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Abstract: Arabinoxylan is the second most abundant component in the endosperm cell wall of barley
and it has been shown to have negative effects on the viscosity and filtration rate of wort and beer.
In this study, a glycoside hydrolase (GH) family 62 α-L-arabinofuranosidase (AFase), termed as
TrAbf62A, was purified from the culture filtrate of Trichoderma reesei CICC 41495 by a combined
chromatographic method. The preferred substrates of the purified TrAbf62A were soluble, highly
substituted arabinoxylan oligosaccharides and polymers, similar to the type found in barley grain.
TrAbf62A exhibited activity towards oligomeric and polymeric arabinoxylans, as well as colorimetric
arabinose-based substrates, thus meeting the criteria to be classified as a type B AFase. TrAbf62A
released mainly arabinose and xylose from soluble wheat arabinoxylan, thus indicating a dual lytic
enzyme activity. Supplementation of TrAbf62A during mashing, with a loading of 12 mU/g malt,
resulted in a 36.3% decrease in arabinoxylan polymer content, a 5.6% reduction in viscosity, and
finally, a 22.1% increase in filtration rate. These results revealed that TrAbf62A has a high potential
value in improving lautering performance during mashing.
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1. Introduction

The separation of sweet wort from the mash is usually the most problematic step in the brewhouse.
Poor filtration efficiency has been mainly attributed to β-glucan, which is the major non-starch
polysaccharide in the cell wall of barley malt [1,2]. The main focus of improving the lautering
performance of wort has been on β-glucan content and β-glucanase activity. However, when some
domestic barley varieties and subsequently produced malts were used for beer brewing, even though
the β-glucan content was low (<100 mg/L), the lautering performance was still poor. Latest researches
have shown that arabinoxylan polymer may be involved in this phenomenon [3–7].

Arabinoxylan is the second most abundant component in the endosperm cell wall of barley [8].
Arabinoxylan consists of aβ-1,4-D-xylopyranosyl backbone, substituted with arabinofuranosyl residues
at C-(O)-2 or C-(O)-3, or at both positions [8]. The reported arabinoxylan content of commercial beers
ranged from 790 to 1786 mg/L [5] and a considerable amount of it remained as arabinoxylan polymer.
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Arabinoxylan has been proven to form a highly viscous solution [3–6]. The effect of arabinoxylan on
the viscosity and filtration rate of wort and beer is at least as important as that of β-glucan [3–5,7,9,10].

Supplementation of microbial xylanolytic enzymes to the mash could be a good choice
for the degradation of arabinoxylan and has been demonstrated to improve the filterability of
wort [11–13]. The microbial xylanolytic enzyme system includes mainly xylanase (endo-β-1,4-xylanase,
EC 3.2.1.8), α-L-arabinofuranosidase (AFase) (EC 3.2.1.55), and β-D-xylosidase (EC 3.2.1.37) [14].
Xylanase is the major component of the xylanolytic enzyme system, which hydrolyses the linear
β-1,4-D-xylopyranosyl backbone in the arabinoxylan. The action of xylanase drastically changes the
structure and physicochemical properties of arabinoxylan. AFase is another major component of
the xylanolytic enzyme system. AFase is a debranching enzyme. AFase catalyzes the hydrolysis of
the arabinofuranosyl substituent from the arabinoxylan backbone, while β-D-xylosidase removes
β-1,4-D-xylopyranosy moieties from the terminal end of arabinoxylo-oligosaccharides and plays a key
role in the complete hydrolysis of arabinoxylan [15]. To our knowledge, there has been no investigation
on the arabinoxylan degradation of barley malt by microbial AFases.

The filamentous fungus Trichoderma reesei (T. reesei) is an excellent producer of xylanolytic
enzymes [16,17]. Reports concerning AFases from T. reesei are quite limited. In previous work, we have
found a complete xylanolytic enzyme system in the culture filtrate of T. reesei CICC 41,495 by secretome
analysis [18]. This research focusses on the AFase isolated from that crude mixture of xylanolytic
enzymes. Finally, a glycoside hydrolase (GH) family 62 AFase was purified to apparent homogeneity.
The applicable potential of the purified AFase during Congress mashing with domestic barley malt
was also evaluated. The results provide specific guidance on developing enzymatic strategies for
arabinoxylan degradation during the mashing process.

