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ABSTRACT

Purpose: Subarachnoid hemorrhage (SAH) is a common complication of cerebral vascular disease. 
Hydrogen has been reported to alleviate early brain injury (EBI) through oxidative stress injury, 
reactive oxygen species (ROS), and autophagy. Autophagy is a programmed cell death mechanism 
that plays a vital role in neuronal cell death after SAH. However, the precise role of autophagy 
in hydrogen-mediated neuroprotection following SAH has not been confirmed. Methods: In the 
present study, the objective was to investigate the neuroprotective effects and potential molecular 
mechanisms of hydrogen-rich saline in SAH-induced EBI by regulating neural autophagy in the 
C57BL/6 mice model. Mortality, neurological score, brain water content, ROS, malondialdehyde 
(MDA), and neuronal death were evaluated. Results: The results show that hydrogen-rich saline 
treatment markedly increased the survival rate and neurological score, increased neuron survival, 
downregulated the autophagy protein expression of Beclin-1 and LC3, and endoplasmic reticulum 
(ER) stress. That indicates that hydrogen-rich saline-mediated inhibition of autophagy and ER stress 
ameliorate neuronal death after SAH. The neuroprotective capacity of hydrogen-rich saline is partly 
dependent on the ROS/Nrf2/heme oxygenase-1 (HO-1) signaling pathway. Conclusion: The results 
of this study demonstrate that hydrogen-rich saline improves neurological outcomes in mice and 
reduces neuronal death by protecting against neural autophagy and ER stress.

Key words: Hydrogen. Brain Injuries. Oxidative Stress. Reactive Oxygen Species. Autophagy. 

*Corresponding author: ypl019@163.com | (55 99) 9999-9999
Received: Apr 19, 2021 | Review: Jun 22, 2021 | Accepted: July 20, 2021
Conflict of interest: Nothing to declare.
Research performed at Department of Neurosurgery, The Quzhou Affiliated Hospital, Wenzhou Medical University, 
Quzhou People’s Hospital, Quzhou, China.

https://creativecommons.org/licenses/by/4.0/deed.pt_BR
https://doi.org/10.1590/ACB36804
https://orcid.org/0000-0001-7736-2833
https://orcid.org/0000-0003-4349-172X
https://orcid.org/0000-0003-1117-9010
https://orcid.org/0000-0002-8554-5995
https://orcid.org/0000-0002-0629-2556
https://orcid.org/0000-0003-2358-4056
mailto:ypl019@163.com


Hydrogen-rich saline alleviates early brain injury through regulating of ER stress and autophagy after experimental subarachnoid 
hemorrhage

2  Acta Cir Bras. 2021;36(8):e360804

Introduction

Subarachnoid hemorrhage (SAH) is a common 
complication of cerebral vascular disease that is associated 
with a high rate of mortality, morbidity, and poor prognosis, 
especially in patients with hypertension. An occurrence 
of 6.2-10 per 100,000 has been recorded in Western 
countries1-3. The key causes for SAH patients’ poor outcomes 
were early brain damage (EBI) and cerebral vasospasm 
(CVS)4. Recent clinical trials, however, have shown that 
drugs can greatly reduce CVS while having little impact 
on outcomes following SAH5, and previous clinical studies 
demonstrated it too6. The latest research has shown that 
EBI after SAH appears to play a critical role7-10. The possible 
mechanisms underlying EBI include autophagy, apoptosis, 
direct neuronal death, and necroptosis8,11-13. However, Zille14 
reported that inhibitors of caspase-dependent apoptosis, 
protein or mRNA synthesis, autophagy, mitophagy, 
or parthanatos had no effect in vitro or in vivo after 
intracerebral hemorrhage (ICH). Instead, inhibitors of 
ferroptosis defended against toxicity caused by hemoglobin 
and hemin. To date, it is unknown how often various types 
of cell death play a role in SAH-induced toxicity.

