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Abstract
The lipid body (LB) formation in the host coral gastrodermal cell cytoplasm is a hallmark of the

coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosym-

biont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how

it is related to the lipid metabolism of the host and endosymbiont could provide direct insight

to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the

stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite
Symbiodinium populations, was examined by high performance liquid chromatography

(HPLC) and gas chromatography/mass spectrometry (GC/MS), and six major lipid species

were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and

phospholipids. Their concentrations differed significantly between host coral cells, LBs, and

Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral

and were particularly highly concentrated in LBs. Amongst the four species of WE, the mono-

ene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastro-

dermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species

were more similar, but not equal to, those of the host gastrodermal cells in which they were

located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given

the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that

a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in
hospite Symbiodinium populations were significantly distinct from those of the cultured Sym-
biodinium, potentially suggesting a host regulation effect that may be fundamental to lipid

metabolism in endosymbiotic associations involving clade C Symbiodinium.

PLOS ONE | DOI:10.1371/journal.pone.0132519 July 28, 2015 1 / 20

OPEN ACCESS

Citation: Chen H-K, Song S-N, Wang L-H, Mayfield
AB, Chen Y-J, Chen W-NU, et al. (2015) A
Compartmental Comparison of Major Lipid Species in
a Coral-Symbiodinium Endosymbiosis: Evidence that
the Coral Host Regulates Lipogenesis of Its Cytosolic
Lipid Bodies. PLoS ONE 10(7): e0132519.
doi:10.1371/journal.pone.0132519

Editor: David William Pond, Scottish Association for
Marine Science, UNITED KINGDOM

Received: November 2, 2014

Accepted: June 15, 2015

Published: July 28, 2015

Copyright: © 2015 Chen et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was funded by a grant from the
National Science Council of Taiwan (NSC 101-2311-
B-291-002-MY3 and NSC 102-2923-B-291-001-MY2
to CSC) as well as intramural funds from NMMBA.
ABM was funded by an international postdoctoral
research fellowship from the Khaled bin Sultan Living
Oceans Foundation. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0132519&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Hermatypic corals have long been shown to perform endosymbiotic and mutually-benefit asso-
ciation with the dinoflagellate Symbiodinium (i.e. the endosymbiont) in the host gastrodermal
cells [1, 2]. Nevertheless, the dual-compartmental metabolism between the host gastrodermal
cells and the dinoflagellate populations residing within them has been greatly understudied.
Although it is evident that the coral hosts acquire some metabolic capabilities via this symbio-
sis, such as photosynthesis and essential amino acid synthesis [3], the molecular regulation of
these acquisitions remains undescribed.

Patton et al. provided the first evidence to show that Symbiodinium primarily performed
the role of lipid synthesis in corals via the metabolism of host-derived acetate [4]. It was also
postulated that Symbiodinium are likely to synthesize fatty acids (FA) from photosynthate and
return these lipids to their hosts in the form of wax esters (WE) and triacylglycerides (TAG).
This was confirmed later on that lipids in the host gastrodermal cells are mainly WE (22–49%)
and triglycerides (18–37%) [5–6]. How the lipids actually flow between compartments is cur-
rently unclear, though an assessment of unique features of endosymbiotic coral gastrodermal
cells known as lipid bodies (LB) may help to elucidate this matter.

Since the biogenesis of host coral intracellular LBs is dependent upon the presence of Sym-
biodinium, these oil droplet-like entities have led to several studies aiming to understand the
endosymbiotic mechanism in corals [7–9]. Muscatine et al. [10] were the first to note that Sym-
biodinium secrete “lipid droplets” (from henceforth referred to as LBs) in hospite. In other
organisms, LBs are formed from neutral lipids that are synthesized between the leaflets of the
membranes of the endoplasmic reticulum (ER), and mature LBs later bud from the ER to form
independent organelles containing a monolayer of phospholipids with a unique FA composi-
tion [11]. In the hermatypic coral Euphyllia glabrescens, proteomic and morphological exami-
nations [8] indicated that, in contrast to Muscatine et al. [10], both Symbiodinium and ER in
coral gastrodermal cells, might involve in LB biogenesis. Moreover, coral LB density, growth,
composition, and ultrastructure all demonstrate diel rhythmicity [9]. As a consequence, the LB
formation in coral host seems to be not only related to lipid flow in the host-endosymbiont
compartments, but also reflect the endosymbiotic status.

Animals lack the enzymes required to introduce double bonds into fatty acids beyond the
Δ9 position, which is necessary for the n-3 and n-6 pathways [12]. Papina et al. [13] found FA
specific to Symbiodinium (e.g., 18:4n-3, 22:5n-3, and 22:6n-3) in the host gastrodermal cells,
suggesting that Symbiodinium not only provide their coral hosts with saturated FA, but also
with a diverse array of polyunsaturated FA (PUFA). The translocation of FA from the Symbio-
dinium populations to their coral hosts dramatically influences the hosts’ FA pools [14], and
the composition of these pools could be a diagnostic indicator of coral health. This hypothesis
was confirmed by verifying that FA composition changes during bleaching, in which Symbiodi-
nium are lost and harmful bacterial densities oftentimes increase [15].

In contrast, less is known about how the host coral modifies the lipid composition and
metabolism of its in hospite Symbiodinium. In the present study using HPLC and GC/MS, we
purified and identified FA pools from three different cellular compartments of the coral E.
glabrescens: the host coral gastrodermal cell cytoplasm, the host coral LBs, and the in hospite
Symbiodinium populations. It was hypothesized that the host coral, rather than the endosymbi-
onts, actually contributes the majority of the lipids to their gastrodermal LBs. By looking at
lipid species distribution and concentration in individual fractions of the coral holobiont, the
ultimate compartment of origin of the lipid constituents of the host cell gastrodermal LBs
could be verified.
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Materials and Methods

Coral collection/maintenance and Symbiodinium culture
Colonies of E. glabrescens were collected by SCUBA divers from the inlet of Taiwan’s third
nuclear power plant (21°57.376'N, 120°45.291'E) at depths of 3–8 m in Nanwan Bay, the south-
ernmost embayment in the mainland region of the country. The coral collection was approved
by the Kenting National Park Management Office in Taiwan. Colonies were placed in an
upright position in a 4 kl outdoor tank with flow-through seawater (exchange rate = 80 L/h)
and maintained under a natural photoperiod (12L:12D) with additional air circulation in the
husbandry center of the National Museum of Marine Biology and Aquarium (NMMBA). A
microprocessor-controlled cooler (First FC-45, Aquatech, Kaohsiung, Taiwan) was connected
to the tank, and the temperature was maintained at 26.5±1°C (standard deviation). Colonies
were exposed to natural, though partially shaded, light. Ten tentacles (stretched length of ~3
cm) were amputated from polyps of eight E. glabrescens colonies using curved surgical scissors,
randomly mixed in a seawater table, sorted into four groups of 20 tentacles to serve as the four
biological replicates for downstream analyses, and then transferred to the laboratory and
washed with filtered seawater (FSW) for further use.

