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ABSTRACT
Background: Lung cancer in never smokers (LCINS) differs etiologically and clinically from 
lung cancer attributed to smoking. After smoking, radon exposure is the second leading 
cause and the primary risk factor of lung cancer among never smokers. Exposure to radon 
can lead to genetic and epigenetic alterations in tumor genomes affecting genes and 
pathways involved in lung cancer development. The present study sought to explore genetic 
alterations associated with LCINS exposed to radon gas indoors.
Methods: Genetic associations were assessed via a case-control study of LCINS (39 cases and 
30 controls) using next generation sequencing. Associations between genetic mutations and 
high exposure to radon were investigated by OncoPrint and heatmap graphs. Bioinformatic 
analysis was conducted using various tools. According radon exposure levels, we divided 
subjects in two groups of cases and controls.
Results: We found that ABL2 rs117218074, SMARCA4 rs2288845, PIK3R2 rs142933317, 
MAPK1 rs1803545, and androgen receptor (AR) rs66766400 were associated with LCINS 
exposed to high radon levels. Among these, Chromodomain helicase DNA-binding protein 4 
(CHD4) rs74790047, TSC2 rs2121870, and AR rs66766408 were identified as common exonic 
mutations in both lung cancer patients and normal individuals exposed to high levels of 
radon indoor.
Conclusion: We identified that CHD4 rs74790047, TSC2 rs2121870, and AR rs66766408 are 
found to be common exonic mutations in both lung cancer patients and normal individuals 
exposed to radon indoors. Further analysis is needed to determine whether these genes are 
completely responsible for LCINS exposed to residential radon.

Keywords: Lung Cancer in Never Smokers; Radon Exposure; Genetic Alteration; 
Next Generation Sequencing

INTRODUCTION

Lung cancer is generally associated with tobacco smoking. However, lung cancer in never 
smokers (LCINS) has been recognized as a disease independent of smoking-associated lung 
cancer.1,2 According to the World Health Organization, the incidence of LCINS is almost 25%,2,3 
ranking as the seventh most common cause of cancer-related death.4-6 Recently, remarkable 
variance in the proportion of LCINS among all lung cancers has been noted, ranging from nearly 
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10% in Western males and up to approximately 40% in Asian females.7 However, ethnic/genetic 
features and/or environmental characteristics of LCINS remain unclear.1

Radon is the most important natural source ionizing radiation to which humans are exposed 
and is the second leading cause of LCINS.1,8 Exposure to radon is estimated to be associated 
with more than 20,000 lung cancer deaths per year in the United States.4 Studies suggest 
that up to 30% of all lung cancer deaths among non-occupationally exposed never-smokers 
might be linked to indoor radon4,9 The Environmental Protection Agency (EPA) action level is 
148 Bq/m3, and the World Health Organization has recently lowered the recommended radon 
exposure levels to below 100 Bq/m3.10

Possible biologic mechanisms by which radon exposure might increase the risk of LCINS are 
gene mutations and chromosome alterations affecting the production of proteins associated 
with cell cycle control.1,11 Recently, genome-wide association studies have investigated specific 
chromosomal loci (15q24-15q25 and 5p15.33) as regions associated with LCINS. The 5p15.33 
locus contains two candidate genes, TERT and CLPTMIL, and Hsiung et al.12 suggested that 
the 5p15.33 region is associated with the risk of LCINS in Asian females.1,12-14 Another study 
recommended that GSTM1 and GSTT1 deletion increases the risk of lung cancer and that these 
genes might regulate the carcinogenic pathway via radon radiation exposure.15,16

Although several studies have been demonstrated the role of candidate genes for developing 
LCINS, the genetic alterations for susceptibility to LCINS upon residential radon exposure 
are still unclear,17-20 and further studies are needed to analyze associations between exposure 
to radon and LCINS. Accordingly, the present study aimed to explore genetic alterations 
associated with LCINS exposed to radon indoors.

METHODS

Cases and controls
We designed a hospital-based case-control study and examined blood samples from 69 adults 
(39 cases and 30 controls) aged 41–80 years with lung cancer in 2015–2016. The lung cancer 
cases included 39 patients treated at Ajou University Medical Center, Sinchon Severance 
Hospital, and Seoul St. Mary's Hospital. The control group included 30 unrelated volunteers 
who had no history of cancer. We excluded participants who were diagnosed with lung 
cancer-related disease and current smokers, which left 69 participants as the final samples. 
All patients were subjected to thorough medical history checks, including smoking history, 
clinical examination, and routine laboratory investigations. Diagnosis of lung cancer was 
confirmed by cytological or histopathological examination of tumor biopsies.