2. Materials and Methods

2.1. Materials and Chemicals

T. reesei CICC 41,495 used in this study was purchased from the China Centre of Industrial
Culture Collection (Beijing, China). Commercial malted barley (Hordeum vulgare L. cv. Dan’er, Chinese
harvest 2017), with low β-glucan content (96 mg/L) and poor filtration efficiency, was obtained from a
commercial malting company in the Jiangsu province of China.

Oat-spelt xylan, birchwood xylan, beechwood xylan, and 4-Nitrophenyl-α-L-arabinofuranoside
(p-NPAF) were from Sigma-Aldrich (St Louis, MO, USA). Arabinoxylo-oligosaccharide was from
Hualan Chemical (Shanghai, China). Soluble wheat arabinoxylan (medium viscosity) and insoluble
wheat arabinoxylan were from Megazyme (Wicklow, Ireland). Sephadex G-25, DEAE-Sepharose Fast
Flow and Sephacryl S-100 were from GE Healthcare (Uppsala, Sweden). The protein molar-mass
marker was from Bio-Rad Laboratories (Shanghai, China). All other chemicals used were from
Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China), and were analytical grade.

2.2. Enzyme Production

T. reesei CICC 41,495 was maintained on solid potato dextrose agar slant. For enzyme production,
the inoculum was prepared in Erlenmeyer flask using Mandels’ medium [19]. A 10% (v/v) inoculum
culture was added to 250-mL Erlenmeyer flasks containing 50 mL of Mandels’ medium supplemented
with wheat bran at 1.0% (w/v). The flasks were incubated at 28 ◦C and 200 rpm for 168 h. The culture
filtrate was harvested by centrifugation at 8000× g and 4 ◦C for 20 min and used for the purification
of AFase.

2.3. Protein Concentration Estimation

Total protein concentration was determined using the Bradford method with bovine serum
albumin (BSA) as a standard [20].
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2.4. Enzyme Activity Assay

AFase activity throughout the purification procedure was determined using p-NPAF as the
substrate (4 mM) according to the method of Oh et al. [21]. The substrate solution (250 µL) was mixed
with 100 mM sodium acetate buffer (pH 5.5, 500 µL), and then a diluted enzyme solution (250 µL) was
added. The mixture was incubated at 50 ◦C for 15 min. The reaction was stopped by the addition of
1.0 mL of 1.0 M Na2CO3 solution. The enzyme solution boiled in a water bath for 10 min was used as the
negative control. The absorbance was measured at 420 nm and the amount of p-nitrophenol liberated
was calculated from a standard curve. One unit of activity was defined as the amount of enzyme
required to liberate one µmol p-nitrophenol from p-NPAF within one min under these conditions.

2.5. Enzyme Purification

To purify the AFase secreted by T. reesei CICC 41495, the crude enzyme in the culture filtrate
was first fractionated by adding powdered (NH4)2SO4 to a 20–75% saturation. The precipitate was
collected by centrifugation at 8000× g for 20 min (4 ◦C), dissolved in 20 mM Tris-HCl buffer (pH 8.0),
and desalted on a Sephadex G-25 column (1.6 cm × 60 cm) with the same buffer. The desalted enzyme
solution was loaded onto a DEAE-Sepharose Fast Flow column (1.6 cm × 20 cm) pre-equilibrated
with 20 mM Tris-HCl buffer (pH 8.0). After washing off the unbound proteins with the starting buffer,
the bound proteins were eluted by a linear gradient of NaCl (0−500 mM) in the same buffer at a
flow rate of 100 mL/h. The AFase activity and the absorbance of each fraction at 280 nm (A280) were
measured, respectively. Column fractions with AFase activity were pooled and further concentrated
with a 3500 Da cut-off dialysis membrane embedded in PEG20000. The concentrated active fractions
were further chromatographed on a Sephacryl S-100 column (1.6 cm × 95 cm) with 100 mM sodium
acetate buffer (pH 5.5) containing 150 mM NaCl at a flow rate of 20 mL/h. The active fractions were
pooled, lyophilized, and stored at −20 ◦C for further analysis.

2.6. Electrophoresis

The homogeneity and molar mass of the purified AFase were assessed by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a 5.0% (w/v) stacking gel and a 12.5% (w/v)
separating gel using a Mini-PROTEAN® 3 Cell system (Bio-Rad, USA) [22]. Proteins were stained with
Coomassie Brilliant Blue G-250 and destained in a solution containing 50% (v/v) methanol and 10%
(v/v) acetic acid overnight. A low molar mass protein marker (14.3–97.2 kDa, Takara, Dalian, China)
was used as the standard.