The cultured Symbiodinium (clade C) used in this study was purchased from the Center for
Culture of Marine Phytoplankton (strain CCMP 2466; West Boothbay Harbor, ME, USA). The
cells were cultivated in 2% Guillard’s f/2 medium [16] in artificial seawater (ASW) containing
100 U mL−1 penicillin and 100 μg mL−1 streptomycin at RT under a photosynthetically active
radiation (PAR) level of 40 μmol m−2 s−1 across a 12L:12D cycle in a Model LTI-613 growth
chamber (Taiwan Double Eagle, Co., Ltd., Taipei, Taiwan).

Tissue fractionation to separate three cellular compartments (host
gastrodermal cell lysates, host LBs, and in hospite Symbiodinium)

The gastrodermal separation and homogenization. Eighty tentacles of E. glabrescens
were amputated and collected. Tentacle tips were removed using microscissors (Spring Type,
AESCULAP, Center Valley, PA, USA) to prevent interference from the nematocytes during the
experimental process. The gastroderms were then separated from the epiderms by 3% N-acet-
ylcysteine (pH 8.2) treatment as previously described [16]. After subsequent incubation in 2
mL of ASW containing 1X complete protease inhibitor cocktail (Roche, Madison, WI, USA),
the gastroderms were homogenized on ice with ten passes of a 7-mL glass tissue grinder (Kim-
ble/Kontes, Vineland, NJ, USA). The crude homogenate was then passed through a syringe
(23G×1 (1/4)", Top Surgical, Taiwan) 15 times, to lyse gastrodermal cells and free intact host
LBs and Symbiodinium into the solution. The homogenates were then centrifuged (500×g at
4°C for 5 min) to separate the LB- and host cell lysate-containing supernatant from the pelleted
Symbiodinium with host cell debris.

Purification of in hospite Symbiodinium and host LB. The pellets containing Symbiodi-
nium and decries of gastrodermal cells were separated by discontinuous sucrose gradient cen-
trifugation (0%-25%-40%-50% sucrose, 10,000×g at 4°C for 5 min). Symbiodinium were
collected from the interfaces of 40%-50% and 25%-40%. The presence of in hospite Symbiodi-
nium was further confirmed via light microscopy. The cells were then washed twice with 0.5
mL ASW, centrifuged at 500×g (4°C for 5 min), and re-suspended in ASW at an approximate
concentration of 6×105 cells�mL-1. As an experimental control, cultured Symbiodiniummain-
tained at the exponential growth stage (6×105 cells�mL-1) were also collected from each of four
160-mL cultivation bottles.
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LBs were purified by two stepwise sucrose gradient ultracentrifugations (0.4–0.66 M and
0–0.36 M). First, the LB-containing supernatants (~1.8 mL) from the homogenization step
were mixed with ice-cold 1.2 M sucrose (2.2 mL in PBS containing 1X protease inhibitor cock-
tail, pH 7.5) in a 12-mL ultracentrifugation tube (UltraClean tube, Beckman Coulter, Brea, CA,
USA). The top of the solution was then overlaid with cold 0.4 M sucrose (6 mL in PBS with 1X
protease inhibitor cocktail, pH 7.5). After centrifugation at 150,000×g at 4°C for 60 min using a
swing rotor SW-41, Optima L-100 XP Ultracentrifuge (Beckman Coulter), the top layer con-
taining LBs was collected and deemed the ‘‘buoyant crude LBs” fraction (1.6 mL). The buoyant
crude LBs were then incubated with cold 0.33 M sucrose (2.4 mL in PBS plus 1X protease
inhibitor cocktail) containing Tween-20 (final concentration = 0.04%; Sigma-Aldrich) at 4°C
for 10 min to remove cellular materials attached to the outside of the LBs. Afterwards, they
were transferred to a new ultracentrifugation tube and overlaid with 6 mL of cold PBS (plus 1X
protease inhibitor cocktail) for the second stepwise sucrose gradient ultracentrifugation (0–
0.36 M top-bottom; 150,000×g at 4°C for 30 min). The top layer containing LBs was collected
and deemed the ‘‘buoyant, detergent-washed LBs.”

Purification of host gastrodermal cell lysates. The gastrodermal cell lysates were col-
lected from two fractions. One fraction was collecgted from the 0%-25% interface of the dis-
continuous sucrose gradient centrifugation step (i.e. 0%-25%-40%-50% sucrose, 10,000×g at
4°C for 5 min). The second fraction was from the 8.4 mL of solution that remained after
removing the buoyant crude LBs fraction (1.6 mL) from the first sucrose gradient ultracentrifu-
gation (0.4–0.66 M, 150,000×g at 4°C for 60 min).

The purity assessment for gastrodermal cell lysates, host LBs, and in
hospite Symbiodinium
To evaluate the purity of the gastrodermal cell lysates, LBs, and in hospite Symbiodinium frac-
tions, analyses of western blotting were conducted to demonstrate an absence of contamination
of host and Symbiodinium proteins from the non-targeted fractions (verified by Western blot-
ting). Purity was verified as described previously [8], but with several modifications. First, the
lysed host gastrodermal cells, LBs, and Symbiodinium (both in hospite and cultured) were deli-
pidated according to the procedure described by Mastro and Hall [17]. Briefly, a ‘‘delipidation
solution” (tributyl phosphate:acetone:methanol, 1:12:1, v/v/v) was added to the collected frac-
tions at a 14:1 volume ratio on ice, followed by incubation at -20°C overnight. Precipitated pro-
teins were then collected (3,202×g for 15 min at 4°C), washed sequentially with ice-cold
methanol, tributyl phosphate, and acetone (30 min at 4°C for each wash), and vacuum-dried
(5,000×g) at RT for 10–20 min. The precipitated proteins were then re-suspended in 1X
SDS-PAGE sample buffer (62.5 mM Tris-HCl [pH 6.8], 2% SDS, 10% glycerol, and 10 mM
DTT) and quantified with the 2-D Quant Kit (GE Healthcare, Piscataway, NJ, USA) according
to the manufacturer’s recommendations.

