either remain identical to their
equilibrium values (for the case of a Rouse chain) or decrease
to account for compression in the velocity gradient and
vorticity directions (for a FENE chain). We define

= =R R Wi( 0)gx,0 g as the radius of the gyration of the
polymer at equilibrium. Scaling the bead-to-bead vector R with
Rgx,0 therefore provides a measure of the polymer stretch
relative to its equilibrium size.
Analysis of BD Simulations of Polymers in Flow. Upon

increasing the strength of the flow (increasing Wi), the overall
width of r( )avg increases, indicating chain stretch due to flow.
This is represented in Figure 3, where the PDF has been
averaged over the ry and rz directions to produce a quasi-1D
PDF along the flow (rx) direction. Here, the bead-to-bead
distance has been normalized by Rgx,0 such that =r 1x

represents the width of the PDF at equilibrium to emphasize
the stretching of the chain relative to the equilibrium value. As
expected, increasing Wi increases the nominal stretch on the
chain (i.e., the PDF becomes broader). Simultaneously, the
non-Gaussian character of PDF increases. For the Rouse chain
simulations, this is evident in the emergence of a long tail in
the distribution at relatively large rx. This behavior is
exaggerated for a FENE chain (Figure 3b). Additionally, the
FENE simulations develop nearly flat-shaped peaks when Wi >
10. This suggests that upon increasing the flow strength the
nonlinear chain extensibility begins to dominate the overall
conformational deformation of the chain. However, we note in
Figure 3c that increasing amounts of non-Gaussian character
are even evident for simulations of Rouse chains and that this
becomes more exaggerated for finer-grained simulations
involving increasing numbers of beads, where the PDF exhibits
an increasingly sharp central peak while maintaining a
relatively flat “long tail”.

This last observation that the non-Gaussian behavior is
evident with increasing chain stretching even for a Rouse chain
may be surprising and counterintuitive since the normal modes
that represent the Rouse chain each follow a Gaussian
distribution. However, this behavior can be explained when
one considers how the “total” ensemble-averaged segment
density PDF of a bead−spring chain relates to the distribution
of individual bead pairs (i.e., the individual parts of the chain).
Real polymers (corresponding to the large-N limit of the
bead−spring model) have a wide distribution of relaxation
modes, whereby the longer (slower) modes arise from the
motion of large molecular chain segments and the short
(faster) modes are associated with the segment-scale
dynamics.83 The relaxation spectrum therefore reflects the
polymer microstructure in a complex manner. There has been
significant interest in establishing a direct correlation between
the relaxation spectrum and molecular structure to develop
better mechanistic insights. For a Rouse chain, this ensemble-
averaged segment density distribution can be expressed as the
weighted sum of the various segmental modes, each
characterized by a distinct length scale.

For a given number of beads in the BD simulations, we can
track this distribution of the various deformation modes by
observing individual bead pairs, as shown in Figure 5 for a five-

Figure 2. (a) Schematic representation of a coarse-grained polymer
chain (here, N = 5 beads) in shear flow. (b) 2D projection of the
overall ensemble-averaged chain distribution as an output from the
simulations in the flow-gradient plane.
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bead Rouse chain at Wi = 10. For example, we observe
Gaussian PDFs for each of the individual bead pairs ψij, for
example, those at the end of the chain (ij = 12) or in the
middle of the chain (ij = 23). However, because the overall
chain PDF comprises a weighted sum over all individual bead
pairs, the resulting sum of Gaussians with differing variance is
non-Gaussian (Figure 4). At moderate Wi, this non-Gaussian
behavior increases with increasing Wi because of the increasing

dispersity of bead-pair stretches as the rate of stretching begins
to differentially exceed the time scales associated with the
various normal modes, in essence, causing different length
scales of the chain to experience different “effective” Wi. The
middle segment of the chain, representing the slower modes,
contributes to the tails of the distribution, while the faster
modes, located at the ends of the chain, primarily influence the
peak of the distribution. We emphasize that such non-Gaussian
behavior is intrinsic to any multibead model at moderate Wi,
even when effects such as excluded volume, chain extensibility,
or hydrodynamic interactions are ignored (as is the case in the
Rouse model).