2.7. Protein Identification

The protein band with AFase activity was excised from the SDS-PAGE gel and digested with
trypsin as described by Bienvenut et al. [23]. Spectra were acquired on Ultraflex matrix-assisted laser
desorption/ionization two-stage time-of-flight tandem mass spectrometry (MALDI-TOF/TOF tandem
mass spectrometry) (Bruker Daltonik, Bremen, Germany), then processed by Flexanalysis software and
analyzed by Biotools software. An in-house Mascot server (http://www.matrixscience.com) was used
for database searches.

2.8. Substrate Specificity

The substrate specificity of the purified AFase towards different arabinose-containing substrates
was determined by measuring the reducing sugars in a reaction mixture. The reducing groups were
measured by the 3,5-dinitrosalicylic acid (DNS) method [24]. The reaction mixture contained 500 µL of
the purified AFase in 100 mM sodium acetate buffer (pH 5.5) and 500 µL of 1.0% (w/v) substrate solution
in the same buffer. Substrates included oat-spelt xylan, birchwood xylan, beechwood xylan, soluble
wheat arabinoxylan, insoluble wheat arabinoxylan, and arabinoxylo-oligosaccharide. The mixture
was incubated at 50 ◦C for 30 min, followed by the addition of 1.25 mL DNS reagent to terminate the
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reaction. After mixing well, the reaction mixture was heated for exactly 5 min in a boiling water bath
and the volume was made up to 6.25 mL with ultra-pure water. The catalytic activity was determined
by analyzing the reducing sugars liberated from different substrates at 540 nm. The highest activity is
defined as 100% and other activities are expressed as a percentage relative to the highest activity.

2.9. Hydrolytic Products Analysis

For hydrolytic products analysis, 1.0% (w/v) soluble or insoluble wheat arabinoxylan was digested
at 50 ◦C for 16 h. The reaction mixture (1.0 mL) contained 500 µL of the purified AFase (5.0 µg) in
100 mM sodium acetate buffer (pH 5.5) and 500 µL of substrate solution in the same buffer. The reaction
was terminated by boiling for 10 min. The released sugars in the reaction mixture were analyzed by Ion
Chromatography (ISC5000, Thermo Fisher Scientific, USA) fitted with a pulsed amperometric detector
and a CarboPac PA20 column (3 mm × 150 mm) with some modifications. The gradient elution was
performed as described in the literature [25]. The flow rate was 0.50 mL/min. Arabinose and xylose
were used as standards.

2.10. Mash Preparation with Supplemented AFase

The malt was first milled using a laboratory disc mill (Dezhijie, Beijing, China) at a fine grind
setting of 0.2 mm. Wort was prepared according to the Congress mash method outlined in the
Analytica-EBC [26]: Two hundred mL of water were mixed with 50 g of finely milled malt at 46 ◦C
in stirred metal beakers. After continually stirring for 30 min at 45 ◦C, the temperature of the mash
was increased to 70 ◦C at the rate of 1 ◦C/min for 25 min. More water (100 mL, 70 ◦C) was added.
The temperature was maintained at 70 ◦C for 1 h. The mash was then cooled to 20 ◦C. The weight of the
mash was adjusted to 450 g by the addition of water at 20 ◦C. To determine the effects of the purified
AFase on the viscosity and filtration rate of the wort, a dosage series of the enzyme (0–20 mU/g malt)
was added to the mash with Dan’er malt at the start of the mashing process.

At the end of the mashing, the filtration rate was determined, which was defined as the volume
read after 30 min of filtration through fluted filter paper (the first 100 mL filtrate was returned to the
funnel). The viscosity of wort was determined at 20 ◦C using a falling ball viscometer (Thermo Fisher
Scientific, Germany).

For the determination of the arabinoxylan polymer content of wort, absolute ethanol was added
at a final concentration of 65% (v/v) [27]. Then, the mixture was shaken vigorously and kept at 4 ◦C
overnight. The pellets were recovered by centrifugation for 20 min (8000× g, 4 ◦C) and redissolved
in ultra-pure water. The arabinoxylan polymer content in the solution was carried out according to
the phloroglucinol colorimetric method presented by Douglas [28], with some adaptations. Briefly,
0.1 mL of wort was mixed with 1.9 mL of ultra-pure water. Then 10 mL of the phloroglucinol reagent
was added. The mixture was heated in a boiling water bath for 25 min. After cooling to room
temperature, the volume in the test tube was adjusted to 25 mL with ultra-pure water. The arabinoxylan
concentration was calculated by reading the absorbances at 510 and 552 nm and comparing them with
the calibration curve, which was constructed with a stock solution of 100 mg/L D-(+)-xylose.