Measurement of indoor radon levels
Between October 28, 2015 and May 30, 2016, indoor radon levels were measured at two sites 
in each household of the subjects of the study population. Alpha-track detectors (Raduet 
Model RSV-8; Radosys Ltd., Budapest, Hungary) were used as a passive radon measuring 
device. The average concentration of radon in the indoor air was calculated from the two 
points within the household. The measurement points were selected from the living room 
and a bedroom, spaces where residents of a household primarily spend most of their time. 
The measuring devices were positioned away from household electrical appliances, windows, 
and sealed drawers. The measurement period was 3 months. After estimating indoor radon 
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levels, we divided the participants into high radon and low radon level groups based on 
indoor radon levels greater or less than 100 Bq/m3.

Targeted next generation sequencing
Sufficient and good quality DNA from peripheral blood, normal tissue, and tumor tissues 
were collected from the 19 LCINS patients. DNA was extracted from peripheral blood 
leukocytes and tissues using standard protocols. To extract DNA, the Maxwell® 16 Tissue 
DNA Purification Kit (Promega, Madison, WI, USA) was used for tissue samples, and the 
Maxwell® 16 LEV Blood DNA Kit (Promega) was used for blood samples. With 1 μg of input 
gDNA, we applied the Agilent SureSelect Target Enrichment protocol for Illumina paired-
end sequencing (ver. B.3, June 2, 2015). In this experiment, the SureSelect Human All Exon 
V5 probe was used to generate standard exome capture libraries. PicoGreen and agarose gel 
electrophoresis was used to evaluate the quantity and quality of DNA samples. Diluted in EB 
buffer, 1 μg of DNA was sheared to a target peak size of 150–200 bp using a Covaris LE220 
focused-ultrasonicator (Covaris, Woburnm, MA, USA), according to the manufacturer's 
instructions. From the fragmented DNA, an ‘A’ was ligated to the 3' end, and then Agilent 
adapters were ligated to the fragments. After the ligation, the adapter-ligated library went 
through polymerase chain reaction (PCR) amplification. For exome capture, 5 µL of the 
SureSelect all exon capture library, hybridization buffers, blocking mixes, and RNase block 
were mixed with 250 ng of DNA library, according to the standard Agilent SureSelect Target 
Enrichment protocol. Then, by using the HiSeq™ 2000 platform (Illumina, San Diego, CA, 
USA), captured libraries were sequenced with 101 base pair reads.

Sequence data analysis
Sequence data were mapped to the human genome, with the reference sequence UCSC assembly 
hg19 (National Center for Biotechnology Information [NCBI] build 37.1), using BWA aligner (ver. 
0.5.9rc1). The output Sam files were converted to Bam files and were sorted with SAMtools 
(ver. 0.1.18). PCR duplicate reads were removed using Picard tools (ver. 1.5.9) before base 
substitution detection. Based on the BAM file previously generated, variant calling was conducted 
by SAMtools, SAMtools mpileup, bcftools view, and vcfutils.pl. From vcf4 format files, the 
varFilter was applied with the maximum depth option ‘-D’ set to 1,000: in this step, SNPs and 
short insertion-deletions (indel) candidates are detected at the nucleotide level. Variants were 
annotated by ANNOVAR (ver. November 2011) filtering with dbSNP version 135 and SNPs 
from the 1000 genome project. Somatic variants were identified by VarScan (ver. 2.3.7).

Statistical analysis
Patient characteristics were analyzed between mutation positive and negative patient groups, 
and the percentage of mutation carriers in tumor was compared with that in normal control. 
VCF files from the SAMtools variant calling pipeline were merged to one VCF file, which was 
sorted by allele frequencies in the 1000 Genomes Project, and then, we filtered out variants 
with values greater than 0.5 to exclude effects from common SNPs. Based on radon exposure 
of 100 Bq/m3, we divided 69 subjects into two groups and defined as group 1 (under 100 
Bq/m3) and group 2 (over 100 Bq/m3). Then, we compared the exonic variants of each group 
according to allele frequency, location, amino acid change etc. and filtered out genetic 
variants existed in greater than 100 Bq/m3, group 2, compared to that of group 1. In 39 lung 
cancer patients, we analyzed the variants which existed in exonic region in subjects with 
high radon level compared to that in patients had low radon level. In 30 normal control, we 
filtered out the variants with values lower than 0.05 of allele frequencies and compared the 
variants in normal controls who have high radon exposure.
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Ethics statement
This study was approved by the Institutional Review Board of Ajou University Medical Center 
according to the Helsinki Declaration (AJIRB-MED-SUR-16-220). All participants provided 
their written informed consent.