As mentioned previously, non-Gaussian features become
evident when additional physics such as nonlinearities in
springs are included. For the case of a FENE chain, the effect
of finite extensibility on the segment density PDF is to cut off
the “long tail” of the distribution described previously due to
the imposition of a maximum separation of beads, resulting in
the flat and sharply decaying peaks seen in 5. We will later see
through the Gram−Charlier analysis that this behavior results
in qualitatively different behaviors of the higher-order
moments of the chain PDF, thus helping one to identify
signatures of the force−extension behavior for different
polymers in high shear flows.
Predicting Scattering from Simulated Chain Segment

PDFs in Flow. We can model the scattering of dilute linear
polymer chains as that arising from N infinitesimal point
sources of scattering length connected by N − 1 elastic springs
with the same scattering length density as the solvent. Clearly,
this approach will fail for sufficiently large q-values (small
distances) but should retain the relevant scattering features at

Figure 3. Top panel: average 1D segment density PDF in 1D integrated over ry and rz directions for a five-bead polymer chain as a function of Wi
for (a) Rouse and (b) FENE =b 450m chains. Bottom panel: average chain PDF in 1D integrated over ry and rz directions for a five-bead polymer
chain at Wi = 10 as a function of chain discretization (number of beads, N) for (c) Rouse and (d) FENE =b 450m chains.

Figure 4. Different bead-pair distributions ij ,1D for a five-bead Rouse
(or Hookean) chain at Wi = 10 shown in symbols and a Gaussian fit
to the overall chain avg avg,1D shown in a red line indicating that even
Rouse chains do not follow a Gaussian distribution in strong shear
flows.
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smaller q-values due to the connectivity of the chain. Formally,
we expect such a description to be valid for q-values where
qb 1, where b is the Kuhn length of the chain. In this case,
the distribution of the scattering density is proportional to the
chain segment density PDF simulated using Brownian
dynamics. In general, the scattering intensity from a single
isolated bead−spring chain with a known PDF is determined
by a Fourier transform of the time-averaged PDF of each
individual bead pair r( )ij . The general expression for the
coherent scattering intensity from polymer chains is as follows:

= + = +I cP S bkgd V P S bkgdq q q q q( ) ( ) ( ) ( ) ( ) ( )2
p

(9)

where I0 is a constant dependent on the material composition
and concentration, and the overbar represents an ensemble
average of the quantity, and bkgd is the incoherent background
intensity. Eq 9 assumes that intramolecular and intermolecular
contributions are linearly separable�this assumption will be
valid as long as individual polymer molecules are non-
overlapping. The prefactor is dependent on the scattering
length density difference (i.e., contrast) in the system between
the object (polymer) and the surrounding media (solvent)
(Δρ)2, the volume fraction of polymer segments ϕ, and the
volume of an individual polymer Vp. P q( ) is the form factor
which is related to the segment density PDF polymer and
describes the intraparticle scattering correlations, whereas S q( )
is the structure factor that describes intermolecular interactions
(i.e., how individual objects are positioned and oriented
relative to each other). We emphasize that q is a vector, and so
the scattering in general will depend on the direction of q
relative to the local orientation of the material. The simulations
considered here involve single polymer chains (i.e., infinitely
dilute conditions), and so =S q( ) 1. Without accounting for
the prefactor which is specific to a system and will not change
with orientation of the object, we can therefore approximate
the intensity by P q( ) which is related to the chain PDF for a
system of point scatterer beads as
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where rij is the vector between beads i and j, N is the number
of beads per chain, and r( )ij ij is the PDF of individual bead
pairs. Eq 10 includes scattering contributions from the
individual beads of the chain as well as the scattering
interference between pairs of beads. However, this process
can become exceedingly computationally demanding, espe-
cially with a large number of beads, as it necessitates
accounting for interactions between each pair of beads. An
alternative approach is to use the weighted sum of these
individual bead-pair distributions, that is, r( )avg , directly using
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(11)

The scattering patterns calculated from eq 11 using simulated
data sets can effectively capture the anisotropy of the chain
configuration in higher Wi flows when the chains get stretched
in the flow direction (Figures 5 and 6a). Differences in the

Figure 5. Different bead-pair distributions ij ,1D for a five-bead FENE
=b 450m chain at Wi = 10 shown in symbols and a Gaussian fit to the

overall chain avg avg,1D shown in a red line indicating the highly non-
Gaussian behavior of FENE chains as a result of nonlinearity of the
springs.