Ten micrograms (10 μg) of each protein sample (n = 3 for each of the four fractions [host
gastrodermal cell lysate, LBs, in hospite, and cultured Symbiodinium]) were subjected to 12%
SDS-PAGE using a Bio-Rad (Hercules, CA, USA) electrophoresis unit (Mini PROTEAN 3 cell)
[18]. Afterwards, the SDS-PAGE gel was equilibrated in Towbin buffer (25 mM Tris, 192 mM
glycine, 20%MeOH, and 0.1% SDS, pH 8.0 [19]) and then blotted onto PVDF membranes
(immobilon-PSQ 0.45 mm; Millipore, Germany) using the Bio-Rad Transblot apparatus (100
V for 2 h at 4°C). The membranes were incubated in blocking buffer (5% skim milk, 0.1%
Tween-20, 100 mM Tris [pH 7.6], 150 mM NaCl) at RT for 1 h, followed by incubation with
an antibody cocktail of rabbit anti-ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco)
large subunit (1:2,000 dilution; Cat. AS0037, Agrisera, Vannas, Sweden; the marker for
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presence of Symbiodinium proteins), mouse anti-actin (1:10,000 dilution; Cat. MAB1501,
Millipore; the marker for presence of host coral and LB proteins, sensu [8]), and mouse anti-
ADP-ribosylation factor (ARF) (1:500 dilution; Cat. Ab2806, Abcam, Cambridge, MA, USA;
marker for host gastrodermal cell proteins only) in TBST buffer (0.1% Tween-20, 100 mM Tris
[pH 7.6] and 150 mMNaCl) at 4°C overnight. The membranes were then washed five times
with TBST buffer for 10 min each and incubated with HRP-conjugated goat anti-rabbit and
anti-mouse IgGs (Millipore) in TBST buffer (1:5,000 dilution for each secondary antibody).
The membranes were subsequently washed with TBST buffer, and the resulting proteins were
visualized using the SuperSignal West Pico Chemiluminescent substrate kit (Cat. 34080,
Thermo-Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
recommendations.

Lipid analyses
Total lipids from the three collected fractions and cultured Symbiodinium (n = 4 for each of the
four treatments/compartments) were first extracted by the Bligh and Dyer procedure [20]. The
extracted lipids were then analyzed by an HPLC instrument equipped with an evaporative light
scattering detector (HPLC-ELSD) [21]. A Hitachi Model L7100 HPLC pump equipped with an
auto-sampler (L7200, Hitachi, Japan) was used with a Sedex 80 ELSD (Sedere, France). The
drift-tube temperature was maintained at 60°C, and the flow-rate of the nebulizer gas (nitro-
gen) was 2.5 kg/cm2. The detector response was quantified by electronic integration. Solvents
were de-aerated with nitrogen gas. A column of YMC-PVA-SIL (10063 mm i.d.; 5 mm parti-
cles) was obtained from Hichrom Ltd. (Reading, UK).

The first solvent system individually fractionated seven class of lipids (a mixture of SE/WE,
TAG, Col, FFA, phosphatidylethanolamine [PE], phosphatidylcholine [PC], and lyso-phos-
phatidylcholine [lyso-PC]) by retention time (ReT). This protocol required a quaternary gradi-
ent elution scheme consisting of n-hexane (Merck, Germany): petroleum ether (Merck) (2:8 v/
v; solvent A), n-hexane (Merck): petroleum ether (Merck) (8:2 v/v; solvent B), propan-2-ol
(Merck): acetonitrile (Merck): butan-2-one (Merck) (7:2:1 v/v/v; solvent C), and propan-2-ol:
acetonitrile: butan-2-one: methanol (Merck): water: N-ethylmorpholine (Sigma-Aldrich, MO,
USA): acetic acid (Merck) (56:14:7.2:14:8.4:0.42:0.15 v/v; solvent D) with the gradient elution
program described in S1 Table.

Eight major lipid standards could be clearly separated and analyzed by this HPLC analysis,
including WE (arachidyl dodecanoate, Sigma-Aldrich), SE (cholosteryl oleate, Sigma-Aldrich),
an SE/WE mixture (ReT = 1.8 min), TAG (tricaprin; ReT = 5.2 min, Sigma-Aldrich), Col
(“plant-derived;” ReT = 10.9 min, Avanti Polar Lipids, Inc., AL, USA), FFA (linoleic acid;
ReT = 16.5 min, Sigma-Aldrich), PE (ReT = 31.9 min, Avanti Polar Lipids, Inc.), and PC
(ReT = 35.3 min, Avanti Polar Lipids, Inc.), and Lyso-PC (18:1 Lyso-PC [1-oleoyl-2-hydroxy-
sn-glycero-3-phosphocholine], ReT = 40.9 min, Avanti Polar Lipids, Inc.).

An SE/WE mixture was collected from first solvent system, and the second solvent system
separated these two species by ReT. This step included a binary gradient elution scheme con-
sisting of n-hexane (Merck): petroleum ether (Merck) (2:8 v/v; solvent A) and n-hexane
(Merck): petroleum ether (Merck) (8:2 v/v; solvent B) with the gradient elution program
described in S2 Table. The WE (ReT = 3.2 min) and SE (ReT = 4.3 min) lipid standards
described above could be clearly separated and analyzed by this system.

Consequently, the integrated areas of the HPLC profiles were plotted as a function of lipid
concentration, and 4–5 concentrations of each standard were used for each of the nine lipid
species targeted herein: WE (1.95, 3.91, 7.81, 15.63, and 31.25 ng/μl), SE (1.95, 3.91, 7.81, 15.63,
and 31.25 ng/μl), TAG (7.81, 15.63, 31.25, 62.5, and 125 ng/μl), Col (31.25, 62.5, 125, 250, and
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500 ng/μl), FFA (31.25, 62.5, 125, 250, and 500 ng/μl), PE (62.5, 125, 250, and 500 ng/μl), PC
(62.5, 125, 250, and 500 ng/μl), and Lyso-PC (62.5, 125, 250, and 500 ng/μl). Lipid species con-
centrations in the analyzed coral samples were then inferred from their integrated areas by
solving for the best-fit linear regression equation: γ = aX+b, where γ = lipid concentration and
X = integrated area.