RESULTS

Study populations
There was no significant difference among cases and controls in terms of mean age; however, 
there was a significant difference among cases and controls regarding the distribution of 
males and females (P < 0.001) (data not shown). Radon levels were 67.2 ± 38.9 Bq/m3 in 
patients and 81.2 ± 51.0 Bq/m3 in controls. All tumors were diagnosed as non-small cell lung 
cancer: the vast majority had adenocarcinoma or poorly differentiated carcinoma.

Somatic mutations in populations
In 69 participants, 39 cases and 30 controls had complete radon measurements, and the 69 
individuals did not have information on smoking history that would allow for the calculation 
of lifetime tobacco consumption. Dividing subjects into two groups based on radon exposure 
of 100 Bq/m3, we noted that several genetic variations, including ABL2 rs117218074, CHD4 
rs74790047, SMARCA4 rs2288845, TSC2 rs2121870, and androgen receptor (AR) rs66766400, 
were associated with high radon exposure. The subjects with high radon levels had significant 
associations with nonsynonymous alteration and non-frameshift mutation (Fig. 1). We 
discovered several variants which existed in exonic region in subjects with high radon level 
and these variants were EPHA2, DUSP27, XPO1, and CASP8 (Fig. 1).

In lung cancer patients, we compared the exonic variants in subjects with high radon level 
compared with that in patients who have low radon level. We found that single nucleotide 
polymorphism, such as ABL2 rs117218074, SMARCA4 rs2288845, PIK3R2 rs142933317, MAPK1 
rs1803545, and AR rs66766400, were associated with LCNIS exposed to high radon levels 
(Fig. 2). The patients who have high radon level had significant associations with insertion 
and deletion mutation in AR gene (Fig. 2). In controls with high radon exposure levels, there 
were various exonic alterations, such as ATR rs146405935 and TRIO rs55920001. In contrast, 
the normal control with high radon level had significant associations with non-frameshift and 
deletion mutation in AR gene (Fig. 3). Among these, CHD4 rs74790047, TSC2 rs2121870, and 
AR rs66766408 were identified common exonic mutations in both of lung cancer patients and 
normal individuals with high exposure to radon (Figs. 2 and 3). In the high radon group, an 
interaction between radon exposure and genetic variations for the risk of LCINS was identified.

DISCUSSION

In order to analyze driver mutations among LCINS who have been exposed to radon, we identified 
several genetic alterations associated therewith. Single nucleotide variations, including CHD4 
rs74790047, TSC2 rs2121870, and AR rs66766408, were found to be common exonic mutations in 
both lung cancer patients and normal individuals exposed to high levels of radon indoors.

Radon is a radioactive gas generated naturally by the collapse of uranium from soils and rocks.4 
Radon decays into active progenies with an electrical charge and can be inhaled when combined 
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with natural aerosols, ultimately arriving at lung epithelial cells. In lung tissue, cumulative 
radon progeny decays to produce alpha-particles21 that lead to DNA damage through double-
strand breaks (DSBs) and large chromosomal alterations.4,22,23 Reports have been shown 
that impaired DNA repair ability of DSBs may be responsible for distinct susceptibility to lung 
cancer in smokers. If not repaired adequately, DSBs can induce cell death or conversion to 
malignancy.20 In the process of repairing DSBs, alpha particles radiated by radon and radon 
daughters can directly invade genomic DNA.22,24 Moreover, reactive oxygen species in the 
lungs developing from continuous radon exposure may bring about oxidative stress, leading to 
pulmonary inflammation and ultimately to chronic lung diseases, including lung cancer.25-30

The association between radon and lung cancer has mainly been derived from epidemiologic 
studies of miners.31 In further analysis, it has been observed that up to 30% of lung cancer 
deaths among non-occupationally exposed never-smokers might be connected with indoor 
radon.9 Recently, genome-wide association studies have identified specific chromosomal loci 
as regions associated with LCINS: Iwamoto et al.32 indicated that EPAS1 rs4953354 may be an 
essential susceptible biomarker for the development of lung adenocarcinoma, especially in 
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Group 1 exonic