3. Results and Discussion

3.1. Enzyme Purification

As described in the materials and methods section, an AFase was purified to apparent
electrophoretic homogeneity from the culture filtrate of T. reesei CICC 41495. Protein content and
enzyme activity of each fraction were estimated at each step during the chromatography. The protein
content was monitored at 280 nm. For direct UV measurement at 280 nm, the protein solution alone was
used, without the addition of reagents, thus the measurements are quick. The AFase activity appeared
as a major peak at the void volume through ion-exchange chromatography on the DEAE-Sepharose
Fast Flow column, which is shown in Figure 1. Column fractions with AFase activity were pooled,
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concentrated, and further separated through gel-filtration chromatography on the Sephacryl S-100
column, and the elution profile is shown in Figure 2.
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Figure 2. Gel-filtration chromatography of AFase on Sephacryl S-100.

SDS-PAGE profile of each step during the purification is shown in Figure 3. The purified AFase
appeared to be a single protein band with a molar mass of 29.0 kDa in the SDS-PAGE gel.
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The protein band with AFase activity was exercised and identified as a GH62 AFase (Accession
number gi|589103163) (EC 3.2.1.55, termed as TrAbf62A in this paper) by MALDI-TOF/TOF tandem
mass spectrometry (Table S1). The predicted molar mass and isoelectric point of the enzyme were
34.9 kDa and 6.4, respectively.

The purification steps of TrAbf62A from the culture filtrate of T. reesei CICC 41,495 are summarized
in Table S2. The overall purification fold of TrAbf62A was 11.2, and the yield was 26.5%.

According to the similarities of the amino acid sequence, AFases are classified mainly into families
GH2, GH3, GH43, GH51, GH54, and GH62 [27]. The genome of T. reesei encodes five AFases (two
belonging to GH43, two belonging to GH54, and one belonging to GH62) [29–31]. Poutanen [32] first
reported an AFase purified from T. reesei by cation- and anion-exchange chromatography, which was
an enzyme with a molar mass of 53 kDa, isoelectric point of 7.5, and pH optimum of 4.0. The enzyme
preferred arabinoxylo-oligosaccharides produced by the endoxylanase and could release arabinose
from wheat straw and beet arabinan, but had no endoxylanase activity. An AFase with a molar mass of
35 kDa has also been reported to be fractionated from T. reesei. Pepsin treatment showed that the 35 kDa
AFase was a result from the proteolytic cleavage of the C-terminal region of the 53 kDa AFase [33].
However, the GH families of both AFases mentioned above are not clear. In this paper, only one AFase,
which belongs to GH62, has been purified and identified, which is consistent with previous results [18].
The family GH62 exclusively contains AFases secreted by fungi or bacteria [15]. Family GH62 AFase is
often not identified in the culture filtrate of T. reesei.

3.2. Substrate Specificity

The substrate specificity of an enzyme is an important property for its specific uses. The substrate
specificity of TrAbf62A towards arabinoxylan polymer and arabinoxylo-oligosaccharide is summarized
in Table 1.
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Table 1. Substrate specificity of TrAbf62.

Substrate (1.0%, w/v) Relative Activity (%) 1

arabinoxylo-oligosaccharide 100
Oat-spelt xylan 44.1 ± 0.3

Soluble wheat arabinoxylan 87.5 ± 0.6
Insoluble wheat arabinoxylan 7.8 ± 0.05

Birchwood xylan 0
Beechwood xylan 0

1 Values represent the mean ± SD (n = 3). The highest activity is defined as 100%, and the others are expressed as a
relative value to the highest activity.

From the relative activities towards different arabinose-containing substrates stated in Table 1,
TrAbf62A exhibited broad substrate specificity, but distinct differences were observed. TrAbf62A
exhibited maximum hydrolytic activity towards arabinoxylo-oligosaccharide. TrAbf62A also showed
considerable activity towards soluble wheat arabinoxylan, followed successively by oat-spelt xylan.
TrAbf62A showed lower activity towards insoluble wheat arabinoxylan under the experimental
conditions. The relative activity of TrAbf62A towards soluble wheat arabinoxylan was 11.2 times
higher than that towards insoluble wheat arabinoxylan. No activity was detected with beechwood and
birchwood xylans.