Under various physiological and pathological settings, 
autophagy is the primary cellular lysosomal degradation 
process for degrading and recycling intracellular proteins and 
organelles15. Autophagy has been shown to play a critical 
function in many central nervous system disorders, including 
traumatic brain injury (TBI)16-18, ICH19, SAH8, and Huntington’s 
disease20. Tang17 found that inhibiting autophagy greatly 
reduce neuronal apoptosis and necrotic cell death, but 
the autophagy activator rapamycin can exacerbate brain 
injury. In turn, Fang18 stated that activating autophagy 
can reduce mitochondrial apoptosis, boost neurological 
function, cerebral edema, and relieve blood-brain barrier 
(BBB) disturbance after TBI in mice. Until nowadays, it 
was uncertain whether autophagy’s neuroprotection was 
dependent on stimulation or inhibition. It was beneficial 
to investigate new possible drug targets focused on 
autophagy. Endoplasmic reticulum (ER) is the largest 
cellular organelle, in which all secreted and membrane 
proteins are synthesized and properly folded21. Previous 
studies had confirmed that ER stress play a vital important 
role in the early brain injury after SAH21-23.

Recently, hydrogen gas or hydrogen-rich saline have been 
commonly recognized for their ability to defend against a 
variety of diseases, including ischemia-reperfusion damage, 
stroke, spontaneous subarachnoid hemorrhage (SAH), 
and neurodegenerative diseases, by controlling oxidative 
stress, inflammatory response, and neuronal apoptosis24-27. 
Hydrogen has been shown in several experiments to 
selectively suppress hydroxyl radicals and peroxynitrites, and 
hence plays an important role in antioxidant, anti-apoptotic, 

anti-inflammatory, and cytoprotective properties24-28. 
However, the neuroprotective effects of hydrogen-rich 
saline therapy on SAH are debatable. Heme oxygenase-1 
(HO-1) is a cellular resistance enzyme that is caused by 
and protects against oxidant-induced damage. In the 
central nervous system, HO-1 has anti-necroptosis, anti-
neuroinflammatory, and neuroprotective effects (central 
nervous system – CNS)28,29. Previous study also confirmed 
that Nrf2/HO-1 can regulate neuron death in acute CNS 
disease30. Thus, therapies targeting Nrf2 and HO-1 may be 
potential treatments for protection against inflammation, 
oxidative stress, and necroptosis after SAH. However, the 
exact mechanisms of the neuroprotective effects of hydrogen-
rich saline therapy remain unclear. It was investigated here 
the neuroprotective effect of hydrogen-rich saline therapy in 
a mice model of SAH through effects on neuroinflammation 
and necroptosis, and whether the neuroprotection was 
dependent on the ROS/Nrf2/HO-1 pathway.

Methods
The study protocol was approved by the Quzhou 

Affiliated Hospital of Wenzhou Medical University Research 
Ethics Committee (WYLL-2020-11). All animal experiments 
performed for this study complied with the National 
Institutes of Health guidelines for the handling of laboratory 
animals and were approved by the Ethics Committee 
of the Wenzhou Medical University. All experiments 
were conducted on healthy adult male C57BL/6J mice 
(8-10 weeks, 22-25 g) (Wenzhou Medical University, 
Wenzhou, China). Twenty-four mice were set in each group. 
The mice were housed in animal care facilities with a 12 h 
light/dark cycle and had free access to food and water.

Animals SAH model

The endovascular perforation method was used to 
construct the SAH model based on a protocol that was 
previously described7,31. Briefly, male C57BL6/J mice were 
anesthetized by intraperitoneal (i.p.) injection of 50-mg/kg 
 pentobarbital sodium. Rectal temperature was kept at 
37 ± 0.5°C during operation using a heating pad. A midline 
incision was made in the neck, and left common external 
and internal carotid arteries were exposed. The left external 
carotid artery was ligated and cut, leaving a 3-mm stump, 
and a 4–0 (0.33 mm) monofilament nylon suture, 15 mm 
in length, was inserted into the left internal carotid artery 
through the external carotid artery stump to perforate 
the artery at the bifurcation of the anterior and middle 
cerebral artery. The suture was advanced 3 mm further 
to perforate the bifurcation of the anterior and middle 
cerebral arteries. After approximately 10 s, the suture was 
withdrawn. Sham rats received similar surgical procedures, 
but without perforation. 