Figure 6. (a) Predicted 2D scattering plots for a five-bead Hookean
chain at different Wi flows. (b) Anisotropy factors calculated from
annularly averaged data using eq 12 for a chain (N = 5) with varying
levels of finite extensibility as a function of Wi.
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degree of scattering anisotropy between different simulation
models can be quantitatively assessed using the so-called
anisotropy factor, which involves a cosine-weighted expansion
of the annularly averaged intensity:

=A q
I q

I q
( )

( , )cos2( )d

( , )d
f,cos

0

2
s s s,0 s

0

2
s s (12)

where s,0 is the reference angle corresponding to the angle of
intensity peaks and = 0s corresponds to the negative flow
axis. The reference angle is chosen to be /2 in this case and is
perpendicular to the flow direction. Comparing the Wi-
dependence of Af across the different polymer simulation
models (Figure 6b) shows that the Hookean (Rouse) chain
model exhibits the strongest degree of anisotropy at elevated
Wi, whereas the FENE chain of the bead parameter =b 450m
exhibits the weakest degree of anisotropy, as expected as these
models correspond to the most and least extensible chains and
consistent with the results for the real-space PDFs (Figure 3).

While Af allows one to quantify the relative anisotropy
exhibited by the different models, it is only a scalar
parametrization of the intensity and is not immediately
interpretable with respect to the detailed polymer chain
configuration, thus not giving any direct physical insight into
the physics of chain stretch during flow.
Validating a Quasi-1D Gram−Charlier Analysis of

Anisotropic Polymer Scattering. Scattering captures details
about the complete three-dimensional density distribution
within a test material, which becomes anisotropic as the
microstructure becomes deformed. However, extracting real-
space information regarding the full 3D probability density

function (PDF) from a projected 2D scattering pattern poses
mathematical challenges.84 Although projecting a comprehen-
sive 3D G-C analysis onto the 2D scattering (q q, )x y plane

could be a potential solution, it becomes complex due to the
convolution of higher-order moments κn across the different
directions and is therefore not within the scope of the present
study. As a first step of validating the G-C analysis framework,
we therefore resort to an approximate, “quasi-1D” analysis of
the Gram−Charlier expansion and use it to fit an appropriate
one-dimensional average of the anisotropic scattering. We
validate this 1D analysis scheme by comparing the higher-
order cumulants extracted from the G-C analysis of a 1D-
averaged (in r-space) r( )avg to a 1D-averaged (in q-space)
predicted I(q). The hypothesis embedded in this analysis is
that the non-Gaussian conformational features exhibit a
dominant mode along the primary direction of polymer
stretching. Agreement between the real-space and Fourier-
space non-Gaussian parameters would therefore imply that the
non-Gaussian moments of the full 3D PDF are adequately
approximated assuming that the entirety of the non-Gaussian
behavior is dominated by the components of the cumulants
along the stretching direction. If this correspondence can be
established, then the analysis can also be used to test the
robustness of the G-C method in estimating non-Gaussian
conformational features. For example, we examine the effect of
terminating the G-C expansion at different κn, as well as the
ability of the analysis scheme to resolve the different κn’s upon
the addition of experimentally realistic noise. To accomplish
these validative studies, it is imperative to use simulated data
such that the “true” PDF (obtained through molecular

Figure 7. (a) Top: 2D projection of the average 3D segment density distribution (ψavg) by integrating over the vorticity (z-) direction; bottom: 1D
projection of ψavg in the flow direction obtained by integrating the 2D projection over the gradient (y-) direction with the Gram−Charlier
expansion fit (eq 2) terminated at different number of terms illustrating no significant improvement in the fit beyond κ4. (b) Top: simulated
scattering from the 3D chain PDF projected down to the flow-gradient plane; bottom: slice-averaged 1D intensity along =q 0y (Fourier-space

equivalent of avg,1D in the flow direction) with the Gram−Charlier fit in q space (eq 4) indicating the significant increase in the q-range for fitting
achieved on including the higher-order { }n as compared to a Gaussian fit.
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simulations in this instance) is known, offering an absolute
measure of error in the analysis.