Gas chromatography/mass spectrometry (GC/MS)
In order to examine compositional differences in individual lipid species, which could provide
direct identification of the acyl pools, FA moieties of specific lipid species were determined by
lipid derivatization followed by GC/MS. The same lipid samples used above for HPLC analyses
were converted to their constituent fatty acid methyl esters (FAME) by refluxing in 5 mL of a
reagent consisting of concentrated sulphuric acid-toluene-methanol (1:10:20 v/v/v) and an
internal standard (nervonic acid, Sigma-Aldrich) for 2 h at 90°C according to a published
method [22]. After cooling, 5 mL of 5% sodium chloride and 5 mL of hexane were added. The
hexane layer was recovered and added to 4 mL of 2% potassium bicarbonate. Finally, the sam-
ples were dried over anhydrous sodium sulfate, and the FAME were ready for injection.

FAME were analyzed on a gas chromatograph (GC, Varian CP-3800) and a mass spectrom-
eter (Varian 320 MS) operated in full scan mode (scan range from 100 to 450 m/z). FA peaks
were quantitatively and qualitatively analyzed using a 37-component FAME standard (Supelco,
Sigma-Aldrich), stearidonic acid methyl ester (18:4n-3, Sigma-Aldrich), cis-7,10,13,16-docosa-
tetraenoic acid methyl ester (22:4n-6, Sigma-Aldrich) and all-cis-7,10,13,16,19-docosapentae-
noic acid methyl ester (22:5n-3, Sigma-Aldrich). WE peaks were identified using palmityl
myristate (14:0/16:0), palmitate (16:0/16:0), oleate (18:1/16:0), and stearate (18:0/16:0) stan-
dards (LGC Standards, UK). The column for FAME was a CP-Sil88 capillary column of 20-m
length and 0.25 mm i.d., and the stationary phase had a film thickness of 0.2 μm (Agilent Tech-
nologies, Inc., Santa Clara, USA). The column for WE was a VF-5ms capillary column (30 m
length × 0.25 mm i.d., Agilent Technologies, Inc., Santa Clara, USA), and the stationary phase
had a film thickness of 0.25 μm. Carbon dioxide was used as the carrier gas at a flow rate of 0.8
mL�min-1. The temperature program was as follows: a CP-Sil88 column (for FMAE deriva-
tives) was used at 50°C for 1 min, 50–200°C at 8°C min-1 for 5 min, 200–230°C at 20°C min-1,
and a VF-5ms column (for WE) was used at 40°C for 1 min, 40–300°C at 25°C min-1 for 15
min, and 300–320°C at 2°C min-1 for 5 min. ReT data and mass spectra were compared against
the NIST02 library (National Institute of Standards and Technology, Gaithersburg, MD, USA)
to identify FA. Saturn GC/MSWorkstation (ver. 6.9.3) software (Varian) was used to visualize
spectra, integrate areas under peaks, and search the library. Peaks of the FA were identified,
and the qantity of the individual FA species were calculated from a standard curve of five dilu-
tions of the standards (FAME-37: 50, 100, 200, 400, and 800 ng/μl, WE standards: 3.13, 6.25,
12.5, 25, and 50 ng/μl) in an analogous matter as for the HPLC-based analyses. Concentrations
of individual FA species were normalized with extracted sample proteins (μg). The relative pro-
tein ratio for a host gastrodermal cell/Symbiodinium cell/LB is ~5:5:1.

Statistical analysis
All statistical analyses were performed using the Statistical Package for the Social Sciences
(SPSS ver. 17.0, IBM, Armonk, NY, USA). The results were expressed as mean±SD (standard
deviation), and tested for normality with Shapiro–Wilk’s test. In order to determine the effect
of compartment (host gastrodermal cells, LBs, in hospite Symbiodinium, and cultured Symbio-
dinium), data were analyzed using Kruskal-Wallis tests given their tendency to lack normality,
and Mann-Whitney U tests were used to determined individual mean differences; p<0.05 were
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considered to represent significant in each case. To portray correlations between FA moieties
(ng/μg protein) in individual lipid species among host gastrodermal cells, LBs, and Symbiodi-
nium and to evaluate the distribution of FAs in the samples, principal components analysis
(PCA) was used.

Results

Methodological quality control and inter-compartmental lipid differences
Under DIC microscopy, LBs were shown to be opaque globules with an average diameter of
~3.5 μmwhile still within the gastroderm (Fig 1A). The exact location of LBs inside the symbi-
otic gastrodermal cell (SGC) is shown in the corresponding inset of Fig 1A, which represents a
typical SGC. After gastrodermal separation, LBs were purified and separated from host gastro-
dermal cells and Symbiodinium (sensu Fig 1 and [8]). The purities of the separated fractions
were assessed using antibodies specific for marker proteins for each compartment: rubisco for
in hospite and cultured Symbiodinium (Fig 1B), animal actin for LBs and host cells, and ARF
for the host cells only (Fig 1C). The detergent-washed LBs represent the pure LBs, as they
expressed only an actin with a MW of 43 kDa (Fig 1C). In contrast, the host gastrodermal cell
fraction contained a characteristic actin doublet and the ARF protein. Symbiodinium fractions

Fig 1. (A) Microscopic images of tentacle paraffin sections. Both in hospite Symbiodinium (S) and LBs
(indicated by blank arrows) are visible in the gastroderm and an isolated symbiotic gastroderm cell
(see the inset). (B) Cultured Symbiodinium. Scale bar, 10 μm. (C) The protein profiles and purity of
LBs, host gastrodermal cell lysates (“host”), in hospite Symbiodinium (“Sym.”), and cultured
Symbiodinium (“Cul.”) by SDS-PAGE and western blot examination. Arf, ADP-ribosylation factor; Act,
actin; Rbc, rubisco.

doi:10.1371/journal.pone.0132519.g001
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were not associated with host or LB marker proteins and only expressed Symbiodinium rubisco
(Fig 1C).