3

Jiang B et al.

Acta Cir Bras. 2021;36(8):e360804

Drug preparation and administration

After the SAH model was established successfully, 
animals were given daily intraperitoneal injections of either 
hydrogen-rich (5 mL/kg) (experimental) or plain (control) 
saline for 72 hours. The preparation of hydrogen-rich was 
according to the previous study32,33. Briefly, purified H2 was 
dissolved in normal saline for 2 hours under high pressure 
with 0.4 MPa, and the physiological concentration was kept 
at 1.73 mL hydrogen per 100 mL saline (average, more than 
6 mmol/L). Hydrogen-rich saline was stored at 4°C in an 
aluminum bag with no dead volume under atmospheric 
pressure. Hydrogen-rich saline was freshly prepared every 
week to ensure a constant concentration. The content of 
hydrogen in saline was evaluated and detected by gas 
chromatography, as a previous study reported34.

Neurological function assessment 

The severity of early brain injury was evaluated by 
neurological function at 48 hours after SAH using a previously 
described neurological grading system7. The scoring system 
consisted of six tests, and specific standards are shown in 
Supplementary Table 1. The neurological score, ranged from 
3 to 18, included spontaneous activities (0-3), movement 
symmetry of all limbs (0-3), forelimbs outstretching (0-3), 
body proprioception (1-3), response to vibrissae touch 
(1-3) and climbing (1-3). All rats from every group received 
a behavioral assessment, and a higher score represented 
a better neurological function. 

Mortality and SAH grade

Mortality was documented 48 hours after SAH. SAH 
grade was given according to a previously described 
grading system35. Briefly, the grading was given based on 
subarachnoid blood blot: 
• grade 0: no subarachnoid blood; 
• grade 1: minimal subarachnoid blood; 
• grade 2: moderate blood clot with appreciable arteries; 
• grade 3: blood clot obliterating all arteries within 

the segment. 
The grade ranges from 0 to 18. Mice with SAH grading 

scores of less than 7, which had no prominent brain injury, 
were excluded from the study.

Brain water content 

The severity of brain edema was evaluated by brain 
water content, which was determined by the standard 
wet-dry method as in previous studies7-10. The rats were 
sacrificed 48 hours after SAH, and the entire brain was 
harvested and separated into the left and right cerebral 
hemispheres, followed by weighting cerebellum and brain 
stem (wet weight). Then, brain specimens from each group 

were dehydrated at 105°C for 24 hours to acquire the dry 
weight. The percentage of brain water content was equal 
to (wet weight - dry weight)/wet weight × 100%. 

Evans blue extravasation

Evans blue extravasation was performed as previously 
described36. Briefly, mice were anesthetized by pentobarbital 
sodium (50 mg/kg) injection 48 hours after ICH/obstructive 
sleep apnea (OSA). Evans blue dye (2%, 5 mL/kg; Sigma-
Aldrich, St. Louis, MO, United States) was injected into 
the left femoral vein over 2 min and circulated for 60 min. 
Then, the mice were sacrificed with 100 mg/kg sodium 
pentobarbital via intraperitoneal injection and phosphate-
buffered saline (PBS) intracardial perfusion. Death was 
clarified by observing respiration and by using the corneal 
reflection method. The brains were removed and quickly 
divided into the left and right cerebral hemispheres, 
weighed, homogenized in saline, and centrifuged at 
15,000 g for 30 min. Subsequently, the resultant supernatant 
was added with an equal volume of trichloroacetic acid, 
incubated overnight at 4°C, and centrifuged at 15,000 g 
for 30 min. Next, the resultant supernatant was collected 
and spectrophotometrically quantified at 610 nm for 
Evans blue dye.

Analysis of reactive oxygen species

The non-fluorescent diacetylated 2′,7′-dichlorofluorescein 
(DCF-DA) probe (Sigma-Aldrich, St. Louis, MO, United 
States), which becomes highly fluorescent upon oxidation, 
was used to evaluate intracellular ROS production according 
to the manufacturer’s instructions37.