Fig. 1. Exonic variants according to exposure to radon in the study population. In subjects with high on radon exposure of 100 Bq/m3, there were several exonic 
genetic variations, including ABL2 rs117218074, CHD4 rs74790047, SMARCA4 rs2288845, TSC2 rs2121870, and AR rs66766400. The subjects with high radon levels 
had significant associations with nonsynonymous alteration and non-frameshift mutation.
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female never-smokers. In this study, we discovered ABL2 rs117218074, SMARCA4 rs2288845, 
PIK3R2 rs142933317, MAPK1 rs1803545, and AR rs66766400 in LCINS exposed to high radon 
levels. Also, we identified common genetic alterations, including CHD4 rs74790047, TSC2 
rs2121870, and AR rs66766408, in both LCINS and normal individuals.
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Group 2 exonic

Fig. 2. Exonic alterations in lung cancer in never smokers according to radon exposure levels. In lung cancer patients, we found that single nucleotide polymorphism, 
such as ABL2 rs117218074, SMARCA4 rs2288845, PIK3R2 rs142933317, MAPK1 rs1803545, and AR rs66766400, were associated with LCNIS exposed to high radon levels. 
LCINS = lung cancer in never smokers.
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Group 3 exonic

Fig. 3. Exonic alterations in normal individuals according to radon exposure levels. In controls with high radon exposure levels, there were various exonic 
alterations, such as ATR rs146405935 and TRIO rs55920001. The normal control with high radon level had significant associations with non-frameshift and 
deletion mutation in AR gene.
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Chromodomain helicase DNA-binding protein 4 (CHD4) plays an important role in 
chromatin remodeling, and has been implicated in the development of cancer.33 Also, 
CHD4 is one of the key enzymes in the DNA-damage response34 and regulates the cell 
cycle. Its dysfunction can lead to the development of cancer. Yamada et al.33 suggested that 
nonsynonymous single nucleotide variants (SNVs) in CHD4 (rs74790047) were associated 
with cancer and might connect with smoking habits to increase cancer risk. Similar to this 
previous study, we identified that an SNV (rs74790047) in the CHD4 gene contributes to 
the risk of cancer in both LCINS and normal people with high radon levels. In result, we 
assume that CHD4 nonsynonymous polymorphisms is associated with high radon levels 
in individuals who never smoke and normal subjects. Recently, it has been suggested that 
TSC1 loss synergizes with Kras mutation to enhance lung tumorigenesis in mice, however, 
this mutation is a rare event in human lung cancer.35 In our study, we discovered that TSC1 
mutation is associated with high radon levels in LCINS; however, we did not identify an 
association with LCINS due to insufficient data. Previous studies regarding the association 
between AR gene CAG repeat length and ovarian cancer risk reported inconsistent results.36 
Overall, there was no association between the AR CAG repeat polymorphism and ovarian 
cancer risk. Meanwhile, short CAG repeat polymorphism was associated with increased 
ovarian cancer risk in African Americans and Chinese under the dominant model.36 However, 
there were no studies to investigate an association of AR single nucleotide polymorphisms 
with lung cancer in previous studies. Further well-designed epidemiological and functional 
studies are needed to elucidate the role of AR in lung carcinogenesis.

A few limitations should be considered when interpreting the results of this study. Despite an 
exploratory study, the sample size is extremely small. Our findings may not be generalizable 
to other populations, especially those of different ethnicity. Also, we evaluated capture-based 
targeted DNA sequencing as a new approach for testing a broad spectrum of point mutations 
(SNVs) and short indels possibly related to LCINS. However, there were no references with 
which to compare the noted genetic alterations induced by radon exposure and the risk of 
lung cancer in Korean never smokers.

In this study, CHD4 rs74790047, TSC2 rs2121870, and AR rs66766408, were found to be 
common exonic mutations in both lung cancer patients and normal individuals exposed 
to high levels of radon indoors. The relative significance of radon exposure and genetic 
polymorphisms in the development of LCINS with high radon levels has not been well 
investigated in Korean adults. Further analysis is needed to determine whether several 
notable genes are completely responsible for LCINS exposed to residential radon.
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