Although different arabinoxylans have the same linear backbone of the β-D-xylopyranosyl unit,
their solubility, substitution degree, and substitution position are diverse. The diversity of structure
and solubility between the arabinose-containing substrates used in this paper affects the relative
activities of TrAbf62A. About 10.0–12.5% of the β-D-xylopyranosyl residues in oat-spelt xylan are
mono-substituted by arabinofuranosyl residues at C-(O)-3 and di-substituted at the C-(O)-2 and C-(O)-3
positions [34]. Mono-substituted β-D-xylopyranosyl units account for 12–20% and di-substituted
β-D-xylopyranosyl units take up 15–30% in soluble wheat arabinoxylan, which are much higher than
that in oat-spelt xylan [35,36]. For insoluble wheat arabinoxylan, the substitution degree is higher
than that in soluble wheat arabinoxylan [37], but a lower activity of TrAbf62A towards insoluble
wheat arabinoxylan was observed. This can be explained by the less-soluble nature of insoluble wheat
arabinoxylan, which requires additional enzymes to make the arabinofuranosyl moieties accessible
for AFases. The results showed that birchwood xylan seemed resistant to the action of TrAbf62A.
Birchwood xylan is also partly insoluble and has the simplest structure and contains trace numbers of
substitution [38]. The structure and solubility of beechwood xylan are similar to birchwood xylan,
the activities of TrAbf62A towards them had little difference.

The substrate specificity illustrated the difference of TrAbf62A activity on arabinoxylan polymer
and arabinoxylo-oligosaccharide. Based on substrate specificity, AFases are classified into three
groups [39]: Group A AFases preferentially act on p-NPAF and arabinoxylo-oligosaccharides, and are
not active towards the branched arabinoxylan polymer; group B AFases are active on p-NPAF,
arabinoxylo-oligosaccharides, and branched arabinoxylan polymer, while group C AFases specifically
catalyze the hydrolysis of branched arabinoxylan, and are inactive on p-NPAF. The results above showed
that TrAbf62A catalyzed the hydrolysis of p-NPAF, arabinoxylo-oligosaccharide, and arabinofuranosyl
side-branched arabinoxylan. According to the above classification method, TrAbf62A was classified
into group B.

3.3. Hydrolytic Products Analysis

The hydrolytic products in the enzyme–substrate mixture of TrAbf62A with soluble wheat
arabinoxylan and insoluble wheat arabinoxylan were analyzed by ion chromatography (Figure 4 and
Figure S1, respectively).
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According to the chromatogram (Figure 4), TrAbf62A released both arabinose (retention time
5.9 min) and xylose (retention time 10.317 min) from insoluble wheat arabinoxylan, accounting for
77.6% and 22.4% of the total sugars, respectively. On the contrary, there are no obvious peaks in the
chromatogram (Figure S1). The chromatogram indicated that the sugar concentration in the reaction
mixture with insoluble wheat arabinoxylan was low. The low sugar concentration was most likely due
to the low activity of TrAbf62A on insoluble wheat arabinoxylan, which was consistent with the results
in Table 1.

The sugar profile confirmed that TrAbf62A could cleave the arabinofuranosyl residues from
β-D-xylopyranosyl units in branched arabinoxylan. GH62 AFases have been reported to have the
capacity of liberating arabinose from arabinoxylan polymers [40–43]. Surprisingly, the chromatography
profile also shows that TrAbf62A exhibited exoxylanase activity and released xylose from soluble
wheat arabinoxylan. Several AFases are reported to show multifunctional activities towards
arabinose-containing substrates. An AFase from radish seed (Raphanus sativus L.) has been reported to
attack soluble wheat arabinoxylan in an exocleaving manner to release xylose [44]. A GH51 AFase
from Alicyclobacillus sp. has also been reported to exhibit exoxylanase activity on soluble wheat
arabinoxylan and sugar beet arabinan [45]. Wood and Macrae [46] reported that a GH62 AFase
from Aspergillus awamori also showed the capacity to split off β-D-xylopyranosyl units from the main
chain of arabinoxylan. A dual-function AFase (ARA-I) is also present in malted barley [47]. ARA-I
hydrolyzes arabinoxylans at a low rate but plays an important role in the complete depolymerization
of arabinoxylans through its ability to hydrolyze arabinoxylo-oligosaccharides. This implicated that
there is an endogenous enzyme with similar function to TrAbf62A in the mash. The results provided
more details on the mode of action of TrAbf62A. TrAbf62A showed potential for the degradation of
soluble arabinoxylan in industrial biotechnology.

3.4. Supplementation of TrAbf62A during Mashing with Barley Malt

The efficient degradation of soluble arabinoxylan polymer in the mash during the beer brewing
process is highly desirable for lautering improvement.