Analysis of lipid peroxidation

Malondialdehyde (MDA) levels were detected by lipid 
peroxidation assay kit (Ex/Em 532/553 nm, Ab118970, 
Abcam, Cambridge, United Kingdom), according to the 
manufacturer’s instructions38.

TUNEL staining

A terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay was conducted to assess neuronal 
death in the brain cortex according to the previous study31. 
TUNEL reaction mixture (50 μL) was added to each sample, 
and the slides were incubated in a humidified dark chamber 
for 60 min at 37°C. The slides were then incubated with 
DAPI for 5 minutes at room temperature in the dark to 
stain the nuclei, followed by imaging with a fluorescence 
microscope. The procedure was performed according to 
the manufacturer’s instructions with a TUNEL staining kit. 
A negative control (without the TUNEL reaction mixture) 
was used. The apoptotic index (%) was the ratio of the 
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number of TUNEL-positive cells/total number of cells 
× 100. The cell count was confirmed in four randomly 
selected high-power fields, and the data obtained from 
each field were averaged.

Western blot analysis

Western blot analysis was performed as indicated 
previously39. Briefly, cerebral cortex or hippocampus 
samples were collected, dissolved, and separated by sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis in 10% 
polyacrylamide gels. A BCA protein assay kit (Beyotime) was 
used to measure protein concentrations by the bicinchoninic 
acid method. Then, protein samples were transferred onto 
immobilon nitrocellulose membranes. The membranes were 
blocked at room temperature for 1 h with 5% nonfat milk. 

The membranes were then incubated with the following 
primary antibodies overnight at 4°C: 
• rabbit anti-β-actin (1:1,000, Abcam, ab8227); 
• rabbit CHOP (#5554, Cell Signaling, 1:1,000); 
• rabbit anti-cleaved-caspase-12 (#2202, Cell Signaling, 

1:200); 
• rabbit anti-GRP78 (#3183, Cell Signaling, 1:800); 
• rabbit anti-Beclin-1 (1 μg/mL, Abcam, ab62557); 
• rabbit anti-Nrf2 (1:1,000, rabbit polyclonal, Abcam, 

ab31163); 
• rabbit anti-HO-1 (1:1,000, rabbit polyclonal, Abcam, 

ab13243); 
• rabbit anti-LC-3B (1 μg/mL, rabbit monoclonal, 

Abcam, ab48394). 
After washing the membranes with TBST three times, 

HRP-conjugated goat anti-rabbit IgG or goat anti-mouse 
IgG secondary antibodies (1:5,000) were applied, and the 
membranes were incubated in the secondary antibodies 
at room temperature for 1.5 h. The protein bands were 
detected using a Bio-Rad imaging system (Bio-Rad, Hercules, 
CA, United States) and quantified with ImageJ.

Statistical analysis

All experiments were repeated more than three times, 
and the data are expressed as the means and scanning 
electron microscope (SEM). Statistical Package for the Social 
Sciences 14.0 (SPSS, Chicago, IL, United States) and GraphPad 
Prism 6 (GraphPad Software, San Diego, CA, United States) 
were used for the statistical analyses. Student’s t-test was 
used when two groups were compared, and one-way analysis 
of variance (ANOVA) followed by Bonferroni’s post-hoc test 
was used for the comparison of two independent variables. 
For non-normally distributed data and/or non-homogeneous 
variance, Kruskal-Wallis test was used followed by Dunn’s 
post-hoc test. For all the statistical analyses, data were 
considered significant at p < 0.05.