We first examine the ability of the 1D form of the G-C
expansion of the segment density PDF x( ) (eq 2) and the
corresponding expansion for the scattered intensity I(q) (eq 4)
to yield equivalent results for the case where the “true”
distribution is known. To do so, the 3D time-averaged segment
density PDF obtained from the molecular simulations is
integrated over the ry and rz directions to obtain a 1D
projection of the real-space PDF r( )xavg (Figure 8a) as in the
analysis of Figure 3. This 1D PDF is then fit using a nonlinear
regression scheme to the real-space G-C expansion eq 2 to a
desired number of terms to obtain best-fit values of the
Gaussian width σ and the higher-order non-Gaussian
cumulants { }n . We then perform an analogous reduction
and fitting in Fourier space, whereby eq 11 is first used to
compute the 3D scattering intensity =I q q q( , , 0)x y z

predicted from the full 3D PDF (where we have assumed
that I0 = 1 for simplicity, as this does not alter the q-
dependence). In the analysis to follow, we perform a slice
average of the 2D pattern I q q q( , , )x y z by averaging all the
intensities along the x-direction for a slice about =q 0y

thereby producing a 1D-averaged intensity I q( )xavg as shown in
Figure 8b. Alternatively, one may choose to perform the 1D
average along a slice that rotates with the primary axis of
anisotropy of the scattering pattern (i.e., the direction of the
primary chain orientation). A comparison between these two
alternatives (see Section S7) shows that, for the data examined
here, the resulting cumulants extracted from the Gram−
Charlier analysis are insensitive to choice of direction for 1D
averaging�either along the flow direction coincident with qx
or the direction of primary orientation.

We then perform fitting of I q( )xavg over the entire q-range to
the Fourier-space form of the G-C expansion (eq 4) and obtain
the resulting best-fit values of σ and { }n . We also perform a
Gaussian fit to the same q-range by just using the same
expression for the intensity as eqn.4 but without the higher-
order cumulants { }n to highlight the differences in the fits.

In general, we find excellent quantitative agreement in the
obtained Gaussian and non-Gaussian cumulants over a range
of simulation models and conditions. This is demonstrated by
representative data in Figure 7 and the accompanying best-fit
G-C parameters (including terms up to κ8 in Table 1 extracted

from simulations of a five-bead Rouse chain at Wi = 10). First,
we observe that in both the real-space and Fourier-space
versions of the analysis, the G-C expansion fit (black lines in
Figure 7) provides a much more accurate description of the
PDF compared to an equivalent Gaussian fit (red lines in
Figure 7), confirming the non-Gaussian nature of the PDF of
the deformed polymer chains. Specifically, in the Fourier-space
representation, we see excellent agreement of the G-C analysis

with the data over the entire computed q-range until q 0.1,
beyond which scattering probes the intersegmental correlations
of the chain which are not adequately described by either the
molecular simulations or the G-C analysis. The inset plot in
Figure 7b shows that in the low-q limit, the assumption of the
Gaussian conformational distribution is valid and both fits do a
good job, but the Gaussian fit becomes progressively worse as
you increase the q-range for fitting. Thus, with the Gram−
Charlier expansion, we significantly broadens the q-range that
can be described for a nonlinearly deformed chain compared to
the Guinier−Rouse analysis which has been described in detail
in Section S3. More importantly, we find that the cumulants
extracted from fitting the real-space PDF to eq 2 are identical
to the cumulants extracted from fitting eq 4 to the q-space
scattering intensity. This validates the 1D form of the G-C
analysis and demonstrates that a simple analytical G-C analysis
of anisotropic polymer scattering (in this case, appropriately
averaged to a 1D spectrum) can be used to characterize both
the overall chain dimension (represented by σ) and its non-
Gaussian characteristics (represented by { }n ) simultaneously.