Lipid species of purified LBs, host gastrodermal cells, and Symbiodinium (both cultured and
in hospite) were quantified by HPLC (Fig 2). There were six major lipid species in the host
cells, including WE, SE, Col, TAG, FFA, and PL. WE were only present in the host fractions
(i.e., the host gastrodermal cells and host-derived LBs) and were highly concentrated in the LBs
(36.4±9.0 ng/μg protein versus 15.0±1.8 ng/μg protein in host gastrodermal cells). WE were
not detected in in hospite or cultured Symbiodinium. On the other hand, higher concentrations
of SE were found in in hospite (26.3±7.0 ng/μg protein) and cultured Symbiodinium (19.2±4.9
ng/μg protein) relative to the host-derived fractions. Although Col concentrations were higher
in host gastrodermal cells (8.8±0.7 ng/μg protein) than in in hospite and cultured Symbiodi-
nium (3.8±1.3 and 5.3±1.9 ng/μg protein, respectively), no Col were measured in LBs. TAG,
FFA, and PL were widely distributed in all fractions examined and were significantly concen-
trated in LBs (TAG: 43.8±10.7 ng/μg protein) and in hospite Symbiodinium cells (FFA: 38.1
±10.4 ng/μg protein; PL: 35.8±9.6 ng/μg protein). Finally, the concentrations of all lipid species
were higher in hospite versus cultured Symbiodinium (Fig 2) when normalized to total protein.

Comparison of acyl chain concentrations in total lipid pools
The differences in the concentrations of lipid acyl chains between host gastrodermal cells, LBs,
in hospite Symbiodinium, and cultured Symbiodinium are shown in Table 1. LBs possessed
higher concentrations of 16:0 and 18:0 relative to host gastrodermal cells, in hospite Symbiodi-
nium, and cultured Symbiodinium. Furthermore, the FA 20:0, 20:3n-6, 22:4n-6, and 20:4n-6
were only detected in LBs and coral host gastrodermal cells. LBs and in hospite Symbiodinium
also contained 16:1n-7, which was undetectable in the host gastrodermal cells. The in hospite
and cultured Symbiodinium were characterized by higher concentrations of 20:5n-3 than LBs
and host gastrodermal cells. Finally the acyl chain 18:3n-6 was the most abundant lipid species
in in hospite Symbiodinium.

Fig 2. Concentrations of lipids in coral host gastrodermal cells (“host,” black columns), lipid bodies (“LBs”, dark gray columns), in hospite
Symbiodinium (“Sym.”, light gray columns), and cultured Symbiodinium (“Cul.”, white columns). The full names of the individual lipid species can be
found in the text. Values (mean±SD, n = 4) with different superscripts within a lipid species signify significant differences in concentrations between the four
fractions (MannWhitney post-hoc U tests, p<0.05). When a column is not depicted, the respective lipid was not detected.

doi:10.1371/journal.pone.0132519.g002
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Comparison of WE acyl chains
As shown in Fig 2, WE were present only in host gastrodermal cells and LBs, and a total of four
species of WE were identified with GC/MS (S3 Table and Fig 3B). LBs contained significantly
higher concentrations of R = C14/R' = C16 (6.7±1.0 ng/μg protein), R = C18/R' = C16 (12.3
±1.7 ng/μg protein), and R = C16/R' = C16 (20.0±2.7 ng/μg protein) in comparison to the host
gastrodermal cells from which they were isolated. Furthermore, LBs contained high concentra-
tions of R = C18:1/R' = C16 (13.4±3.4 ng/μg protein), which was undetectable in the host cells.

As shown in Fig 3B, PCA also demonstrated a separation of WE between LBs and gastroder-
mal cells. PC1 explained 97.2% of the variability, and PC2 explained 2.1%. The PC1 scores dis-
criminated host gastrodermal cells, whose higher R = C16/R' = C16 concentrations contributed
most significantly to the positive loading factors, from LBs, whose negative loading scores were
reflective of a higher content of R = C18:1/R' = C16.

Comparison of SE acyl chains
As shown in Fig 2, SE were measured at significantly higher concentrations in in hospite Sym-
biodinium (26.3±7.0 ng/μg protein) in comparison to host gastrodermal cells (8.5±0.3 ng/μg
protein), LBs (9.8±2.4 ng/μg protein), and cultured Symbiodinium (19.2±4.9 ng/μg protein).
PCA revealed that SE acyl chains of LBs and host gastrodermal cells were significantly distinct
from those of in hospite and cultured Symbiodinium (Fig 3C). The concentration and

Table 1. Concentrations of fatty acid acyl chains from host coral gastrodermal cells, LBs, in hospite Symbiodinium, and cultured Symbiodinium.

Acyl chain concentration (ng/μg protein) χ2 value p value

Host gastrodermal cells LBs in hospite Symbiodinium Cultured Symbiodinium

14:0 3.1 ± 1.9b 3.9 ± 1.2b 10.9 ± 1.2a 4.5 ± 1.2b 9.02 *

16:0 19.7 ± 1.2c 54.9 ± 4.3a 46.7 ± 1.2b 16.0 ± 1.4c 14.12 ***

18:0 18.9 ± 0.5b 33.5 ± 2.9a 34.4 ± 2.9a 6.1 ± 1.3c 12.90 ***

20:0 1.2 ± 0.6a 0.9 ± 0.3a – – 13.11 ***

22:0 2.1 ± 0.7a – 4.1 ± 1.0a – 14.12 ***

16:1 n-7 – 2.4 ± 0.5a 2.1 ± 0.8a 2.5 ± 0.4a 8.80 *

20:2 n-9 0.6 ± 0.3a – 1.4 ± 0.2a – 14.50 ***

22:1 n-9 0.3 ± 0.1c 4.1 ± 1.1a 1.2 ± 0.2b – 14.33 ***

18:1 n-9 1.5 ± 0.1c 12.7 ± 2.4a 4.0 ± 0.5b 0.3 ± 0.1d 14.12 ***

18:2 n-6 6.0 ± 0.9a 2.5 ± 0.5c 4.0 ± 0.5b 3.4 ± 0.4bc 13.13 ***

18:3 n-6 1.9 ± 0.1c 5.1 ± 1.3b 29.7 ± 1.1a 0.2 ± 0.1d 14.12 ***

20:3 n-6 1.4 ± 0.2b 4.6 ± 0.8a – – 14.50 ***

20:4 n-6 10.0 ± 3.3a 6.9 ± 1.9a – – 13.52 ***

22:4 n-6 3.5 ± 0.7a 1.5 ± 0.4b – – 14.50 ***

18:4 n-3 0.2 ± 0.1c 0.3 ± 0.1c 5.0 ± 0.2b 8.0 ± 0.7a 13.50 ***

20:5 n-3 1.3 ± 0.1c 1.5 ± 0.7c 16.5 ± 2.2b 22.0 ± 1.7a 12.71 **

22:6 n-3 4.7 ± 1.7b 10.7 ± 2.6a 14.8 ± 2.0a 4.1 ± 0.9b 13.50 ***

Data were analyzed using Kruskal-Wallis tests to determine the effect of compartment for each of 15 lipid species