Results

Treatment with hydrogen-rich saline has no long-
term effects neither on mortality rates nor on SAH 
grade in SAH models

To clarify the neuroprotection of hydrogen-rich saline, 
the endovascular perforation method was used to construct 
the SAH model in vivo. The effect of hydrogen-rich saline 
treatment on the neurological damage parameters was 
evaluated, including mortality rates and SAH grades. As shown 
in Fig. 1, mortality rates (Fig. 1a) and SAH grades (Fig. 1b) in 
various groups, including sham, SAH, SAH+ hydrogen-rich 
saline (SAH+HS) did not significantly differ, suggesting that 
hydrogen-rich saline treatment has no effects in alleviating 
SAH in long term. So, the focus was on assessing the value 
of hydrogen-rich saline treatment on early brain injury in the 
following studies.
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Figure 1 - Treatment with hydrogen-rich saline has no 
long-term effects neither on mortality rates nor on 
SAH grade in SAH models. (a) Mortality rates in the 
sham group (5.6%), SAH group (27.8%), and the SAH + 
HS group (16.7%). No significant differences between 
the three groups. (b) SAH grade scores in the sham 
group, the SAH group, and the SAH + HS group, which 
showed no significant differences (one-way analysis of 
variance [ANOVA]).

Hydrogen-rich saline alleviates EBI after SAH

To clarify the neuroprotection of hydrogen-rich saline 
after SAH, modified neurological severity scores were used 
to evaluate neurological deficits, and brain water content 
by the wet-dry and Evans blue extravasation method at 
48 h after SAH to evaluate brain damage. 

The results showed that SAH increased the brain water 
content significantly (p<0.05, Fig. 2a), and BBB permeability 
(p<0.05, Fig. 2b), which was alleviated after hydrogen-rich 
saline treatment. Similar results were found in neurological 
scores, which were decreased significantly after SAH, and 
hydrogen-rich saline induction can significantly improve the 
neurological function (p<0.05, Fig. 2c). Neuronal damage 
and death were the main reason that leads to EBI after 
SAH. So, TUNEL assay was used to evaluate the level of 
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cell death in treated and untreated with hydrogen-rich 
saline in the SAH mice at 48 h after model construction. 
The hippocampus neuronal death decreased after hydrogen-
rich saline treatment (Fig. 2d). These results demonstrate that 
hydrogen-rich saline has neuroprotective effects after SAH.
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Figure 2 - Hydrogen-rich saline alleviates EBI after SAH. 
(a) Hydrogen-rich saline alleviates brain water content 
significantly after SAH (n=6, p<0.05). (b) Hydrogen-
rich saline alleviates BBB permeability after SAH (n=6, 
p<0.05). (c) Neurological score of mice in the sham 
group, SAH group and SAH+HS group at 48 h, hydrogen-
rich saline increased the neurological score significantly 
(n=10, p<0.05). (d) TUNEL assay showed that hydrogen-
rich saline alleviates neuronal death. p<0.05; ANOVA; 
mean ± SEM. 

Hydrogen-rich saline inhibited SAH-induced 
autophagy activation in the hippocampus

To clarify whether autophagy plays an important role 
in SAH and hydrogen-rich saline can regulate autophagy, 
the expression levels of autophagy-related protein by 
western blotting were also detected (Fig. 3a). The results 
of western blotting indicated that hydrogen-rich saline can 
reduce the expression levels of autophagy-related protein 
Beclin-1 and LC3 (Fig. 3b-c). The immunofluorescent staining 
showed that LC3-positive neurons were hardly observed 
in the hippocampus, widespread among the hippocampus 
after SAH induction, but they decreased after hydrogen-
rich saline administration (Fig. 3d). 
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Figure 3 - Hydrogen-rich saline inhibited SAH-induced 
autophagy activation in the hippocampus. (a) Expression 
of autophagy-related proteins, Beclin-1 and LC3 in the 
hippocampus of mice after SAH were determined by 
Western blotting. (b-c) Quantification of Beclin-1 and LC3 
protein levels in the hippocampus to actin loading control, 
hydrogen-rich saline decreased Beclin-1 and LC3 expression 
after SAH in mice. (d) Immunocytochemistry shows that 
hydrogen-rich saline downregulated LC3 expression in the 
hippocampus. n=6; p<0.05; ANOVA; mean ± SEM. 

Hydrogen-rich saline alleviates ER stress

To investigate the effect of hydrogen-rich saline on ER 
stress after SAH, the ER stress core markers were GRP78, 
CHOP, and caspase-12. We detected the expression of 
ER stress-associated proteins by Western blot (Fig. 4a). 
The results of Western blot also indicated that hydrogen-rich 
saline can reduce the expression levels of ER stress-related 
protein GRP78, CHOP, and caspase-12 (Fig. 4b-d). Hence, 
it is supposed that the neuroprotection of hydrogen-rich 
saline is partly based on ER stress inhibition.