Having established the interchangability of the real- and
Fourier-space forms of the G-C analysis and its accuracy in
describing non-Guassian features of the polymer PDF, we then
examined the sensitivity of the analysis to closing the G-C
expansion at increasingly higher-order cumulants. This both
tests for convergence of the expansion and informs future
determinations of how many cumulants are needed to describe
various forms of non-Gaussian conformations. The results,
shown for the five-bead Rouse model at Wi = 10 in Figure 7a
with corresponding parameter values in Table 2, show that the
G-C fit to any number of cumulants possesses better
agreement with the simulated real-space PDF compared to
an equivalent Gaussian fit, especially at the tails of the
distribution where the Gaussian fit under predicts. It will be
pointed out later that these “long tails” of the distribution
contribute the most to the nonlinear physics of the chain
deformation. Nevertheless, we find that the G-C expansion fits
at different levels of truncation of the higher-order cumulants
do not appreciably improve beyond the first correction to the
Gaussian κ4. Furthermore, the data in Table 2 demonstrate
that the particular best-fit values of a particular { }n are
insensitive to the number of terms retained in the expansion.
This confirms that the G-C expansion is convergent even for a
small number of non-Gaussian corrections and provides
confidence that the overall shape of the non-Gaussian PDF
extracted from scattering data is insensitive to the number of
terms retained, even when considerable non-Gaussian behavior
is observed.

In real experimental scattering measurements, the measured
scattering intensities are convoluted with statistical sampling
noise and detector noise. While it is difficult to simulate
statistical noise that arises due to sampling errors, it is easier to
simulate the random detector noise, which manifests as signal-
to-noise ratios in experimental scattering data. To evaluate the
effects of such noise on the accuracy and precision of the G-C
analysis, we added Gaussian noise of varying relative error
levels (refer to Figure S8) to the predicted intensity. We
observe that for noise levels less than 4% of the simulated
scattering intensity, the values of κ4, κ6, and κ8 can be estimated
precisely; that is, the best-fit values remain insensitive to the
level noise, and their value is statistically distinguishable from
zero. For noise levels above 4%, confidence intervals in the
best-fit values of κ6 and κ8 exceed half the magnitude of the

Table 1. Fit Parameters in Real and Fourier Space for a
Five-Bead Hookean Chain at Wi = 10

Fit parameters Real space Fourier space

[ ! ] ×/(4 ) 104
4 3 ±6.28 0.14 ±6.24 0.13

[ ! ] ×/(6 ) 106
6 5 ±10.2 1.21 ±10.2 1.12

[ ! ] ×/(8 ) 108
8 7 ±86.24 8.32 ±86.11 7.71
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best-fit value, and as such, these higher-order cumulants cannot
be properly resolved above this level of noise. However, we
note that the level of noise in general has no other noticeable
compromising effect on the magnitude of the best-fit values. As
such, we find that the G-C analysis is robust to experimentally
realistic levels of noise in the scattering intensity, though
caution should be taken when attempting to interpret the
highest-order cumulants when the noise level exceeds this
threshold. Because of this, and because the qualitative shape of
the PDF extracted from the cumulants is insensitive to κ6 and
κ8 in this particular study, we primarily restrict the comparative
analysis of non-Gaussian behavior of different simulation
models to follow the interpretation of κ4 only.
Comparative Analysis of Non-Gaussian Behavior

among Polymer Simulation Models Using the G-C
Analysis. Having established the validity of the G-C analysis
for extracting features of non-Gaussian deformed polymer
conformations, we now use the simulated data to demonstrate
a useful application of the analysis�to compare the non-
Gaussian features of different mechanical models of nonlinear
polymer elasticity and in so doing identify distinguishing
features of these models. In principle, doing so on
experimentally measured data could then be used to propose
accurate models (or, in the best case, model parameters)
directly from the data without the need for detailed molecular
simulations.

We explore this idea by applying the G-C analysis as just
described to the simulated data sets involving both Rouse and
FENE-type models of chain extensibility, in both the absence
and presence of hydrodynamic interactions. In general, we find
that the G-C analysis reveals noticeable distinctions in the
extracted non-Gaussian parameters among the different
polymer models. For example, Figure 8 compares the results
obtained for a Rouse chain (with Hookean elastic forces
between beads) and a finitely extensible chain (with FENE-
type elastic forces given by eq 7). As a comparative measure of
overall polymer stretch relative to the equilibrium config-
uration (at Wi = 0), we compute

=
Wi

Wi
( )

( 0)
and examine

!
Wi
Wi

( )
4 ( ( ))

4
4 �which is the prefactor on the first non-Gaussian

correction term in eq 4 and is therefore a measure of the
overall degree of non-Gaussian deformation of the segment
density PDF.