The Dan’er barley (Hordeum vulgare L. cv. Dan’er) is a widely cultivated variety in the Jiangsu
Province of China. The characteristics of its commercial malt are listed in Table 2.
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Table 2. Characteristics of the commercial malted barley used in this manuscript.

Variable Value

Moisture (%) 4.4 ± 0.2
Color (EBC) 4.33 ± 0.14

Turbidity (EBC) 1.36 ± 0.03
Free amino nitrogen (mg/L) 182 ± 2

Extract (%) 79.1 ± 0.1
Total protein (%) 12.85 ± 0.21

Kolbach index (%) 44.6 ± 0.4
β-glucan (mg/L) 96 ± 3

Filtration rate (mL/30min) 150 ± 7
Arabinoxylan polymer content (mg/L) 303 ± 5

Friability (%) 74.2 ± 1.2
Viscosity (mPa·s) 1.51 ± 0.01

For most commercial malts used for beer production in China, the filtration rate of 150 mL/30 min
is low, and 180–200 mL/30 min is the expected value. The data in Table 2 show that the filtration
efficiency of Dan’er commercial malt was poor, with low β-glucan and high arabinoxylan polymer
content. This is different from the usual reason that the filtration deficiency of commercial malt is due
to low Kolbach index (KI) and high β-glucan content. Maltsters and brewers have been plagued by
this for years, and the commercial prospects of this domestic malt were poor; hence, TrAbf62A was
supplemented during the mashing process to try to solve this problem.

The effects of TrAbf62A supplementation on the arabinoxylan polymer content, viscosity, and
filtration rate during mashing are illustrated in Figure 5.
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filtration rate of wort.

The results in Figure 5 show that TrAbf62A supplementation improved the lautering performance
of the mash. When TrAbf62A was supplemented at a dosage of 12 mU/g of malt, the arabinoxylan
polymer content of wort decreased by 36.3%, compared with the control, from 303 mg/L to 128 mg/L.
At the same time, the viscosity reduced by 5.6%, from 1.51 mPa·s to 1.42 mPa·s, and the filtration rate
improved by 22.1%, from 150 mL/30 min to 183 mL/30 min. These indices changed little with the
further increase of the TrAbf62A dosage. TrAbf62A shows an applicable potential in improving the
lautering performance of barley malt during mashing. The Dan’er barley used in this paper is a widely
cultivated variety in the Jiangsu Province of China. However, the high content of arabinoxylan in this
variety causes filtration deficiency and makes it unusable. Supplementation of TrAbf62A increased the
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filtration rate of the Dan’er malt to near normal levels. This study provides a solution to overcome the
filterability deficiency of malted barley. The malted barley can be used to replace a certain proportion
of imported malted barley for beer production.

Arabinoxylan polymers precipitated with 65% ethanol from barley malt constituted of
5.1–7.1% mono-substituted β-D-xylopyranosyl units by arabinofuranosyl residues at the C-(O)-3
position, 5.1–6.8% mono-substituted at the C-(O)-2 position, and 24.8–28.0% di-substituted at
both C-(O)-2 and C-(O)-3 positions to the same β-D-xylopyranosyl unit [48]. This may be the
reason why the supplementation of TrAbf62A improved the lautering performance of the mash.
The arabinofuranosyl residues may sterically hinder the access of some xylanases to the backbone of
arabinoxylans [49,50]. As debranching enzymes, AFases remove the arabinofuranosyl residues linked
to the β-1,4-D-xylopyranosyl units to make xylanase more accessible to attack arabinoxylans, thus
promote the degradation of arabinoxylan polymers.

4. Conclusions

TrAbf62A was most active against soluble, highly substituted arabinoxylan. Hydrolytic product
analysis showed that TrAbf62A not only has the function of removing arabinofuranosyl residues from
β-D-xylopyranosyl units, but also exhibited exoxylanase activity towards soluble wheat arabinoxylan.
Supplementation of TrAbf62A during mashing decreased the arabinoxylan polymer content of wort, and
as a consequence, showed performance in viscosity reduction and filtration rate improvement. TrAbf62A
has the prominent applicable potential for lautering performance improvement during mashing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/3/356/s1,
Figure S1: Chromatography profiles of standards and the hydrolysates by TrAbf62A from soluble and insoluble
wheat arabinoxylans, Table S1: Information of the protein band with AFase activity, Table S2: Purification summary
of TrAbf62.
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