Rapamycin stimulates autophagy and reversed the 
neuroprotective effect of hydrogen-rich saline

Rapamycin was a specific activator for autophagy39. To 
investigate the relationship between autophagy and the 
neuroprotective role of hydrogen-rich saline, mice were 
pretreated with rapamycin before the induction of SAH. 
The results showed that pretreated with rapamycin could 
dramatically damage neurological deficits (Fig. 5a), aggravate 
brain edema (Fig. 5b) and BBB permeability (Fig. 5c), and 
reverse the neuroprotective effect of hydrogen-rich saline. 
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Figure 4 - Hydrogen-rich saline alleviates ER stress. (a) 
Expression of ER stress-related proteins, caspase-12, 
CHOP and GRP78 in the cerebral cortex of mice after 
SAH were determined by Western blotting. (b-d) 
Quantification of caspase-12, CHOP and GRP78 protein 
levels in the cerebral cortex to actin loading control, 
hydrogen-rich saline decreased caspase-12, CHOP 
and GRP78 expression after SAH in mice. n=6; p<0.05; 
ANOVA; mean ± SEM.

Additionally, the TUNEL assay also showed that 
rapamycin could also significantly increase the neuron 
apoptosis in the injured hippocampus, compared with the 
SAH + hydrogen-rich saline group (Fig. 5d). The autophagy-
related protein expression by Western blot was detected 
too (Fig. 5e). Hydrogen-rich saline can significantly decrease 
the expression levels of Beclin-1, and LC3 (Fig. 5f), while 
partly blocked with rapamycin administration. Thus, these 
results indicated that rapamycin could activate autophagy 
and abolish the anti-autophagy effects of hydrogen-rich 
saline, then reversed the neuroprotective effects of 
hydrogen-rich saline after SAH.

Hydrogen-rich saline regulates autophagy and ER 
stress by ROS/Nrf2/HO-1 signaling pathway after SAH

Autophagy through ROS/Nrf2/HO-1 signaling pathway 
after hydrogen-rich treatment was explored. It was 
detected the ROS levels by DCF-DA probe, and the degree 
of membrane lipid peroxidation was evaluated by MDA. The 
results showed that ROS and MDA levels were significantly 
increased after SAH, while they decreased after hydrogen-
rich treatment (Fig. 6a-b). The protein expression levels 

of Nrf2 and HO-1 by Western blot to investigate neuron 
autophagy were also detected (Fig. 6c). The results showed 
that the expression levels of Nrf2 and HO-1 decreased 
significantly in the SAH group, and increased after hydrogen-
rich saline administration (Fig. 6d-e). Thus, these results 
showed that hydrogen-rich saline may have inhibited 
SAH-induced autophagy by a regulated ROS/Nrf2/HO-1 
signaling pathway. 
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Figure 5 - Rapamycin stimulates autophagy and reversed 
the neuroprotective effect of hydrogen-rich saline. (a) 
Hydrogen-rich saline increased the neurological score 
(n=6, p<0.05). (b) Hydrogen-rich saline alleviated brain 
water content significantly after SAH, while aggravated 
it after rapamycin administration (n=6, p<0.05). (c) 
Hydrogen-rich saline alleviated BBB permeability after 
SAH, while aggravated it after rapamycin administration 
(n=6, p<0.05). (d) TUNEL assay showed that autophagy 
activator increased neuronal death, and reversed the 
neuroprotective effect of hydrogen-rich saline. (e) 
Expression of autophagy-related proteins, LC3 and 
Beclin-1 after SAH were determined by Western blotting. 
(f) Rapamycin increased the expression levels of LC3 
and Beclin-1 significantly than the SAH+HS group (n=6, 
p<0.05). n=6; p<0.05; ANOVA; mean ± SEM. 
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SAH: subarachnoid hemorrhage; HS: hydrogen-rich saline; 
ROS: reactive oxygen species; MDA: malondialdehyde; HO-1: 
heme oxygenase-1; ER: endoplasmic reticulum stress; ANOVA: 
analysis of variance; SEM: scanning electron microscope.
Figure 6 - Hydrogen-rich saline regulated autophagy and 
ER stress by ROS/Nrf2/HO-1 signaling pathway after SAH. 
(a) Hydrogen-rich saline decreased ROS levels after SAH 
by DCF-DA probe. (b) Hydrogen-rich saline decreased 
MDA levels after SAH. (c) Expression of autophagy-related 
proteins, Nrf2 and HO-1 after SAH were determined by 
Western blotting. (d-e) Nrf2 and HO-1 protein levels were 
quantificated in the cerebral cortex to actin loading control, 
hydrogen-rich saline increased Nrf2 and HO-1 expression 
after SAH in mice. n=6; p<0.05; ANOVA; mean ± SEM. 