We first assess the resulting differences in the overall degree
of polymer stretch

=
Wi

Wi
( )

( 0)
(Figure 8a). We expect that the

degree of stretching for polymer chains at equivalent Wi values
should be proportional to the degree of overall chain
extensibility. This is consistent with the results observed in
Figure 8a, where =/Wi Wi 0 increases the most over the range
of Wi for the Rouse chain and the least for the FENE chain
with the lowest degree of extensibility ( =b 450m ). For the case
of the Rouse chain, the results can be understood analytically

by examining the behavior of the components of the gyration
tensor G (eqn. S16); specifically, Gxx is expected to grow as

Wi2. In the case of the FENE-type models, we generally find
that the degree of stretch at fixed Wi is more sensitive to the
extensibility parameter bm than on the presence or absence of
hydrodynamic interactions (HI) in the simulations, although
the presence of HI tends to suppress the stretching of the
polymer chain for all Wi. Importantly, we note that although
the influence of finite extensibility leads to significant

Table 2. Fit Parameters from the Expansion Scheme at Various Levels of Series Truncation for a Five-Bead Hookean Chain at
Wi = 10

Fit parameters Gaussian fit G-C fit: 2 terms G-C fit: 3 terms G-C fit: 4 terms

σ ±3.53 0.03 ±3.53 0.03 ±3.53 0.03 ±3.53 0.03

[ ! ] ×/(4 ) 104
4 3 ±6.28 0.16 ±6.45 0.15 ±6.24 0.14

[ ! ] ×/(6 ) 106
6 5 ±7.94 1.34 ±10.2 1.21

[ ! ] ×/(8 ) 108
8 7 ±86.1 8.32

Figure 8. Results of G-C analysis applied to simulations of an isolated
N = 5 bead polymer in shear flow at various Wi. (a) Increase in the
average Gaussian width (σ) relative to equilibrium ( =Wi 0) of the
segment density distribution ψavg with increasing Wi indicating chain
stretch in flow. (b) Changes in the normalized fourth cumulant κ4
with increasing Wi showing clear differences between Rouse and
FENE chains. Error bars representing the confidence intervals
associated with the best-fit values are smaller than the data points.
Lines are drawn to guide the eye.
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quantitative differences in the Wi-dependence of the overall
polymer stretch, the behavior is qualitatively similar for all
models examined. In particular, if one were to examine one of
the curves in Figure 8a in isolation (as would be the case in an
experiment), it would be difficult to identify a priori whether
the data belong to the Rouse model or the FENE model.

By contrast, the non-Gaussian characteristics of the
simulated deformed polymers exhibit qualitatively different
Wi-dependence, depending on the simulation model used for
the segmental extensibility. First, we describe the behavior of
κ4 with increasing Wi for the Rouse chain (Figure 8b, blue
points). Even at Wi = 0, we see a nonzero κ4 because the
average PDF for a Rouse chain is a sum of different Gaussian
PDFs which contrary to our intuition is not a Gaussian
distribution. For nonzero Wi, /4

4 increases with increasing
Wi, indicating an increasing degree of non-Gaussian shape in
the segment density PDF. As shown previously in Figures 3
and 4, this increasing non-Gaussian character arises due to an
increasing disparity in the amount of (Gaussian) stretching of
the different individual bead pairs along the chain contour.
However, for sufficiently large Wi (Wi 10), /4

4 saturates
to a value that is insensitive to further increases in Wi,
indicating that the segment PDF achieves a self-similar shape,
whose non-Gaussian characteristics are insensitive to the
amount of stretch on the chain even as σ continues to increase.
This behavior can be understood by considering a normal-
mode analysis of the Rouse chain (refer to Section S3), in
which the longest relaxation time λ1 (on which Wi is scaled)
represents the dynamics associated with stretching of the
longest chain distance and shorter relaxation times ({ })i
represent the dynamics associated with shorter subchains.
Because of this spectrum of relaxation modes, when Wi > 1,
this produces a cascade of subchain stretching that proceeds to
stretch increasingly higher normal modes (i.e., smaller
subchain segments). Initially, for sufficiently small Wi, only
the longest modes will become stretched, while the shortest
modes retain their equilibrium distribution, and this will
exacerbate the effects seen in Figure 4, whereby a “long tail” of
the segment density PDF emerges due to the inhomogeneity of
stretch on individual bead pairs, resulting in an increasingly
positive value of /4