*p<0.05

** p<0.01
***p<0.005.

Letters adjacent to values (mean±SD) represent statistically significant differences across compartments within a lipid species, as determined by Mann-

Whitney post-hoc U tests (p<0.05).
“—” = not detected.

doi:10.1371/journal.pone.0132519.t001
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composition of SE acyl chains differed significantly between in hospite and cultured Symbiodi-
nium, as well (Fig 3C and S4 Table). In particular, according to the positive eigenvector for
PC1, the cultured Symbiodinium possessed higher concentrations of 20:5n-3 (7.1±0.1 ng/μg
protein) and 22:6n-3 (4.7±0.4 ng/μg protein) than LBs (0 and 0.4±0.2 ng/μg protein, respec-
tively), host gastrodermal cells (0.3±0.1 and 0.5±0.3 ng/μg protein, respectively), and in hospite
Symbiodinium (1.0±0.1 and 0.8±0.1 ng/μg protein, respectively). The fatty acid 18:3n-6 was
only detected in in hospite Symbiodinium (4.4±1.5 ng/μg protein) and contributed to the nega-
tive eigenvector of PC2; it therefore enabled the separation of in hospite Symbiodinium, LBs,
and coral host gastrodermal cells.

Comparison of TAG acyl chains
As shown in Fig 2, TAG were the most abundant lipid species in both host gastrodermal cells
and LBs. Fig 3D depicts the distributions of the correlations/concentrations along the two prin-
cipal components (79.0% and 13.8%). Although TAG acyl chain pools of host gastrodermal
cells were discernible, they overlapped significantly with the other two coral-derived fractions
(i.e. LBs and in hospite Symbiodinium). The main differences in PC2 scores were observed for
the species 18:0, 18:3n-6, and 20:5n-3, which were more concentrated in in hospite Symbiodi-
nium than host coral gastrodermal cells and LBs. In contrast, the latter two cellular fractions
tended to have higher concentrations of 20:3n-6, 22:6n-3, and 18:1n-9, and this allowed them
to be distinguished from the in hospite Symbiodinium populations.

Moreover, cultured Symbiodinium could be readily distinguished from the three coral-
derived fractions (see the difference in PC1 scores in Fig 3D). Along PC1, the acyl chain pro-
files of cultured Symbiodinium were clearly separated from those of coral host gastrodermal
cells, LBs and in hospite Symbiodinium. The cultured Symbiodinium were characterized by a
higher concentration of 16:0 (3.7±0.1 ng/μg protein) and a lower concentration of 18:1n-9
(0.1±0.0 ng/μg protein) relative to all other fractions (see also S5 Table). The opposite trend
was observed for in hospite Symbiodinium, LBs, and host coral gastrodermal cells, which pos-
sessed higher concentrations of 18:0, 18:1n-9, 18:3n-6, 20:3n-6, and 22:6n-3 (see S5 Table).

Comparison of FFA acyl chains
FFA were the most abundant lipid species in in hospite Symbiodinium samples (38.1±10.4 ng/
μg protein), and FFA concentrations were significantly lower in LBs (26.8±7.5 ng/μg protein),
cultured Symbiodinium (28.3±7.2 ng/μg protein), and host coral gastrodermal cells (18.8±0.6
ng/μg protein) (see Fig 2). Differences in the FFA profiles were better visualized by PCA (Fig
3E); the score plot explained 94.4% of the total variation present in the FA dataset, with PC1
accounting for 64.3% of the variation and PC2 accounting for 30.1%. For the in hospite Symbio-
dinium samples, 18:3n-6 was the most abundant FFA species (9.9±2.6 ng/μg protein, S6
Table). The acyl chains 18:0 and 20:4n-6 contributed the most negative scores for LBs and host
gastrodermal cells and distinguished them from the in hospite Symbiodinium. The bi-plot dif-
ferentiated LBs and host gastrodermal cells from in hospite Symbiodinium and cultured Sym-
biodinium. The acyl chains 16:0 (11.8±1.2 ng/μg protein across all four treatments), 18:4n-3
(5.9±0.6 ng/μg protein across all four treatments), and 20:5n-3 (2.9±0.9 ng/μg protein across
all four treatments) were considered to serve as chemotaxonomic biomarkers for the FFA of
cultured Symbiodinium in the PCA plot.

Fig 3. Principal components analysis of fatty acid moieties of what follows. (A) total lipids, (B) wax esters (WE), (C) sterol esters (SE), (D)
triacylglycerols (TAG), (E) free fatty acids (FFA), and (F) phospholipids (PL) in coral host gastrodermal cells (“host”, solid squares), lipid bodies (“LBs”, solid
circles), in hospite Symbiodinium (“Sym.”, solid triangles), and cultured Symbiodinium (“Cul.”, hollow triangles). Values represent mean±SD (n = 4).

doi:10.1371/journal.pone.0132519.g003
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Comparison of PL acyl chains
in hospite Symbiodinium possessed higher concentrations of PL (35.8±9.6 ng/μg protein) rela-
tive to host gastrodermal cells (25.7±0.8 ng/μg protein), cultured Symbiodinium (17.8±4.5 ng/
μg protein), and LBs (10.0±2.5 ng/μg protein) (Fig 2). According to the multivariate ordination
analysis, host gastrodermal cells, LBs, in hospite Symbiodinium, and cultured Symbiodinium
were clearly separated by PCA (Fig 3F) on account of their PL acyl chains. The acyl chains that
contributed most to the separation of groups along PC1 were 20:5n-3, 18:4n-3, 18:0, and
20:4n-6, which collectively explained 67.4% of the total variance. PC2 only explained 20.8% of
the total variance. The cultured Symbiodinium contained the smallest amount of 18:0 (0.9±0.2
ng/μg protein) and the largest amounts of 20:5n-3 and 16:0 (4.0±0.8 and 6.1±1.0 ng/μg protein,
respectively; S7 Table). The cultured Symbiodinium contributed most significantly to the posi-
tive score on PC1 and were clearly separated from the coral-derived fractions (i.e., LBs, host
gastrodermal cells, and in hospite Symbiodinium). There were also clear differences between
host coral gastrodermal cells, LBs, and in hospite Symbiodinium. The latter fraction was charac-
terized by higher 18:3n-6 and 22:6n-3 concentrations. Furthermore, the 20:4n-6 and 22:1n-9
PL acyl chains were detected in LBs, which allowed for the acyl chain pools of the PLs in LBs to
be distinguishable from those of host gastrodermal cells, in hospite, and cultured Symbiodi-
nium. The acid 22:4n-6 from the coral host gastrodermal cells also contributed to the positive
eigenvector of PC1.