Discussion

Here, the therapeutic potential of hydrogen-rich saline for 
alleviating early brain injury in a mouse in the SAH model was 
evaluated. The present study demonstrates that hydrogen-
rich saline was a neuroprotective agent that can attenuate EBI 
following SAH. It was found that hydrogen-rich saline can improve 
neurological dysfunction after SAH; hydrogen-rich saline can 
alleviate brain damage in a mouse SAH model; hydrogen-rich 
saline can relieve ER stress after SAH; hydrogen-rich saline can 
prevent autophagy after ER stress and alleviate neuronal death; 
and the anti-ER stress and anti-autophagy roles of hydrogen-rich 
saline may be related to the ROS/Nrf2/HO-1 pathway (Fig. 7).

SAH

ROS

EBI Aggtavated

Autophagy ER Stress

Activiation

Inhibition

HS

HO-1

Nrf2

SAH: subarachnoid hemorrhage; HS: hydrogen-rich saline; 
ROS: reactive oxygen species; HO-1: heme oxygenase-1; ER: 
endoplasmic reticulum stress; EBI: early brain injury.
Figure 7 - Diagram of the proposed model explaining 
the observations of autophagy and ER stress after SAH 
and potential mechanisms underlying the effect of the 
hydrogen-rich saline intervention.

Hydrogen gas or hydrogen-rich saline can easily 
penetrate the BBB by gaseous diffusion, which is widely 
accepted to exert protective effects in many CNS diseases, 
including ischemia stroke, intracranial hemorrhage, TBI, and 
neurodegenerative diseases24-27. Hydrogen gas or hydrogen-
rich saline plays an important role in antioxidant activity 
with high tissue transferability, and previous studies had 
demonstrated that H2 is safe for patients and animals34. 
The anti-oxidative stress and anti-inflammatory response 
of hydrogen gas or hydrogen-rich saline are induced by 
selective inhibition of highly toxic ROS, such as hydroxyl 
radical (OH·) and peroxynitrite (ONOO−)26. 

Liu40 reported that H2 can markedly improve the survival 
rate and cognitive dysfunction, decrease inflammatory 
response and oxidative stress, and increase activities 
of antioxidant enzymes in serum and hippocampus in a 
mouse model of sepsis. In the ICH model, it was also found 
that hydrogen plays a neuroprotective effect against EBI 
after ICH, alleviating brain edema and neurologic deficits 
through regulating oxidative stress, neuroinflammation, 
and apoptosis41. 

In the hypoxic-ischemic brain injury neonatal rats’ 
model, H2 inhalation administration can alleviate brain 
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damage and improve early neurological outcomes, the 
mechanisms also through antioxidant, antiapoptotic, and 
anti-inflammatory responses via MAPK/HO-1/PGC-1a 
pathway42. In the TBI model, molecular hydrogen water 
also can reverse the controlled cortical impact-induced 
brain edema through the preservation or increase of 
adenosine triphosphate (ATP) levels43. A pilot rats study 
indicated that high-dose hydrogen gas therapy reduces 
mortality and improves outcomes after SAH44. 