4. However, for sufficiently large Wi, all
of the normal modes will become strongly stretched such that
the Wi-dependent contributions dominate the normal modes
(cf., eq S11), and it is at this point we expect that the segment
PDF will achieve a self-similar shape and therefore a value of

/4
4 that is independent of Wi.

A very different scenario is observed for the Wi-dependence
of non-Gaussian behavior for simulations of FENE-type chains
(Figure 8b, green and orange points), in which /4

4 first
increases with Wi until Wi 3, only to then decrease with
increasing Wi even as the chain becomes more stretched (i.e., σ
continues to increase). Because /4

4 measures the overall
degree of deformation of the polymer chain segment PDF
away from a reference Gaussian distribution, this result would
naiv̈ely suggest that non-Gaussian character first increases and
then deacreases as Wi is increased, indicating a return to near-
Gaussian behavior at sufficiently large Wi. Instead, we argue
that the nonmonotonic changes in /4

4 with increasing Wi
occur due to a competition between two competing effects�
one that makes a positive contribution to κ4 and another that
makes a negative contribution to κ4. The first effect is the same

one just described for the Rouse model�for moderate Wi,
changes in the relative stretch experienced across the different
normal modes act to increase the value /4

4 with increasing
Wi. We observe that this effect is preserved even for a chain of
FENE-type springs�this is evident in the PDFs of individual
bead pairs for the FENE model when Wi = 1 (Figure S5),
which are qualitatively similar to those obtained for the Rouse
model under equivalent conditions. However, a second effect
arises due to the limited extensibility of the individual bead
pairs. As discussed previously, as the individual bead−spring
pairs become sufficiently stretched so that their finite
extensibility is approached, which leads to flattening in the
center of the individual bead pair PDF (Figure 5) for pairs
closest to the middle of the chain as these segments experience
the largest degree of stretching. The dominant effect of this
behavior on the average segment density PDF for the entire
chain is to flatten the central peak of the distribution relative to
an equivalent Rouse chain, and this flattening makes a net
negative contribution to /4

4 that increases with increasing
Wi. For sufficiently large Wi, the effect of this negative
contribution to /4

4 overcomes the positive contribution
coming from the spectrum of normal modes, leading to the
observed maximum and then decrease in /4

4 for Wi > 3. We
observe that this behavior is exacerbated as the chains become
less extensible, that is, as the value of bm decreases, such that

/4
4 decreases more sharply with increasing Wi after the

maximum, consistent with the above explanation. Interestingly,
we also note that the influence of HI on /4

4 becomes
significantly more pronounced after the maximum, suggesting
that the importance of HI on the non-Gaussian features of the
chain configuration is strongly coupled to the effects of
nonlinear elasticity and finite extensibility for the case of
FENE-type models.

In summary, we find that nonlinear deformations of
idealized polymer chains in shear flow are accompanied by
significant non-Gaussian features in their segment density PDF
and that these features produce quite different qualitative
behavior in the cumulants of the PDF accessible by the G-C
analysis depending on the molecular model adopted to
describe the nonlinear chain elasticity. For the case of a
Rouse chain, /4

4 increases monotonically with increasing Wi
and achieves a plateau at large Wi due to a self-similar
evolution of the chain normal modes in this limit. By contrast,
for FENE-type chains, flattening of the individual segment
PDFs due to finite extensibility with increasing Wi produces a
net negative contribution to /4

4 that ultimately drives
nonmonotonic behavior with increasing Wi, and this behavior
is exacerbated with decreasing chain extensibility and in the
presence of hydrodynamic interactions. Importantly, none of
these distinguishing features are evident when only the
Gaussian width σ of the segment density PDF is examined,
emphasizing the need to examine and describe non-Gaussian
conformations to understand the physics of nonlinear chain
deformation. Moreover, because the G-C analysis of scattering
provides detailed access to these non-Gaussian features, the
results provide a blueprint for using scattering experiments in
flow to give direct and unequivocal insights into the distinct
underlying mechanisms governing the nonlinear chain
deformation of polymers without having a priori knowledge
of a specific molecular model to describe the scattering. For
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example, one could thus use scattering to estimate /4
4 using

the G-C analysis, and the results could be used to infer whether
finite extensibility effects are important for describing the
polymer rheology.