Data summary
Amongst all lipid species within cultured Symbiodinium (Fig 4A), SE were most readily distin-
guished from the other primary species: TAG, FFA, and PL. The score plot explained 98.0% of
the total variation present in the dataset, with PC1 accounting for 81.4% of the variation and
PC2 accounting for 16.6%. The FFA and PL 18:4n-3 contributed most to the positive eigenvec-
tor of PC1. The differences in lipid acyl chains between host gastrodermal cells, LBs, in hospite
Symbiodinium, and cultured Symbiodinium were also clearly separated by PCA (Fig 4B); PC1
explained 40.4% of the variation, with PC2 accounting for 27.0%. We found that most of the
lipid classes (TAG, SE, and FFA, but not PLs) in the LBs tended to cluster with the host coral,
rather than with the in hospite Symbiodinium. In particular, the SE acyl pools clustered more
closely with those of other lipid species in the endosymbiotic compartments than with the cul-
tured Symbiodinium populations. The acyl chain 20:4n-6 was distinguished as a chemotaxo-
nomic biomarker for the host coral and LB fractions in the PCA plot, and 18:3n-6 contributed
the most negative scores for in hospite Symbiodinium.

Discussion

Lipid pool distribution of coral host gastrodermal cells, LBs, and in
hospite Symbiodinium
Previous studies have proposed that coral hosts actively alter the FFA compositions of their in
hospite Symbiodinium populations [13, 23–26], but the molecular mechanisms underlying the
regulation of these metabolic processes remain unclear [27]. In contrast, the transfer of FA syn-
thesized by Symbiodinium to the coral host has been shown to significantly affect the latter’s
FA pools, as deduced from studies in which “autotrophic” coral lipid profiles were found to dif-
fer from those of corals more adept at heterotrophic feeding [28]. However, the details of how
each compartment modulates the lipid composition of the other has yet to be conclusively elu-
cidated [29]. The present dataset reveals several notable differences in the lipid profiles of host
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coral gastrodermal tissues, LBs, in hospite, and cultured Symbiodinium and may therefore pro-
vide insight into this issue, as discussed below.

LBs are endosymbiotic-specific organelles that undergo dynamic changes in morphology
and lipid composition over diel cycles, and they have been hypothesized to be the relay-station
for lipid flow between the hosts and their in hospite Symbiodinium populations [8]. In this
study, the lipid compositions of the host gastrodermal cells and LBs were more similar to each
other than either was to Symbiodinium; this was mainly driven by the absence of WE in the lat-
ter compartment. We also found that the composition of acyl chains (with the important
exception of those of the PL) in LBs was closer to that of the host coral than of the in hospite
Symbiodinium (Fig 2). This may mean that, although it is likely that Symbiodinium do indeed
provide their hosts with acyl chains necessary for the construction of more complex lipid spe-
cies, the proximate origin of the lipids comprising the LBs is the coral host.

Previous studies have shown that biosynthesis of PUFA in marine invertebrates is a compli-
cated and variable process [30–32]. The PUFA demonstrating the largest concentration
differences among host gastrodermal cells, LBs, in hospite, and cultured Symbiodinium were
18:3n-6, 20:5n-3, and 22:6n-3 (Table 1). The PUFA are synthesized from a pivotal conversion
of 18:1n-9 to 18:2n-6 catalyzed by Δ12-desaturase (i.e., the n-6 pathway), and then 18:2n-6 to
18:3n-3 by Δ15-desaturase (i.e., the n-3 pathway) [33]. Although some corals had higher con-
centrations of 18:4n-3, which has been shown to be a “specific” FA marker of Symbiodinium
from certain milleporids, as well as and Stylophora pistillata [34], the in hospite Symbiodinium
populations in this study possessed a high concentration of 18:3n-6. This was also shown in
certain acroporids, all poritids studied to date, and some other hard corals [15, 24, 34–37]. In
this study, the transfer of 18:3n-6 between the in hospite Symbiodinium and the host, or the
activity of Δ5 and Δ6 desaturases in host gastrodermal cells, may have led to the high concen-
tration of the arachidonic acid 20:4n-6 both in host gastrodermal cells and LBs (Table 1).

The FA composition of the E. glabrescens gastrodermal cells analyzed herein was character-
ized by high concentrations of 20:4n-6 and low 20:5n-3 concentrations. The 20:4n-6 has been
previously detected in endosymbiotic corals [38], similar to Clavularia viridis and the soft coral
Sinularia sp. [39–40]. Although previous study indicated that some corals (e.g., Milleporidae)
accumulate high levels of 22:4n-6 and 22:5n-3, others (e.g., Acroporidae, Poritidae and Pocillo-
poridae) are more likely to produce 20:4n-6 and 20:5n-3, as was the case herein. 20:4n-6,
20:5n-3, 22:4n-6 and 22:5n-3 are all known to be key acids in the n-3 and n-6 PUFA pathways
of marine invertebrates [34, 41–42]. Curiously, the former acid was not detected in either in
hospite and cultured Symbiodinium, an observation supported by another study [26]. As a con-
sequence, 20:4n-6 could serve as a marker for animal host tissue.