Zhuang reported that hydrogen can alleviate brain injury 
via decreasing oxidative stress injury and brain edema 
in experimental SAH rabbits32. Hydrogen-rich saline can 
improve neurological function, decrease neuronal apoptosis 
by upregulating Bcl-2 and downregulate Bax and cleave 
caspase-3 after SAH. The potential mechanism may be 
through Akt/GSK3β signaling pathway. In the present 
study, we also found that hydrogen-rich saline markedly 
increased the survival rate and neurological score, alleviated 
brain edema, and increased neuron survival. 

Autophagy regulates the turnover of cellular constituents 
to ensure the removal and recycling of toxins and was very 
important in cell homeostasis. The role of autophagy has 
been confirmed in many CNS diseases, including acute 
brain injury16-18, ICH19, SAH39, and Huntington’s disease20. 
Autophagy can transport materials in cells to lysosomes for 
degradation through different pathways, involved in the 
regulation of cell survival and death mechanisms after SAH. 

Therefore, autophagy plays a very important role in 
neuronal injury and repair after SAH. In the myocardial 
ischemia/reperfusion (I/R) in vitro and in vivo model, 
hydrogen-rich saline can improve the inflammatory 
response and apoptosis via PINK1/Parkin mediated 
autophagy45. Chen46 reported that H2 can alleviate vital 
organ damage, inhibited lipopolysaccharide (LPS) and 
ATP caused by NLRP3 inflammasome pathway activation, 
and improve mitochondrial dysfunction via regulating 
autophagy. Recent studies also indicated that hydrogen-rich 
saline or hydrogen gas can decrease cell death via 
regulating autophagy47-50. So far, this is the first report 
that hydrogen-rich saline can alleviate EBI after SAH by 
regulating autophagy. In the present study, it was found 
that autophagy was excessive activated after SAH, then 
led to neurologic impairment, BBB disruption, brain 
edema, and neuronal death, while it was reversed after 
hydrogen-rich saline treatment. 

The molecular mechanism of autophagy and ER 
stress is complicated, and the exact mechanisms of the 
neuroprotective effects of hydrogen-rich saline therapy 
remain unclear. Nrf2 was a very important transcriptional 
regulation factor that can regulate the expression of 
more than 250 genes and is marked by its binding site, 
antioxidant response element, most genes can regulate 

oxidative stress and cell apoptosis, necroptosis, autophagy, 
and ferroptosis30. 

Yu51 reported that 2% molecular hydrogen (H2) gas 
inhalation can improve the survival rates, reduce the 
lung edema and the lung injury score, and ameliorate 
the injuries caused by oxidative stress and inflammation 
in the septic mice model. Knockout Nrf2 would reverse 
or weaken the protection of H2 gas on lung damage, 
and also depends on the HO-1 and high-mobility group 
box 1 (HMGB1). 

Additionally, Chen52 demonstrated that H2 attenuates 
endothelial injury and inflammation, increased the HO-1 
expression and in-vitro and in-vivo activity, and knockout 
Nrf2 or HO-1 inhibition reversed the protection of H2, the 
process depending on the activity of Nrf2/HO-1 signaling 
pathway. Yu53 reported that H2 can improve survival in septic 
mice, and decrease escape latency and platform crossing 
times, the brain water content, and extravascular dextran, 
while reversed in the Nrf2 knockout mice. Wang42 pointed 
out that hydrogen gas can alleviate hypoxic-ischemic EBI via 
regulating the HO-1 pathway. Intriguingly, the present study 
found that knockdown HO-1 reversed the neuroprotection 
of hydrogen-rich saline after SAH, and HO-1 might be the 
upstream signal of ER stress and autophagy. However, 
the exact mechanism needs to be further determined.

Conclusions

The present study provided evidence that autophagy, 
which is mediated by the ROS/Nrf2/HO-1, is an important 
cellular regulatory mechanism and contributes to EBI after 
SAH. In this study, for the first time, it was reported that 
hydrogen-rich saline induced regulation of autophagy and 
ER stress, and also a new idea was provided to explore 
the biological effects and underlying mechanisms of the 
hydrogen-rich saline.
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