■ CONCLUSION AND OUTLOOK
Very few polymers adopt idealized Gaussian configuration
distributions, even though they are frequently assumed when
experimental measurements are connected to molecular
theories. In this work, we developed a general mathematical
framework�based on the concept of moments�to describe
and characterize the non-Gaussian features of polymer
configurations, both at equilibrium and under applied
deformations. Due to its mathematical behavior, the well-
established Gram−Charlier expansion method provides an
efficient analysis to equivalently extract cumulants of non-
Gaussian polymer segment density PDFs from either a real-
space distribution (e.g., measured from molecular simulations)
or a Fourier-space density spectrum (e.g., measured from
small-angle scattering). The resulting cumulants provide a
means to “fingerprint” the non-Gaussian conformational
landscape of complex and highly deformed polymers that is
agnostic to any specific details of the polymer chemistry,
topology, or molecular-scale model of the polymer physics.

We validated the G-C analysis of polymer scattering and
demonstrated its utility using two case studies�sequence-
defined associative heteropolymers (polypeptoids) at equili-
brium and computationally simulated homopolymers under-
going nonlinear deformation in shear flow. Using these
validative studies, we verified the convergence of the Gram−
Charlier series and its robustness with respect to exper-
imentally realizable measurement uncertainty, demonstrating
its ability to extract statistically meaningful and physically
interpretable non-Gaussian parameters of the configuration
distribution. In the case of peptoids, we showed that the
introduction of patterned intramolecular associations produces
conformations with variable non-Gaussian character depending
on their location along the polymer chain, which can be
successfully described using higher-order cumulants estimated
from experiments using the G-C analysis. In the case of
deformed polymers in flow, we applied the G-C analysis to
emulate scattering from molecular simulations involving
various common molecular models of polymer mechanics
and rheology. The results showed that even ideal Rouse-like
polymers exhibit “long-tailed” non-Gaussian segment density
PDFs due to their distribution of normal modes. While
nonlinear deformations enhance this dispersity, finite extensi-
bility produces flat-peaked non-Gaussian distributions, and
these two competing effects produce distinct features in the
higher-order non-Gaussian cumulants that can be estimated
from scattering data. We therefore propose that the G-C
analysis can be used to distinguish different molecular polymer
models from data with no a priori knowledge of which
particular model a test polymer is best described by.

Overall, we find that the G-C analysis of polymer scattering
holds potential for generally characterizing the non-Gaussian
behavior of complex polymers both at and out of equilibrium.
We envision that G-C analysis will become useful for a number
of different applications of contemporary interest in polymer
research, including heteropolymers, topology-defined poly-
mers, and polymers experiencing complex or nonlinear
deformations. We anticipate that these applications will

motivate further refinements and interpretations of the G-C
analysis scheme that we have proposed here. For example, the
present work was limited to a 1D version of the G-C
expansion, and we found that a 1D analysis is largely sufficient
to describe the non-Gaussian features of polymer scattering
even when the polymer configuration is anisotropic, as long as
care is taken to perform an appropriate 1D average of the
scattering data. However, a 1D analysis will likely prove
insufficient for cases where the 3D configuration is sufficiently
complex such as for polymers experiencing complex or time-
varying deformation fields. Such cases will likely require
extension of the G-C analysis to 2D/3D, and such efforts are
the subject of ongoing work.

In conclusion, the G-C analysis presented here provides an
efficient and compact method to mathematically describe non-
Gaussian characteristics of polymer conformations. By
extracting the series of cumulants of the polymer segment
PDF, one can use G-C analysis of polymer scattering to
directly visualize and physically interpret non-Gaussian
configurations and the processes that give rise to them. We
hope that this work will inspire researchers to further
investigate the importance of non-Gaussian characteristics in
describing and predicting polymer structure, dynamics, and
properties.
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