The role of the host coral in LB lipid synthesis
WE were only present in the coral hosts, and they were highly concentrated in LBs (Fig 2). The
fact that Symbiodinium did not produce WE seems to suggest that the WE of the LBs were
derived from the host coral cells from which they were isolated, rather than having been trans-
located from the resident Symbiodinium populations. WE are the major lipid species in at least
30 species of marine animals, and some of their myriad functions include buoyancy, energy
storage, and thermal insulation [43]. Although the role of WE in the coral-Symbiodinium
endosymbiosis is currently unclear, previous studies of LBs may shed light on the origin of

Fig 4. Principal components analysis (PCA) of the fatty acid moieties of what follows. (A) cultured Symbiodinium: sterol ester (SE; solid diamonds),
triacylglycerol (TAG; solid circles), free fatty acid (FFA, solid squares), and phospholipid (PL, solid triangles). (B) PCA of fatty acid moieties of host
gastrodermal cells (“host”), lipid bodies (“LBs”), and in hospite Symbiodinium (“Sym.”).

doi:10.1371/journal.pone.0132519.g004
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these lipids. Cheng and Russell [44–45] confirmed that WE synthase was localized to the mem-
branes of the ER in animals using confocal light microscopy; such was also found to be the case
in Arabidopsis [46]. These findings from other systems make it conceivable to postulate that
the WE present within coral gastrodermal LBs are of host ER, and not of Symbiodinium, origin.
However, not all LB WE are likely to be of host origin; palmityl oleate (R = C18:1/ R' = C16)
was only found in LBs, not in the host gastrodermal cells. This may mean that palmityl oleate
is produced endogenously within the LBs and could therefore serve as a LB marker.

Previous studies have found that lipid droplets originate from the ER in a variety of eukary-
otic cells, in which neutral lipids (including TAG and SE) are synthesized between leaflets of
the ER membranes and later bud off to form independent lipid droplets [47]. Peng et al. [8]
identified the ER-specific chaperone Bip (GRP 78) in the coral LB proteome, potentially indi-
cating a link between the host coral ER and the LBs. Furthermore, the concentrations of PL
vary amongst organelles (e.g., the plasma membranes vs. the ER). There are normally high con-
centrations of PC and PE in the ER; however, sphingolipids and sterols are typically more
abundant in the plasma membrane [48–49]. Our results revealed that the acyl composition of
PL differed between host gastrodermal cells and LBs (Figs 3F and 4B and S7 Table), which is
not surprising given the greater diversity of biological material (e.g., various organelles) in the
host cell as a whole vs. the LBs. The striking differences in the acyl chain composition of the PL
pools of LBs and the host gastrodermal cells may suggest that the LBs originate from the host
ER.

Lipid profiles of in hospite vs. cultured Symbiodinium
There were significant differences in the concentrations of the FA moieties of each lipid species
between in hospite and cultured Symbiodinium. The most dominant FA in in hospite Symbiodi-
nium were 16:0, 18:0,18:3n-6, 20:5n-3 and 22:6n-3; however, the major FA were 16:0, 18:4n-3
and 20:5n-3 in cultured Symbiodinium (Table 1). The predominance of the latter lipid species
(i.e. 16:0, 18:4n-3 and 20:5n-3) has also been reported in other marine algae [50–51]. Further-
more, consistent to our result in hospite Symbiodinium, Bishop and Kenrick [24] have demon-
strated that 18:3n-6, 20:5n-3, and 22:6n-3 were the major FA in the total lipid pools of
Symbiodinium populations isolated from eight species of hard corals. It is possible that these
differences in lipid profiles are related to metabolic differences between the in hospite and open
ocean environments.

A major portion of the 18:2n-6 and 18:3n-3 pools in the host coral might have been supplied
from external sources (e.g., phytoplankton and endosymbionts) [52–53], as it has been con-
firmed that the Symbiodinium populations within several reef-building corals have higher con-
centrations of PUFA in comparison to the host corals in which they were housed [13, 54]. This
could be related to the fact that Symbiodinium are typically nitrogen limited in hospite [55–56];
Jiang et al. [57–58] also found that in hospite Symbiodinium from the sea anemone Aiptasia
pulchella have higher proportions of PUFA than cultured Symbiodinium.

There was a distinct separation among acyl pools of each lipid species in cultured Symbiodi-
nium (Fig 4A). However, SE clustered more closely with TAG in in hospite Symbiodinium pop-
ulations (Fig 4B). SE are components of all eukaryotic membranes, and it has been suggested
that they constitute a major storage pool of sterols. They are also important regulators of mem-
brane fluidity and thus membrane properties and function [59–62]. We hypothesize that the
acyl composition of in hospite Symbiodiniummay depend not only on feeding status, but also
on the light level/photoperiod; future studies are needed to determine whether such is indeed
the case.
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Wang et al. [63] found that in hospite Symbiodinium populations maintain high concentra-
tions of FFA and PL and proposed that these lipids may be key players in the regulation of cell
proliferation, recognition, and ultimately the success of the endosymbiosis. Our data indicate
that FFA and PL concentrations are significantly higher in in hospite than cultured Symbiodi-
nium. It could be that the host coral actively affects Symbiodinium lipid production, though
further, radio-labeling-based experiments are needed to determine whether such is indeed the
case [25–26].

Conclusions
In this study, we found significant differences in the lipid profiles of LBs, coral host gastroder-
mal cells, and their in hospite (clade C) Symbiodinium populations. We also identified certain
lipid species that were unique to the symbiotic relationship. Upon a collective assessment of
the data, it appears that the direct translocation of final lipid products between LBs, host gas-
trodermal cells, and in hospite Symbiodinium documented in previous studies [23, 25, 29] can-
not explain all of the compartmental differences. For instance, the LB lipids are likely to be of
mixed origin, with some being from Symbiodinium and others from the host. This is based on
the observation that the LB lipid composition was similar, but not equal to, that of the host gas-
trodermal cells in which they resided; the fact that some lipid species, though, were unique to
LBs appears to suggest a degree of autonomous LB metabolism. Finally, there were significant
differences in the lipid pools of the cultured (clade C) and in hospite Symbiodinium (clade C)
populations, and this may suggest that the endosymbiotic lifestyle influences the lipid metabo-
lism of this important Symbiodinium lineage. Direct examinations of the lipid flow between
LBs, host gastrodermal cells, and their in hospite Symbiodinium communities, as well as how
such fluxes differ over the diel cycle, will provide important insight towards an understanding
of not only lipid metabolism, but also the molecular mechanisms underlying stable cnidarian-
dinoflagellate endosymbioses. Further work should also seek to elucidate whether different lin-
eages (i.e., clades) of Symbiodinium demonstrate similar lipid profile differences between the
free-living and in hospite lifestyles.
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